1

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.2 Year 2016

Page 1 - 7

Noori. F/ Abbas. M

Some Properties of Spectral Theory in Fuzzy Hilbert Spaces Noori F. Al-Mayahi Abbas M. Abbas Department of Mathematics/ College Computer Science and Information Technology/ Al-Qadissiya University

Recived : 6\6\2016

Revised ://

Accepted : 15\8\2016

Abstract

In this paper we give some definitions and properties of spectral theory in fuzzy Hilbert spaces also we introduce definitions Invariant under a linear operator T on fuzzy normed spaces and reduced linear operator on fuzzy Hilbert spaces and we prove theorems related to eigenvalue and eigenvectors, eigenspace in fuzzy normed, Invariant and reduced in fuzzy Hilbert spaces and show relationship between them.

Keywordes: fuzzy normed spaces, fuzzy Hilbert spaces, eigenvalue and eigenvectors, eigenspace in fuzzy normed, linear operator on fuzzy normed spaces

Mathematics subject classification : 46S40 .

1.Introduction

The theory of a fuzzy sets was introduced by L. A. Zadeh [1] in 1965.Aftar the pioneer work of Zadeh ,many researchers have extended this concept in various branches ,many other mathematicians have studied fuzzy normed space from sereval points of view [2],[7]. Fuzzy Hilbert spaces is an extension to the Hilbert space. The definition of a fuzzy Hilbert space has been introduced by M. Goudarzi and S. M. Vaezpour [9] in 2009.

2.Preliminaries

Definition (2.1): [3] Let * be a binary operation on the

set *I*, i.e. $*: I \times I \rightarrow I$ is a function. Then * is said to be

t-norm (triangular-norm) on the set I if the following

axioms are satisfied :

(1) a * 1 = a, for all $a \in I$.

(2) * is commutative (i.e. a * b = b * a, for all $a, b \in I$).

(3) * is monotone (i.e. if $b, c \in I$ such that $b \leq c$,

then $a * b \le a * c$, for all $a \in I$).

(4) * is associative (i.e. a * (b * c) = (a * b) * c, for

all $a, b, c \in I$).

If, in addition, * is continuous then * is called a continuous t-norm.

Definition (2.2) : [2] Let *X* be a vector space over *F*, * be a continuous t-norm on *I*, a function $N: X \times (0, \infty) \rightarrow [0,1]$ is called fuzzy norm if it satisfies the following conditions : for all $x, y \in X$ and t, s > 0,

 $\begin{array}{l} (N.1) \ N(x,t) > 0, \\ (N.2) \ N(x,t) = 1 \ \text{if and only if} \ x = 0, \\ (N.3) \ N(\alpha x,t) = N\left(x,\frac{t}{|\alpha|}\right), \ \text{for all} \ \alpha \neq 0, \\ (N.4) \ N(x,t) * N(y,s) \leq N(x+y,t+s), \\ (N.5) \ N(x,.): (0,\infty) \to [0,1] \ \text{is continuous,} \\ (N.6) \ \lim_{t \to \infty} N(x,t) = 1. \end{array}$

(*X*, *N*,*) is called fuzzy normed space **Remark (2.3) : [8]**

(1) For any α_1 , $\alpha_2 \in (0,1)$ with $\alpha_1 > \alpha_2$, there exists

 $\alpha_3 \in (0,1)$ such that $\alpha_1 * \alpha_3 \ge \alpha_2$.

(2) For any $\alpha_4 \in (0,1)$, there exists $\alpha_5 \in (0,1)$ such that

liiut

 $\alpha_5 * \alpha_5 \ge \alpha_4.$

Example (2.4) : [11] Let $(X, \|.\|)$ be a normed space. a * b = a.b for all $a, b \in X$ and for all $x \in X, t > 0$

$$N(x,t) = \begin{cases} \frac{t}{t+\|x\|} & ,x \neq 0\\ 1 & ,x = 0 \end{cases}$$

Then (X, N, *) is fuzzy normed space.

