Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8 No. 2 Year 2016

Some Properties of Spectral Theory in Fuzzy Hilbert Spaces Noori F. Al-Mayahi Abbas M. Abbas Department of Mathematics/ College Computer Science and Information Technology/ Al-Qadissiya University

Recived : 61612016

Revised : //
Accepted : 15\8\2016

Abstract

In this paper we give some definitions and properties of spectral theory in fuzzy Hilbert spaces also we introduce definitions Invariant under a linear operator T on fuzzy normed spaces and reduced linear operator on fuzzy Hilbert spaces and we prove theorms related to eigenvalue and eigenvectors ,eigenspace in fuzzy normed , Invariant and reduced in fuzzy Hilbert spaces and show relationship between them. Keywordes: fuzzy normed spaces, fuzzy Hilbert spaces, eigenvalue and eigenvectors, eigenspace in fuzzy normed, linear operator on fuzzy normed spaces

Mathematics subject classification : 46S40 .

1.Introduction

The theory of a fuzzy sets was introduced by L. A. Zadeh [1] in 1965.Aftar the pioneer work of Zadeh ,many researchers have extended this concept in various branches ,many other mathematicians have studied fuzzy normed space from sereval points of view [2],[7]. Fuzzy Hilbert spaces is an extension to the Hilbert space. The definition of a fuzzy Hilbert space has been introduced by M. Goudarzi and S. M. Vaezpour [9] in 2009 .

2.Preliminaries

Definition (2.1): [3] Let $*$ be a binary operation on the set I, i.e. $\quad *: I \times I \rightarrow I$ is a function. Then $*$ is said to be t-norm (triangular-norm) on the set I if the following axioms are satisfied :
(1) $a * 1=a$, for all $a \in I$.
(2) $*$ is commutative (i.e. $a * b=b * a$, for all $a, b \in I)$.
(3) $*$ is monotone (i.e. if $b, c \in I$ such that $b \leq c$, then $a * b \leq a * c$, for all $a \in I$).
(4) $*$ is associative (i.e. $\quad a *(b * c)=(a * b) * c$, for all $a, b, c \in I)$.

If, in addition, * is continuous then $*$ is called a continuous t-norm.

Definition (2.2): [2] Let X be a vector space over F, * be a continuous t-norm on I, a function $N: X \times(0, \infty) \rightarrow[0,1]$ is called fuzzy norm if it satisfies the following conditions : for all $x, y \in X$ and $t, s>0$,
(N.1) $N(x, t)>0$,
(N.2) $N(x, t)=1$ if and only if $x=0$,
(N.3) $N(\alpha x, t)=N\left(x, \frac{t}{|\alpha|}\right)$, for all $\alpha \neq 0$,
(N.4) $N(x, t) * N(y, s) \leq N(x+y, t+s)$,
(N.5) $N(x,):.(0, \infty) \rightarrow[0,1]$ is continuous,
$(N .6) \lim _{t \rightarrow \infty} N(x, t)=1$.
$(X, N, *)$ is called fuzzy normed space
Remark (2.3) : [8]
(1) For any $\alpha_{1}, \alpha_{2} \in(0,1)$ with $\alpha_{1}>\alpha_{2}$, there exists
$\alpha_{3} \in(0,1)$ such that $\alpha_{1} * \alpha_{3} \geq \alpha_{2}$.
(2) For any $\alpha_{4} \in(0,1)$, there exists $\alpha_{5} \in(0,1)$ such that
$\alpha_{5} * \alpha_{5} \geq \alpha_{4}$.
Example (2.4) : [11] Let $(X,\|\|$.$) be a normed space.$
$a * b=a . b$ for all $a, b \in X$ and for all $x \in X, t>0$

$$
N(x, t)=\left\{\begin{array}{cl}
\frac{t}{t+\|x\|} & , x \neq 0 \\
1 & , x=0
\end{array}\right.
$$

Then $(X, N, *)$ is fuzzy normed space.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8
 No. 2 Year
 2016

Definition (2.5) : [4] Let X be a real linear space, * be a continuous $\quad \mathrm{t}$-norm on $I=[0,1]$. A function $H: X \times X \times \mathbb{R} \rightarrow[0,1]$ is called a fuzzy pre-Hilbert function if it satisfies the following axioms for every $x, y, z \in X$ and $s, t, r \in \mathbb{R}:$