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.2 Year 2016

Definition (2.5): [4] Let *X* be a real linear space, * be a continuous t-norm on I = [0,1]. A function $H: X \times X \times \mathbb{R} \rightarrow [0,1]$ is called a fuzzy pre-Hilbert function if it satisfies the following axioms for every $x, y, z \in X$ and $s, t, r \in \mathbb{R}$:

Note:
$$h(t) = \begin{cases} 1 & , t > \\ 0 & , t \le \end{cases}$$

- (1) H(x, x, 0) = 0 and H(x, x, t) > 0 for each t > 0
- (2) $H(x, x, t) \neq h(t)$ for some $t \in \mathbb{R}$ if and only if $x \neq 0$

0

Ω

- (3) H(x, y, t) = H(y, x, t)
- (4) For any real number α

$$H(\alpha x, y, t) = \begin{cases} H(x, y, \frac{t}{\alpha}) &, \alpha > 0\\ h(t) &, \alpha = 0\\ 1 - H(x, y, \frac{t}{-\alpha}) &, \alpha < 0 \end{cases}$$

- (5) $H(x, x, t) * H(y, y, s) \le H(x + y, x + y, t + s)$
- (6) $sup_{s+r=t}(H(x,z,s) * H(y,z,r)) = H(x + y,z,t)$
- (7) $H(x, y, .): \mathbb{R} \to [0, 1]$ is continuous on $\mathbb{R} \setminus \{0\}$.

 $(8) \lim_{t \to +\infty} H(x, y, t) = 1.$

(X, H, *) is a fuzzy pre-Hilbert space.

Example (2.6): [4] Let (X, \langle, \rangle) be an ordinary

pre-Hilbert space. We define a function $H: X \times X \times \mathbb{R} \rightarrow [0,1]$ as follows :

$$H(\alpha x, y, t) = \begin{cases} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}} + |\langle \alpha x, y \rangle|^{\frac{1}{2}}} &, \alpha \ge 0, t > 0\\ 1 - \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}} + |\langle \alpha x, y \rangle|^{\frac{1}{2}}} &, \alpha < 0, t > 0\\ 0 &, t \le 0 \end{cases}$$

Define $a * b = \min \{a, b\}$ for all $a, b \in X$. This is a fuzzy pre-Hilbert and called the standard fuzzy pre-Hilbert induced by the pre-Hilbert $\langle .,. \rangle$.

Definition (2.7) : [4] Let (X, H, *) be a fuzzy pre-Hilbert space. $x, y \in X$ is said to be fuzzy orthogonal if $H(x, y, t) = h(t)(\forall t \in \mathbb{R})$ and it is denoted by $x \perp y$. **Definition** (2.8) : [9] Let (X, H, *) be a fuzzy pre-Hilbert space. A subset *B* of *X* is called fuzzy orthogonal if

 $x \perp y$, for each $x, y \in B$.

Lemma (2.9): [4] If (X, H, *) be a fuzzy pre-Hilbert space, then (X, H, *) is non decreasing with respect to t, for each $x, y \in X$.

Definition (2.10) : [9] If *B* is a subset of the fuzzy pre-Hilbert space (X, H, *), then $B^{\perp} = \{ x \in X : x \perp y, \forall y \in B \}.$

Definition (2.11): [7] A t-norm $*: [0,1] \times [0,1] \rightarrow [0,1]$ is called strong if it has the two following properties :

(1) For all $a, b \in (0,1), a * b > 0$,

(2) For all $a, b, c, d \in [0,1]$ and a > b, c > d we have a * b > c * d.

Theorem (2.12): [4] Suppose that (X, H, *) be a fuzzy pre-Hilbert space, where * is a strong t-norm and for each $x, y \in X$,

$$\sup\{t \in \mathbb{R}, H(x, y, t) < 1\} < \infty.$$

Define $\langle .,. \rangle : X \times X \to \mathbb{R}$ by $\langle x, y \rangle = \sup\{ t \in \mathbb{R}, H(x, y, t) < 1 \}$. Then $(X, \langle .,. \rangle)$ is a pre-Hilbert space

Corollary (2.13) : [4] Let (X, H, *) be a fuzzy

pre-Hilbert space, where * is a strong t-norm and for each $x, y \in X$, sup{ $t \in \mathbb{R}$, H(x, y, t) < 1} $< \infty$. If we define $||x|| = (\sup\{t \in \mathbb{R}, H(x, x, t) < 1\})^{\frac{1}{2}}$, then (X, ||.||) is a normed space.

Definition (2.14): [4] Let (X, H, *) be a fuzzy pre-Hilbert space, where * is a strong t-norm and for each $x, y \in X$, sup{ $t \in \mathbb{R}, H(x, y, t) < 1$ } < ∞

and $||x|| = (\sup\{t \in \mathbb{R}, H(x, x, t) < 1\})^{\frac{1}{2}}$. We say that (X, H, *) is a fuzzy Hilbert space if (X, ||.||) is complete normed space.

Noori. F/ Abbas. M

Theorem (2.15) : [6] Let (*X*, *H*,*) be a fuzzy

pre-Hilbert space . And $A \subset X$;

(1) The relation of Orthogonality symmetric (i.e. if

 $x \perp y$ then $y \perp x$)

(2) If $x \perp y$ then $\alpha x \perp y \forall t \in \mathbb{R}$

(3)Let
$$A \subset B$$
 then $B^{\perp} \subset A^{\perp}$

 $(4) A \subset A^{\perp \perp}$

 $\textbf{(5)}\ A \subset B^\perp \leftrightarrow B \subset A^\perp$

(6) If $x \perp x \leftrightarrow x = 0 \quad \forall t \in \mathbb{R}$

(7) $X^{\perp} = \{0\}$ for all $t \in \mathbb{R}$

(8) $A \cap A^{\perp} = \{0\}$ for all $t \in \mathbb{R}$

(9)For every vector $x \in X$, we have $0 \perp x \forall x \in X$

3. Eigenvalue and Eigenvector In Fuzzy Normed Spaces.

Definition (3.1): [5] A function $T: X \to Y$ is called an

operator from X into Y if X and Y are linear spaces over the same field F.

Definition (3.2): [5] A linear operator T is an operator such

that $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

for all $x, y \in X$ and for all $\alpha, \beta \in F$.

Definition (3.3) :Let (X, N, *) be a fuzzy normed spaces over *F* and $T \in L(X)$ then (1) A scalar $\lambda \in F$ is called an eigenvalue of *T*, if there

exists non zero $x \in X$ such that $T(x) = \lambda x$

(2) Let *x* be an eigevector of *T* corresponding to eigenvalue $\lambda \implies T(x) = \lambda x$ **Example (3.4)** :Let $X = \mathbb{R}^2$ and $T : (X, N, *) \rightarrow (X, N, *)$ Define By T(x, y) = (-y, x) for all $(x, y) \in \mathbb{R}^2$ and $N : \mathbb{R}^2 \times (0, \infty) \rightarrow [0, 1]$ Define fuzzy norm in example(2.4) and *T* is linear operator has no eigenvalue **Example (3.5)** :Let $X = \mathbb{R}^2$ and $T : (X, N, *) \rightarrow (X, N, *)$ Define By T(x, y) = (x + 2y, 3x + 2y) for all $(x, y) \in \mathbb{R}^2$ and $N : \mathbb{R}^2 \times (0, \infty) \rightarrow [0, 1]$ Define fuzzy norm in example(2.4) and *T* is linear operator have eigenvalues $\lambda = -1, \lambda = 4$

Theorem (3.6) :Let (X, N, *) be a fuzzy normed spaces over *F* and $T \in L(X)$ if *x* one eigenvector of *T* corresponding to the eigenvalue λ and α is any non zero scalar then αx is also an eigenvector of *T* corresponding to the same eigenvalue λ