Note : $\quad h(t)= \begin{cases}1 & , t>0 \\ 0 & , t \leq 0\end{cases}$
(1) $H(x, x, 0)=0$ and $H(x, x, t)>0$ for each $t>0$
(2) $H(x, x, t) \neq h(t)$ for some $t \in \mathbb{R}$ if and only if $x \neq 0$
(3) $H(x, y, t)=H(y, x, t)$
(4) For any real number α

$$
H(\alpha x, y, t)= \begin{cases}H\left(x, y, \frac{t}{\alpha}\right) & , \alpha>0 \\ h(t) & , \alpha=0 \\ 1-H\left(x, y, \frac{t}{-\alpha}\right) & , \alpha<0\end{cases}
$$

(5) $H(x, x, t) * H(y, y, s) \leq H(x+y, x+y, t+s)$
(6) $\sup _{s+r=t}(H(x, z, s) * H(y, z, r))=H(x+y, z, t)$
(7) $H(x, y,):. \mathbb{R} \rightarrow[0,1]$ is continuous on $\mathbb{R} \backslash\{0\}$.
(8) $\lim _{t \rightarrow+\infty} H(x, y, t)=1$.
$(X, H, *)$ is a fuzzy pre-Hilbert space.

Example (2.6) : [4] Let $(X,\langle\rangle$,$) be an ordinary$ pre-Hilbert space. We define a function $H: X \times X \times \mathbb{R} \rightarrow$ [0,1] as follows :

$$
H(\alpha x, y, t)= \begin{cases}\frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}+|\langle\alpha x, y\rangle|^{\frac{1}{2}}} & , \alpha \geq 0, t>0 \\ 1-\frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}+|\langle\alpha x, y\rangle|^{\frac{1}{2}}} & , \alpha<0, t>0 \\ 0 & , \quad t \leq 0\end{cases}
$$

Define $a * b=\min \{a, b\}$ for all $a, b \in X$. This is a fuzzy pre-Hilbert and called the standard fuzzy pre-Hilbert induced by the pre-Hilbert $\langle.,$.$\rangle .$

Definition (2.7) : [4] Let ($X, H, *$) be a fuzzy pre-Hilbert space. $x, y \in X$ is said to be fuzzy orthogonal if $H(x, y, t)=h(t)(\forall t \in \mathbb{R})$ and it is denoted by $x \perp y$. Definition (2.8) : [9] Let $(X, H, *)$ be a fuzzy pre-Hilbert space. A subset B of X is called fuzzy orthogonal if $x \perp y$, for each $x, y \in B$.
Lemma (2.9) : [4] If ($X, H, *$) be a fuzzy pre-Hilbert space , then $(X, H, *)$ is non decreasing with respect to t, for each $x, y \in X$.
Definition (2.10) : [9]If B is a subset of the fuzzy pre-Hilbert space $(X, H, *)$, then $B^{\perp}=\{x \in X: x \perp$ $y, \forall y \in B\}$.
Definition (2.11) : [7] A t-norm $*:[0,1] \times[0,1] \rightarrow[0,1]$ is called strong if it has the two following properties :
(1) For all $a, b \in(0,1), a * b>0$,
(2) For all $a, b, c, d \in[0,1]$ and $a>b, c>d$ we have $a * b>c * d$.

Theorem (2.12) : [4] Suppose that $(X, H, *)$ be a fuzzy pre-Hilbert space, where $*$ is a strong t -norm and for each $x, y \in X$,

$$
\sup \{t \in \mathbb{R}, H(x, y, t)<1\}<\infty .
$$

Define $\langle. .\rangle:. X \times X \rightarrow \mathbb{R} \quad$ by
$\langle x, y\rangle=\sup \{t \in \mathbb{R}, H(x, y, t)<1\}$. Then $(X,\langle. .\rangle$.$) is$ a pre-Hilbert space

Corollary (2.13) : [4] Let $(X, H, *)$ be a fuzzy pre-Hilbert space, where $*$ is a strong t-norm and for each $x, y \in X, \sup \{t \in \mathbb{R}, H(x, y, t)<1\}<\infty$. If we define $\|x\|=(\sup \{t \in \mathbb{R}, H(x, x, t)<1\})^{\frac{1}{2}}$, then $(X,\|\cdot\|)$ is a normed space.
Definition (2.14) : [4] Let ($X, H, *$) be a fuzzy pre-Hilbert space, where $*$ is a strong t -norm and for each $x, y \in X, \sup \{t \in \mathbb{R}, H(x, y, t)<1\}<\infty$ and $\|x\|=(\sup \{t \in \mathbb{R}, H(x, x, t)<1\})^{\frac{1}{2}}$. We say that $(X, H, *)$ is a fuzzy Hilbert space if $(X,\|\|$.$) is complete$ normed space.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8 No. 2 Year 2016