proof: since x is an eigenvector of T corresponding to the eigenvalue λ then $x \neq 0$ and $T(x) = \lambda x$ since $x \neq 0$ and $\alpha \neq 0 \implies \alpha x \neq 0$ $T(\alpha x) = \alpha T(x) = \alpha(\lambda x) = (\alpha \lambda)x = (\lambda \alpha)x = \lambda(\alpha x)$ There fore αx is an eigenvector of T corresponding to the eigenvalue λ **Remark(3.7):**Corresponding to an eigenvalue λ there may correspond more Than one eigenvectors **Theorem (3.8) :** Let (X, N, *) be a fuzzy normed spaces over *F* and $T \in L(X)$ if x an eigenvector of T, then x cannot correspond to more than one eigenvalues of T**proof:** Let be an eigenvector of *T* corresponding to two distinct eigenvalues λ_1 and λ_2 of T $T(x) = \lambda_1 x$ and also T(x) = $\lambda_2 x$.therefore we have $\lambda_1 x = \lambda_2 x \implies \lambda_1 x - \lambda_2 x = 0 \implies (\lambda_1 - \lambda_2) x = 0$ since $x \neq 0 \implies \lambda_1 - \lambda_2 = 0 \implies \lambda_1 = \lambda_2$ and α is any non-zero scalar, then αx is also an eigenvector of T corresponding to the same eigenvector λ **Definition** (3.9): [10] Let $(X, N_1, *)$ and $(Y, N_2, *)$ be a

fuzzy normed spaces .A linear operator

 $T: (X, N_1, *) \rightarrow (Y, N_2, *)$ is said to be fuzzy bounded if

and only if there exists r>0, such that for each t > 0

$$N_2(T(x),t) \ge N_1\left(x,\frac{t}{r}\right), \ \forall x \in X$$

Remark (3.10) : [13] Let $(X, N_1, *)$ and $(Y, N_2, *)$ be a fuzzy normed spaces over *F*, *FB*(*X*, *Y*) is the space of all fuzzy bounded linear operator from *X* in to *Y*.

Definition (3.11): [13] Let (X, H, *) and (Y, H, *) be a fuzzy Hilbert spaces over *F*, and let $T \in FB(X, Y)$. A

fuzzy Hilbert-adjoint operator T^* of T is the operator

 $T^*: (Y, H, *) \to (X, H, *)$ such that :

 $\sup \{ t \in \mathbb{R}, H(T(x), y, t) < 1 \} =$

 $\sup \{ t \in \mathbb{R}, H(x, T^*(y), t) < 1 \}$ for all $x \in X$ and $y \in Y$.

Remark (3.12) : [13] We denoted FB(X,X) by FB(X).

Theorem (3.13): [13] (Some Properties of fuzzy

Hilbert-adjoint operator)

Let (X, H, *) and (Y, H, *) be a fuzzy Hilbert spaces over *F*, and let $S, T \in FB(X, Y)$. Then we have :

Noori. F/ Abbas. M

(a)sup { $t \in \mathbb{R}$, $H(T^*(y), x, t) < 1$ } = sup { $t \in \mathbb{R}$, H(y, T(x), t) < 1} for all $x \in X$ and $y \in Y$ (b) $(T + S)^* = T^* + S^*$

 $(\mathbf{c})(T^*)^* = T$

Definition (3.14): [13] Let (X, H, *) be a fuzzy Hilbert space over F and let $T \in B(X)$. T is said to be Normal if $T \circ T^* = T^* \circ T$.

Theorem (3.15) : [13] Let (*X*, *H*,*) be a fuzzy Hilbert

space over *F*, and $T \in FB(X)$. Then T = 0 if and only if $\sup\{t \in \mathbb{R}, H(T(x), T(x), t) < 1\} = 0$ for all $x \in X$.