Theorem (2.15) : [6] Let $(X, H, *)$ be a fuzzy pre-Hilbert space. And $A \subset X$;
(1)The relation of Orthogonality symmetric (i.e. if $x \perp y$ then $y \perp x)$
(2)If $x \perp y$ then $\alpha x \perp y \forall t \in \mathbb{R}$
(3)Let $A \subset B$ then $B^{\perp} \subset A^{\perp}$
(4) $A \subset A^{\perp \perp}$
(5) $A \subset B^{\perp} \leftrightarrow B \subset A^{\perp}$
(6)If $x \perp x \leftrightarrow x=0 \quad \forall t \in \mathbb{R}$
(7) $X^{\perp}=\{0\}$ for all $t \in \mathbb{R}$
(8) $A \cap A^{\perp}=\{0\}$ for all $t \in \mathbb{R}$
(9)For every vector $x \in X$,we have $0 \perp x \forall x \in X$
3. Eigenvalue and Eigenvector In Fuzzy Normed Spaces.

Definition (3.1) : [5] A function $T: X \rightarrow Y$ is called an operator from X into Y if X and Y are linear spaces over the same field F.

Definition (3.2) : [5] A linear operator T is an operator such that $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$
for all $x, y \in X$ and for all $\alpha, \beta \in F$.
Definition (3.3) :Let $(X, N, *)$ be a fuzzy normed spaces over F and $T \in L(X)$ then
(1) A scalar $\lambda \in F$ is called an eigenvalue of T, if there
exists non zero $x \in X$ such that $T(x)=\lambda x$
(2) Let x be an eigevector of T corresponding to eigenvalue $\lambda \Rightarrow T(x)=\lambda x$
Example (3.4) :Let $X=\mathbb{R}^{2}$ and
$T:(X, N, *) \rightarrow(X, N, *) \quad$ Define
By $T(x, y)=(-y, x)$ for all $(x, y) \in \mathbb{R}^{2}$ and
$N: \mathbb{R}^{2} \times(0, \infty) \rightarrow[0,1]$
Define fuzzy norm in example(2.4) and T is linear operator has no eigenvalue
Example (3.5) :Let $X=\mathbb{R}^{2}$ and $T:(X, N, *) \rightarrow(X, N, *)$ Define
By $T(x, y)=(x+2 y, 3 x+2 y)$ for all $(x, y) \in \mathbb{R}^{2}$ and $N: \mathbb{R}^{2} \times(0, \infty) \rightarrow[0,1]$ Define fuzzy norm in
example(2.4) and T is linear operator have eigenvalues $\lambda=-1, \lambda=4$
Theorem (3.6) :Let $(X, N, *)$ be a fuzzy normed spaces over F and $T \in L(X)$ if x one eigenvector of T corresponding to the eigenvalue λ and α is any non zero scalar then αx is also an eigenvector of T corresponding to the same eigenvalue λ
proof: since x is an eigenvector of T corresponding to the eigenvalue
λ then $x \neq 0$ and $T(x)=\lambda x \quad$ since $x \neq 0$ and $\alpha \neq 0 \Rightarrow \alpha x \neq 0$
$T(\alpha x)=\alpha T(x)=\alpha(\lambda x)=(\alpha \lambda) x=(\lambda \alpha) x=\lambda(\alpha x)$
There fore αx is an eigenvector of T corresponding to the eigenvalue λ
Remark(3.7): Corresponding to an eigenvalue λ there may correspond more Than one eigenvectors
Theorem (3.8) : Let ($X, N, *$) be a fuzzy normed spaces over F and $T \in L(X) \quad$ if x an eigenvector of T,then x cannot correspond to more than one eigenvalues of T
proof: Let be an eigenvector of T corresponding to two distinct eigenvalues
λ_{1} and λ_{2} of $T \quad T(x)=\lambda_{1} x$ and also $T(x)=$ $\lambda_{2} x$.therefore we have
$\lambda_{1} x=\lambda_{2} x \quad \Rightarrow \lambda_{1} x-\lambda_{2} x=0 \quad \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) x=0$ since $x \neq 0 \Rightarrow \lambda_{1}-\lambda_{2}=0 \Rightarrow \lambda_{1}=\lambda_{2}$
and α is any non-zero scalar ,then αx is also an eigenvector of T corresponding to the same eigenvector λ
Definition (3.9) : [10] Let $\left(X, N_{1}, *\right)$ and $\left(Y, N_{2}, *\right)$ be a fuzzy normed spaces.A linear operator
$T:\left(X, N_{1}, *\right) \rightarrow\left(Y, N_{2}, *\right)$ is said to be fuzzy bounded if and only if there exists $r>0$, such that for each $t>0$

$$
N_{2}(T(x), t) \geq N_{1}\left(x, \frac{t}{r}\right), \quad \forall x \in X
$$