Theorem (3.16) :Let T be a normal operator on a Fuzzy

finite dimensional Hilbert space X over F then

(1) $T - \lambda I$ is normal

(2) Every eigenvector of T is also eigenvector for T^* **Proof:**

(1) since T is normal
$$\Rightarrow T \circ T^* = T^* \circ T$$

 $(T - \lambda I)^* = T^* - \overline{\lambda} I$
 $(T - \lambda I) \circ (T - \lambda I)^* = (T - \lambda I) \circ (T^* - \overline{\lambda} I)$
 $= T \circ T^* - \overline{\lambda}T - \lambda T^* + \lambda \overline{\lambda}$
 $(T - \lambda I)^* \circ (T - \lambda I) = (T^* - \overline{\lambda} I) \circ (T - \lambda I)$
 $= T^* \circ T - \overline{\lambda}T - \lambda T^* + \overline{\lambda}\lambda$
 $(T - \lambda I)^* \circ (T - \lambda I) = T \circ T^* - \overline{\lambda}T - \lambda T^* + \lambda \overline{\lambda}$
 $\Rightarrow (T - \lambda I)^* \circ (T - \lambda I) = (T - \lambda I) \circ (T - \lambda I)^*$
Therefore $T - \lambda I$ is normal
 $\sup\{t \in \mathbb{R}, H(T(x), T(x), t) < 1\}$
 $= \sup\{t \in \mathbb{R}, H(x, T^* \circ T(x), t) < 1\}$
 $= \sup\{t \in \mathbb{R}, H(x, T \circ T^*(x), t) < 1\}$
 $= \sup\{t \in \mathbb{R}, H(x, T(T^*(x)), t) < 1\}$
 $= \sup\{t \in \mathbb{R}, H(x, T(T^*(x)), t) < 1\}$

= sup{ $t \in \mathbb{R}$, $H(T^*(x), T^*(x), t) < 1$ } Since $T - \lambda I$ is normal, therefore $x \in X$ we have sup{ $t \in \mathbb{R}$, $H((T - \lambda I)(x), (T - \lambda I)(x), t) < 1$ } = sup{ $t \in \mathbb{R}$, $H((T - \lambda I)^*(x), (T - \lambda I)^*(x), t) < 1$ } Since $T(x) = \lambda x \implies T(x) - \lambda I(x) = 0 \implies$ $(T - \lambda I)(x) = 0 \implies (T - \lambda I) = 0$ then by theorem (3.15) $\sup\{t \in \mathbb{R}, H((T - \lambda I)(x), (T - \lambda I)(x), t) < 1\} = 0$ $\Rightarrow \sup\{t \in \mathbb{R}, H((T - \lambda I)^*(x), (T - \lambda I)^*(x), t) < 1\} = 0$ $\Rightarrow (T - \lambda I)^* = 0 \text{ by theorem (3.15), for each } x \in X \Rightarrow (T - \lambda I)^*(x) = 0$ $\Rightarrow T^*(x) - \overline{\lambda} I(x) = 0 \Rightarrow T^*(x) = \overline{\lambda} I(x) \Rightarrow T^*(x) = \overline{\lambda} x$

Therefore x is eigenvector of T^* and corresponding eigenvalue is $\overline{\lambda}$

Theorem (3.17) : [6] Let *B* be a non-empty subset of a fuzzy pre-Hilbert space (X, H, *), then B^{\perp} is closed fuzzy subspace

Proof: Since $H(0, y, t) = h(t), \forall y \in B \implies 0 \in B^{\perp}$ then $B^{\perp} \neq \emptyset$

Let $x, y \in B^{\perp}$ and $\alpha, \beta, r \in \mathbb{R}$

 $\begin{array}{ll} H(x,z,t) = h(r) & \forall z \in B \\ H(y,z,t) = h(r) & \forall z \in B \\ \text{For every } \forall z \in B \text{ we have:} \\ \text{If } \alpha {>} 0, \beta {>} 0 \end{array}$

$$H(\alpha x + \beta y, z, t) = \sup_{s+t=r} \left(H\left(x, z, \frac{t}{\alpha}\right) * H\left(y, z, \frac{s}{\beta}\right) \right)$$

$$= h\left(\frac{t}{\alpha}\right) * h\left(\frac{s}{\beta}\right)$$

$$= = h(t) * h(s) = h(r) \quad \forall$$

$$r \in \mathbb{R}$$
If $\alpha < 0, \beta < 0$

$$H(\alpha x + \beta y, z, t) = sup_{s+t=r}\left(1 - H\left(x, z, \frac{t}{-\alpha}\right) * 1 - H\left(y, z, \frac{s}{-\beta}\right)\right) = h(r) \quad \forall r \in \mathbb{R} \quad \text{If} \alpha < 0, \beta = 0$$
or $\alpha = 0, \beta < 0, \text{or } \alpha > 0, \beta = 0, \alpha = -0, \beta > 0$