Remark (3.10) : [13] Let $\left(X, N_{1}, *\right)$ and $\left(Y, N_{2}, *\right)$ be a fuzzy normed spaces over $F, F B(X, Y)$ is the space of all fuzzy bounded linear operator from X in to Y.

Definition (3.11) : [13] Let $(X, H, *)$ and $(Y, H, *)$ be a fuzzy Hilbert spaces over F, and let $T \in F B(X, Y)$. A fuzzy Hilbert-adjoint operator T^{*} of T is the operator $T^{*}:(Y, H, *) \rightarrow(X, H, *)$ such that :
$\sup \{t \in \mathbb{R}, H(T(x), y, t)<1\}=$
$\sup \left\{t \in \mathbb{R}, H\left(x, T^{*}(y), t\right)<1\right\} \quad$ for all $x \in X$ and $y \in Y$.

Remark (3.12) : [13] We denoted $F B(X, X)$ by $F B(X)$.
Theorem (3.13) : [13] (Some Properties of fuzzy
Hilbert-adjoint operator)
Let $(X, H, *)$ and $(Y, H, *)$ be a fuzzy Hilbert spaces over F, and let $\quad S, T \in F B(X, Y)$. Then we have :

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8
 No. 2 Year
 2016

(a) $\sup \left\{t \in \mathbb{R}, H\left(T^{*}(y), x, t\right)<1\right\}=\sup \{t \in$
$\mathbb{R}, H(y, T(x), t)<1\}$ for all $x \in X$ and $y \in Y$
(b) $(T+S)^{*}=T^{*}+S^{*}$
(c) $\left(T^{*}\right)^{*}=T$

Definition (3.14) : [13] Let $(X, H, *)$ be a fuzzy Hilbert space over F and let $T \in B(X) . \quad T$ is said to be Normal if $T \circ T^{*}=T^{*} \circ T$.

Theorem (3.15) : [13] Let $(X, H, *)$ be a fuzzy Hilbert space over F, and $T \in F B(X)$. Then $T=0$ if and only if $\sup \{t \in \mathbb{R}, H(T(x), T(x), t)<1\}=0 \quad$ for all $\quad x \in X$.
Theorem (3.16) :Let T be a normal operator on a Fuzzy finite dimensional Hilbert space X over F then
(1) $T-\lambda I$ is normal
(2) Every eigenvector of T is also eigenvector for T^{*}

Proof:

(1) since T is normal $\Rightarrow T \circ T^{*}=T^{*} \circ T$

$$
\begin{aligned}
& (T-\lambda \mathrm{I})^{*}=T^{*}-\bar{\lambda} \mathrm{I}
\end{aligned} \quad \begin{array}{r}
(T-\lambda \mathrm{I}) \circ(T-\lambda \mathrm{I})^{*}=(T-\lambda \mathrm{I}) \circ\left(T^{*}-\bar{\lambda} \mathrm{I}\right) \\
\quad=T \circ T^{*}-\bar{\lambda} T-\lambda T^{*}+\lambda \bar{\lambda}
\end{array} \begin{array}{r}
(T-\lambda \mathrm{I})^{*} \circ(T-\lambda \mathrm{I})=\left(T^{*}-\bar{\lambda} \mathrm{I}\right) \circ(T-\lambda \mathrm{I}) \\
\quad=T^{*} \circ T-\bar{\lambda} T-\lambda T^{*}+\bar{\lambda} \lambda
\end{array} \begin{array}{r}
(T-\lambda \mathrm{I})^{*} \circ(T-\lambda \mathrm{I})=T \circ T^{*}-\bar{\lambda} T-\lambda T^{*}+\lambda \bar{\lambda} \\
\Rightarrow(T-\lambda \mathrm{I})^{*} \circ(T-\lambda \mathrm{I})=(T-\lambda \mathrm{I}) \circ(T-\lambda \mathrm{I})^{*}
\end{array}
$$

Therefore $T-\lambda \mathrm{I}$ is normal
$\sup \{t \in \mathbb{R}, H(T(x), T(x), t)<1\}$
$=\sup \left\{t \in \mathbb{R}, H\left(x, T^{*}(T(x)), t\right)<1\right\}$
$=\sup \left\{t \in \mathbb{R}, H\left(x, T^{*} \circ T(x), t\right)<1\right\}$
$=\sup \left\{t \in \mathbb{R}, H\left(x, T \circ T^{*}(x), t\right)<1\right\}$
$=\sup \left\{t \in \mathbb{R}, H\left(x, T\left(T^{*}(x)\right), t\right)<1\right\}$
$=\sup \left\{t \in \mathbb{R}, H\left(T^{*}(x), T^{*}(x), t\right)<1\right\}$
Since $T-\lambda \mathrm{I}$ is normal, therefore $x \in X$ we have $\sup \{t \in \mathbb{R}, H((T-\lambda \mathrm{I})(x),(T-\lambda \mathrm{I})(x), t)<1\}$ $=\sup \left\{t \in \mathbb{R}, H\left((T-\lambda \mathrm{I})^{*}(x),(T-\lambda \mathrm{I})^{*}(x), t\right)<1\right\}$
Since $T(x)=\lambda x \Rightarrow T(x)-\lambda \mathrm{I}(x)=0 \Rightarrow$
$(T-\lambda \mathrm{I})(x)=0 \Rightarrow(T-\lambda \mathrm{I})=0$ then by theorem (3.15)
$\sup \{t \in \mathbb{R}, H((T-\lambda \mathrm{I})(x),(T-\lambda \mathrm{I})(x), t)<1\}=0$ $\Rightarrow \sup \left\{t \in \mathbb{R}, H\left((T-\lambda \mathrm{I})^{*}(x),(T-\lambda \mathrm{I})^{*}(x), t\right)<\right.$ $1\}=0 \Rightarrow$
$(T-\lambda \mathrm{I})^{*}=0$ by theorem (3.15), for each $x \in X \Longrightarrow$ $(T-\lambda \mathrm{I})^{*}(x)=0$
$\Longrightarrow T^{*}(x)-\bar{\lambda} \mathrm{I}(x)=0 \Rightarrow T^{*}(x)=\bar{\lambda} \mathrm{I}(x) \Longrightarrow T^{*}(x)$

$$
=\bar{\lambda} x
$$

Therefore x is eigenvector of T^{*} and corresponding eigenvalue is $\bar{\lambda}$

Theorem (3.17) : [6] Let B be a non-empty subset of a fuzzy pre-Hilbert space $(X, H, *)$, then B^{\perp} is closed fuzzy subspace
Proof: Since $H(0, y, t)=h(t), \forall y \in B \Longrightarrow 0 \in B^{\perp}$ then $B^{\perp} \neq \varnothing$

Let $x, y \in B^{\perp}$ and $\alpha, \beta, r \in \mathbb{R}$
$H(x, z, t)=h(r) \quad \forall z \in B$
$H(y, z, t)=h(r) \quad \forall z \in B$
For every $\forall z \in B$ we have:
If $\alpha>0, \beta>0$

$$
\begin{aligned}
& H(\alpha x+\beta y, z, t)=\sup _{s+t=r}\left(H\left(x, z, \frac{t}{\alpha}\right) * H\left(y, z, \frac{s}{\beta}\right)\right) \\
& =h\left(\frac{t}{\alpha}\right) * h\left(\frac{s}{\beta}\right) \quad \\
& ==h(t) \quad * \quad h(s)=h(r) \quad \forall
\end{aligned}
$$