$$H(\alpha x + \beta y, z, t) = h(r) \quad \forall r \in \mathbb{R}$$

$$\Rightarrow \alpha x + \beta y \in B^{\perp}$$
Therefore B^{\perp} is a fuzzy subspace
Let $x \in \overline{B^{\perp}} \exists \{x_n\}$ in B^{\perp} such that $x_n \to x$
Let $y \in B \Rightarrow H(x_n, y, t) = h(t) \forall n \in \mathbb{Z}^+$
And $t \in \mathbb{R} (x_n \in B^{\perp} \forall n \in \mathbb{Z}^+)$
Since $x_n \to x \Rightarrow H(x_n, y, t) \to H(x, y, t)$

$$\Rightarrow H(x, y, t) = h(t) \text{ for all } y \in B$$

$$\Rightarrow x \in B^{\perp} \Rightarrow \overline{B^{\perp}} = B^{\perp}$$

$$\Rightarrow B^{\perp}$$
 is closed fuzzy subspace

Definition (3.18):Let M be a closed of a fuzzy Hilbert space X and $x \notin M$ said that projection of $x \in X$ onto M if there is $z \in M$

 $N(x-z,t) = sup\left\{\frac{t}{t+\|x-y\|}: y \in \mathbb{M}, t{>}0\right\}$, we write $y = P_{\mathbb{M}}(x)$

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.2 Year 2016

Noori. F/ Abbas. M

Theorem (3.19): If M is subspace of a fuzzy Hilbert space X, for $x \in X$ there exist a unique $y \in M$ such that $x - y \perp M$ and $y = P_M(x)$

Proof: Define $\langle .,. \rangle : X \times X \to \mathbb{R}$ by $\langle x, y \rangle =$ sup{ $t \in \mathbb{R}, H(x, y, t) < 1$ }. from theorem (2.12), we have $(X, \langle .,. \rangle)$ is a pre-Hilbert space. Also

 $||x|| = (\sup\{t \in \mathbb{R}, H(x, x, t) < 1\})^{\frac{1}{2}}$ from corollary (2.13) we have (X, ||.||) is a normed space

since X is a fuzzy Hilbert space then $(X, \|.\|)$ is complete normed space then X is Hilbert space then by using [12] for $x \in X$ there exist a unique $y \in M$ such that $x - y \perp M$ and $y = P_M(x)$ Then $\langle x - y, z \rangle = 0 \quad \forall z \in M$ then $\sup\{t \in \mathbb{R}, H(x, y, t) < 1\} = 0$ there fore

 $x - y \perp M$ $\forall z \in M$ in X fuzzy Hilbert space, since $y = P_M(x)$ then by [12] there is $b \in M$ such that

 $||x - b|| = inf\{||x - y||: y \in M\}$ then

 $\begin{aligned} \|x - b\| &= ut \ (\|x - y\|, y \in M) \ \text{ then } \\ \|x - b\| &\leq \|x - y\|, y \in M \ \implies t + \|x - b\| \leq t + \\ \|x - y\| \ , t > 0 \ \implies \frac{t}{t + \|x - y\|} \leq \frac{t}{t + \|x - b\|} \ , \ y \in M, t > 0 \\ \text{there fore } N(x - b, t) \ = sup \left\{ \frac{t}{t + \|x - y\|} : y \in M, t > 0 \right\} \end{aligned}$

Theorem (3.20): If M is subspace of a fuzzy Hilbert space X, then $X = M \bigoplus M^{\perp}$, that is each $x \in X$ can be uniqully decomposed from x = y + z with $y \in M$, $z \in M^{\perp}$

Proof: For all $x \in X$ and M is subspace there exist y so that x = x - y + y with

 $x - y \in M^{\perp}$ and $y \in M$ such that $y = P_{M}(x)$ and $z = x - y \Longrightarrow x = y + z \Longrightarrow$

 $X = M + M^{\perp}$ also since $M \cap M^{\perp} = \{0\}$ by theorem (2.15), there fore $X = M \oplus M^{\perp}$

Theorem (3.21): If M is subspace of a fuzzy Hilbert space X, then M is fuzzy closed iff $M = M^{\perp \perp}$ **Proof:** Since $M \subset M^{\perp \perp}$ by theorem (2.15), we show that $M^{\perp \perp} \subset M$