$r \in \mathbb{R}$
If $\quad \alpha<0, \beta<0$
$H(\alpha x+\beta y, z, t)=\sup _{s+t=r}\left(1-H\left(x, z, \frac{t}{-\alpha}\right) * 1-\right.$
$\left.H\left(y, z, \frac{s}{-\beta}\right)\right)=h(r) \quad \forall r \in \mathbb{R} \quad \operatorname{If} \alpha<0, \beta=$
0 or $\alpha=0, \beta<0$, or $\alpha>0, \beta=0, \alpha=0, \beta>0$
$H(\alpha x+\beta y, z, t)=h(r) \quad \forall r \in \mathbb{R}$
$\Rightarrow \alpha x+\beta y \in B^{\perp}$
Therefore B^{\perp} is a fuzzy subspace
Let $x \in \overline{B^{\perp}} \exists\left\{x_{n}\right\}$ in B^{\perp} such that $x_{n} \rightarrow x$
Let $y \in B \Rightarrow H\left(x_{n}, y, t\right)=h(t) \forall n \in \mathbb{Z}^{+}$
And $t \in \mathbb{R} \quad\left(x_{n} \in B^{\perp} \forall n \in \mathbb{Z}^{+}\right)$
Since $x_{n} \rightarrow x \Rightarrow H\left(x_{n}, y, t\right) \rightarrow H(x, y, t)$
$\Rightarrow H(x, y, t)=h(t)$ for all $y \in B$
$\Rightarrow x \in B^{\perp} \Rightarrow \overline{B^{\perp}}=B^{\perp}$
$\Rightarrow B^{\perp}$ is closed fuzzy subspace
Definition (3.18):Let M be a closed of a fuzzy Hilbert space X and $x \notin \mathrm{M}$ said that projection of $x \in X$ onto M if there is $z \in \mathrm{M}$
$N(x-z, t)=\sup \left\{\frac{t}{t+\|x-y\|}: y \in \mathrm{M}, \mathrm{t}>0\right\}$, we write
$y=P_{M}(x)$

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8 No. 2 Year 2016

Theorem (3.19): If M is subspace of a fuzzy Hilbert space X,for $x \in X$ there exist a unique $y \in \mathrm{M}$ such that $x-y \perp \mathrm{M}$ and $y=P_{\mathrm{M}}(x)$
Proof: Define $\langle.,\rangle:. X \times X \rightarrow \mathbb{R} \quad$ by $\langle x, y\rangle=$ $\sup \{t \in \mathbb{R}, H(x, y, t)<1\}$. from theorem (2.12), we have $(X,\langle.,\rangle$.$) is a pre-Hilbert space. Also$
$\|x\|=(\sup \{t \in \mathbb{R}, H(x, x, t)<1\})^{\frac{1}{2}}$ from corollary (2.13) we have ($X,\|\cdot\|$) is a normed space since X is a fuzzy Hilbert space then $(X,\|\|$.$) is$ complete normed space then X is Hilbert space then by using [12] for $x \in X$ there exist a unique $y \in \mathrm{M}$ such that $x-y \perp \mathrm{M}$ and $y=P_{\mathrm{M}}(x)$
Then $\langle x-y, z\rangle=0 \forall z \in \mathrm{M}$ then $\quad \sup \{t \in$ $\mathbb{R}, H(x, y, t)<1\}=0 \quad$ there fore $x-y \perp \mathrm{M} \quad \forall z \in \mathrm{M} \quad$ in $\quad X \quad$ fuzzy Hilbert space, since $y=P_{\mathrm{M}}(x)$ then by [12] there is $b \in \mathrm{M}$ such that
$\|x-b\|=\inf \{\|x-y\|: y \in \mathrm{M}\}$ then
$\|x-b\| \leq\|x-y\|, y \in \mathrm{M} \Rightarrow t+\|x-b\| \leq t+$ $\|x-y\|, \mathrm{t}>0 \Rightarrow \quad \frac{t}{t+\|x-y\|} \leq \frac{t}{t+\|x-b\|}, \quad y \in \mathrm{M}, \mathrm{t}>0$ there fore $N(x-b, t)=\sup \left\{\frac{t}{t+\|x-y\|}: y \in \mathrm{M}, \mathrm{t}>0\right\}$
Theorem (3.20): If M is subspace of a fuzzy Hilbert space X,then $\quad X=\mathrm{M} \oplus \mathrm{M}^{\perp}$, that is each $x \in X$ can be uniqully decomposed from $x=y+z$ with $y \in M, z \in M^{\perp}$
Proof: For all $x \in X$ and M is subspace there exist y so that $x=x-y+y$ with
$x-y \in \mathrm{M}^{\perp}$ and $y \in \mathrm{M}$ such that $y=P_{\mathrm{M}}(x)$ and
$z=x-y \Rightarrow x=y+z \Rightarrow$
$X=\mathrm{M}+\mathrm{M}^{\perp} \quad$ also since $\mathrm{M} \cap \mathrm{M}^{\perp}=\{0\}$ by theorem (2.15) ,there fore $X=\mathrm{M} \oplus \mathrm{M}^{\perp}$

Theorem (3.21):If M is subspace of a fuzzy Hilbert space X, then M is fuzzy closed iff $\mathrm{M}=\mathrm{M}^{\perp \perp}$
Proof: Since $M \subset M^{\perp \perp}$ by theorem (2.15), we show that $\mathrm{M}^{\perp \perp} \subset \mathrm{M}$
Let $x \in \mathrm{M}^{\perp \perp}$ then by theorem(3.20) $x=y+z$, where $y \in M, z \in M^{\perp}$ since
$\mathrm{M} \subset \mathrm{M}^{\perp \perp}$ and $\mathrm{M}^{\perp \perp}$ is subspace $z=x-y \mathrm{M}^{\perp \perp}$ but $z \in \mathrm{M}^{\perp} \Rightarrow z \in \mathrm{M}^{\perp \perp} \cap \mathrm{M}^{\perp}$
Since $M^{\perp \perp} \cap M^{\perp}=\{0\}$ then $z=0$,thus $x=y \in M$ there fore $M^{\perp \perp} \subset M$ thus $M=M^{\perp \perp}$
Conversely suppose $M=M^{\perp \perp}$ since
$\left(M^{\perp}\right)^{\perp}=M^{\perp \perp}$ is close set then M is close set.
Theorem (3.22): Let M be a closed subspace of a fuzzy Hilbert space X over F, and let $T \in F B(X)$.Then M is invariant under T iff M^{\perp} is invariant under T^{*}

Proof: Suppose M is invariant under T
Let $y \in \mathrm{M}^{\perp}$. To prove that $T^{*}(y) \in \mathrm{M}^{\perp}$ (i.e. $\left.T^{*}(y) \perp \mathrm{M}\right)$
Let $x \in \mathrm{M}$,since M is invariant under $T \Rightarrow T(x) \in \mathrm{M}$ Since $y \in M^{\perp} \Longrightarrow \sup \{t \in \mathbb{R}, H(T(x), y, t)<1\}=$ $0 \Rightarrow$
$\sup \left\{t \in \mathbb{R}, H\left(x, T^{*}(y), t\right)<1\right\}=0$.Thus $T^{*}(y) \perp \mathrm{M}$
Conversely suppose that M^{\perp} is invariant under T^{*}.
Since M^{\perp} is closed subspace of a fuzzy Hilbert space X by theorem (3.17) and since M^{\perp} is invariant under T^{*}, therefore by first case $\left(\mathrm{M}^{\perp}\right)^{\perp}$ is invariant under $\left(T^{*}\right)^{*}$ but $\left(\mathrm{M}^{\perp}\right)^{\perp}=\mathrm{M}^{\perp \perp}=\mathrm{M}$ and $\left(T^{*}\right)^{*}=T^{* *}=T$ Therefore M is invariant under T
Definition (3.23) :Let M be a closed subspace of a fuzzy Hilbert X over F And let $T \in F B(X)$. We say that T is reduced by M if both M and M^{\perp} are Invariant under T.If T is reduced by M , then some times we also say that M reduces T
Theorem (3.24): A closed subspace M of a fuzzy Hilbert X over F reduces an operator T iff M is invariant under both T and T^{*}
Proof: Suppose M reduces .Then by the definition of reducibility both M and M^{\perp} are invariant under T by theorem (3.22), if M^{\perp} is invariant under T
Then $\left(\mathrm{M}^{\perp}\right)^{\perp}$, i.e. M is invariant T^{*}.then M is invariant under both T and T^{*}
Conversely suppose that M is invariant under both T and T^{*}
Since M is invariant under T^{*},therefore by theorem (3.22), M^{\perp} is invariant under $\left(T^{*}\right)^{*}$,i.e. T.thus both M and M^{\perp} are invariant under T.therefore M reduces T

Definition (3.25) :Let X be a fuzzy normed space over $F, T \in F B(X)$ and let λ be eigenvalue of T then set consting of all eigenvectors of T which correspond to eigenvalue λ together with the vector 0 is called eigenspace of T corresponding to the eigenvalue λ and is denoted by M_{λ}
(1)Since by definition an eigenvector is non zero vector, there fore the set M_{λ} necessary contains some non zero vector
(2)Since by definition of M_{λ} a non zero vector x is in M_{λ} iff $T(x)=\lambda x$
Also it is given that the vector 0 is in M_{λ} the vector 0 defintly satisfies
The equatior $T(x)=\lambda x$ there for
$\mathrm{M}_{\lambda}=\{x \in X: T(x)=\lambda x\}$
$=\{x \in X:(T-\lambda \mathrm{I})(x)=0\}$
Thus $\quad \mathrm{M}_{\lambda}$ is null space (or kernel of linear operator
$T-\lambda \mathrm{I}$ on X). Hence M_{λ} is a subspace of X