Let $x \in M^{\perp \perp}$ then by theorem(3.20) x = y + z, where $y \in M$, $z \in M^{\perp}$ since

 $M \subset M^{\perp\perp}$ and $M^{\perp\perp}$ is subspace $z = x - y \ M^{\perp\perp}$ but $z \in M^{\perp} \implies z \in M^{\perp\perp} \cap M^{\perp}$

Since $M^{\perp\perp} \cap M^{\perp} = \{0\}$ then z = 0, thus $x = y \in M$

there fore $M^{\perp\perp} \subset M$ thus $M = M^{\perp\perp}$

Conversely suppose $M = M^{\perp \perp}$ since

 $(M^{\perp})^{\perp} = M^{\perp \perp}$ is close set then M is close set.

Theorem (3.22):Let M be a closed subspace of a fuzzy Hilbert space X over F, and let $T \in FB(X)$.Then M is invariant under T iff M^{\perp} is invariant under T^*

Proof: Suppose M is invariant under T Let $y \in M^{\perp}$. To prove that $T^*(y) \in M^{\perp}(i.e.$ $T^*(y) \perp M$ Let $x \in M$, since M is invariant under $T \implies T(x) \in M$ Since $y \in M^{\perp} \implies \sup \{t \in \mathbb{R}, H(T(x), y, t) < 1\} =$ $0 \Rightarrow$ $\sup \{ t \in \mathbb{R}, H(x, T^*(y), t) < 1 \} = 0$. Thus $T^*(v) \perp M$ Conversely suppose that M^{\perp} is invariant under T^* . Since M^{\perp} is closed subspace of a fuzzy Hilbert space X by theorem (3.17) and since M^{\perp} is invariant under T^* . therefore by first case $(M^{\perp})^{\perp}$ is invariant under $(T^*)^*$ but $(M^{\perp})^{\perp} = M^{\perp \perp} = M$ and $(T^*)^* = T^{**} = T$ Therefore M is invariant under T**Definition (3.23) :**Let M be a closed subspace of a fuzzy Hilbert X over F And let $T \in FB(X)$. We say that T is reduced by M if both M and M^{\perp} are Invariant under T. If T is reduced by M , then some times we also say that M reduces T**Theorem (3.24):** A closed subspace M of a fuzzy Hilbert X over F reduces an operator T iff M is invariant under both T and T^* **Proof:** Suppose M reduces .Then by the definition of reducibility both M and M^{\perp} are invariant under T by theorem (3.22), if M^{\perp} is invariant under T Then $(M^{\perp})^{\perp}$, i.e. M is invariant T^* then M is invariant under both T and T^*

Conversely suppose that M is invariant under both T and T^*

Since M is invariant under T^* , therefore by theorem (3.22), M^{\perp} is invariant under $(T^*)^*$, i.e. T. thus both M and M^{\perp} are invariant under T. therefore M reduces T

Definition (3.25) :Let *X* be a fuzzy normed space over *F*, $T \in FB(X)$ and let λ be eigenvalue of *T* then set consting of all eigenvectors of *T* which correspond to eigenvalue λ together with the vector 0 is called eigenspace of *T* corresponding to the eigenvalue λ and is denoted by M_{λ}

(1)Since by definition an eigenvector is non zero

vector,there fore the set $\ M_{\lambda}$ necessary contains some non zero vector

(2)Since by definition of M_{λ} a non zero vector x is in M_{λ} iff $T(x) = \lambda x$

Also it is given that the vector 0 is in M_{λ} the vector 0 defintly satisfies

The equation $T(x) = \lambda x$ there for

 $M_{\lambda} = \{ x \in X : T(x) = \lambda x \}$

 $= \{x \in X: (T - \lambda I)(x) = 0 \}$

Thus M_{λ} is null space (or kernel of linear operator $T - \lambda I$ on X). Hence M_{λ} is a subspace of X

Journal of AL-Qadisiyah for computer science and mathematics Vol.8 No.2 Year 2016