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 8 No. 2 Year 2016

Noori. F/ Abbas. M
(3)Let $x \in X$ since M_{λ} is a subspace of X and $\lambda \in F$ $\Rightarrow \lambda x \in \mathrm{M}_{\lambda}$ since
$x \in \mathrm{M}_{\lambda} \Rightarrow T(x)=\lambda x \Rightarrow T(x) \in \mathrm{M}_{\lambda} \Rightarrow \mathrm{M}_{\lambda}$ is an invariant under T
from (1),(2) and (3) we have M_{λ} is non zero subspace of X invariant under of T
(4)If $T \in F B(X)$ then M_{λ} is closed subspace of X, M_{λ} is called eigenspace of T,corresponding to the eigenvalue λ
Theorem (3.26): If T be a normal operator on n dimensional fuzzy Hilbert Space X over F,then each eigenspace reduces T
Proof:Let x_{i} belong to M_{i} the eigenspace of T and corresponding eigenvalue be λ_{i}, so that $T\left(x_{i}\right)=\lambda_{i} x_{i}$ since T is normal then by theorem(3.16) eigenvalue for T^{*} (i.e. $\left.T^{*}\left(x_{i}\right)=\overline{\lambda_{i}} x_{i}\right)$ since M_{i} is a subspace \Rightarrow $\overline{\lambda_{i}} x_{i} \in \mathrm{M}_{i} \Longrightarrow T^{*}\left(x_{i}\right) \in \mathrm{M}_{i} \Rightarrow \mathrm{M}_{i}$ is invariant under T^{*}, but M_{i} is invariant under T then by theorem(3.24) M_{i} is reduces T

REFERENCES

[1] L. A. Zadeh, Fuzzy sets, Inform and Control, No.8, (1965), 338-353.
[2] S. M.Vaezpour and F. Karimi, T-Best approximation in fuzzy normed spaces, Iranian Journal of Fuzzy Systems,
Vol.5, No.2, (2008), 93-99
[3] J. Buckley James and Esfandiar Eslami, An introduction to fuzzy logic and fuzzy sets, NewYork :
Physica-verlag, (2002).
[4] M. Goudarzi, S. M. Vaezpour, On the definition of fuzzy
Hilbert spaces and its application, J. Nonlinear Sci. Appl. 2,
No.1, , (2009), 46-59.
[5] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, Inc., (1978).
[6]N. F.Al-Mayahi and Intisar H.Radhi, On Fuzzy
Co-pre-Hilbert, Journal of Kufa for mathematics and computer, Vol.1, No.7, (2013), pp 1-6
[7] R. Saadati and S. M. Vaezpour, Some resuls on fuzzy
Banach spaces, J. Appl. Math. And Computing, Vol.17, No.1-2, (2005), 475-484.
[8] A. George and P.Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Vol.64, No.3, (1994), 395-399.
[9] M. Goudarzi, S. M. Vaezpour, R. Saadati, On the intuitionistic fuzzy inner spaces, Chaos, Solitons and Fractals 41, (2009), 1105-1112.
[10] R. Saadati, A note on some results on the IF-normed spaces, Chaos, Solitons and Fractals (2007), doi :10. 1016/j.

Chaos. 2007. 11. 027.
[11] Alireza Kamel Mirmostafaee, Majid Mirzavaziri,
Closability of farthest point in fuzzy normed spaces, Bulletin of
Mathimatical Analysis and Applications, Vol.2, (2010), 140-145.
[12] Mr. Andrew Pinchuck, Functional Analysis , Department of Mathematics (Pure \& Applied) ,Rhodes University,Notes(2011)
[13]H.W.Twair,,Some results of fundamental theorems for fuzzy normed spaces ,Master Thesis,University of AL-Qadissiya,(2015).

> بعض الخصائص لنظريـة الاطياف في فضاء هلبرت الضبابي
> نوري فرحان المياحي جامعة القادسية / كلية العلوم الحاسوب وتكنولوجيا المـلومـات / قسم الرياضيات

المستخلص :
في هذا البحث قدمنا بعض التعاريف المتعلقة بنظرية الطيفية للمؤثر الخطي T المعرف على الفضـاء المعياري الضبابي وكما سنبر هن بعض الحقائق المتعلقة بلقيم الذاتية والمتجه الذاتي في فضـاء هلبرت الضبابي وكما نبرهن كل فضـاء ذاتي في فضـاء هلبرت الضبابي ذو البعد n يختزل المؤثر الخطي T اذا كان T مؤثر خطي سوي .