Noori. F/ Abbas. M

(3)Let $x \in X$ since M_{λ} is a subspace of X and $\lambda \in F$ $\Rightarrow \lambda x \in M_{\lambda}$ since

 $x \in M_{\lambda} \Rightarrow T(x) = \lambda x \Rightarrow T(x) \in M_{\lambda} \Rightarrow M_{\lambda}$ is an invariant under T

from (1),(2) and (3) we have M_{λ} is non zero subspace of X invariant under of T

(4) If $T \in FB(X)$ then M_{λ} is closed subspace of X, M_{λ} is called eigenspace of T, corresponding to the eigenvalue λ

Theorem (3.26): If T be a normal operator on n dimensional fuzzy Hilbert Space X over F, then each eigenspace reduces T

Proof:Let x_i belong to M_i the eigenspace of T and corresponding eigenvalue be λ_i , so that $T(x_i) = \lambda_i x_i$ since T is normal then by theorem(3.16) eigenvalue for T^* (i.e. $T^*(x_i) = \overline{\lambda_i} x_i$)since M_i is a subspace $\Rightarrow \overline{\lambda_i} x_i \in M_i \Rightarrow T^*(x_i) \in M_i \Rightarrow M_i$ is invariant under T^* , but M_i is invariant under T then by

theorem(3.24) M_i is reduces T

REFERENCES

 L. A. Zadeh, Fuzzy sets, Inform and Control, No.8, (1965), 338-353.

[2] S. M.Vaezpour and F. Karimi, T-Best approximation in

fuzzy normed spaces, Iranian Journal of Fuzzy Systems,

Vol.5, No.2, (2008), 93-99

[3] J. Buckley James and Esfandiar Eslami, An introduction to fuzzy logic and fuzzy sets, NewYork : Physica-verlag, (2002).

[4] M. Goudarzi, S. M. Vaezpour, On the definition of fuzzy

Hilbert spaces and its application, J. Nonlinear Sci. Appl. 2,

No.1, , (2009), 46-59.

[5] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, Inc. ,(1978).
[6]N. F.Al-Mayahi and Intisar H.Radhi, On Fuzzy Co-pre-Hilbert, Journal of Kufa for mathematics and computer, Vol.1, No.7, (2013), pp 1-6
[7] R. Saadati and S. M. Vaezpour, Some resuls on fuzzy

Banach spaces, J. Appl. Math. And Computing, Vol.17, No.1-2, (2005), 475-484.

[8] A. George and P.Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Vol.64, No.3, (1994), 395-399.

[9] M. Goudarzi, S. M. Vaezpour, R. Saadati, On the intuitionistic fuzzy inner spaces, Chaos, Solitons and Fractals 41, (2009), 1105-1112.

[10] R. Saadati, A note on some results on the IF-normed spaces, Chaos, Solitons and Fractals (2007), doi :10. 1016/j.Chaos. 2007. 11. 027.

[11] Alireza Kamel Mirmostafaee, Majid Mirzavaziri,

Closability of farthest point in fuzzy normed spaces, Bulletin of

Mathimatical Analysis and Applications, Vol.2, (2010),

140-145.

[12] Mr. Andrew Pinchuck, Functional Analysis,
Department of Mathematics (Pure & Applied), Rhodes
University, Notes (2011)
[13] H.W.Twair, Some results of fundamental theorems for fuzzy normed spaces, Master Thesis, University of

AL-Qadissiya,(2015).

Noori. F/ Abbas. M

بعض الخصائص لنظرية الاطياف في فضاء هلبرت الضبابي

نوري فرحان المياحي عباس محمد عباس جامعة القادسية / كلية العلوم الحاسوب وتكنولوجيا المعلومات / قسم الرياضيات

المستخلص:

في هذا البحث قدمنا بعض التعاريف المتعلقة بنظرية الطيفية للمؤثر الخطي T المعرف على الفضاء المعياري الضبابي وكما سنبر هن بعض الحقائق المتعلقة بلقيم الذاتية والمتجه الذاتي في فضاء هلبرت الضبابي وكما نبر هن كل فضاء ذاتي في فضاء هلبرت الضبابي ذو البعد n يختزل المؤثر الخطي T اذا كان T مؤثر خطي سوي .