Certain properties of λ – closed set

 λ - λ - λ - λ - λ

* Bushra Kadum Awaad* and Hadi Jaber Mustafa**

* Department of Mathematics, College of Education, Al-Mustansiryah University, Baghdad, Iraq. ** Department of Mathematics, College of Science, Al-Kufa University, Al-Najaf-Iraq.

Abstract:

The aim of this paper is to study the notion of λ – closed, sets in topological spaces by given and proved some of their properties .

المستخلص: الهدف الرئيسي في هذا البحث هو در اسة مفهو م المجمو عات المغلقة - χ يو اسطه تقديم و بر هان بعض من خصائصها .

1- Introduction:

C – sets are one of the important definitions for studying topological spaces . In fact ,H. Maki [1] introduced the concept of C – set (which he call a subset A of a topological spaces (X, τ) is called a C- set if A = ker (A), where ker (A) = the intersection of all open sets containing A, if A is open set, then A = ker (A), but the converse is not necessarily true). Also ,M.Ganster and I.L. Reilly [3]. introduced the concepts of λ - closed sets, the subset A of a topological space (X, τ) is called λ - closed sets if and only if A =L∩ F, where F is closed in X and L is a C – set ,that is L = ker (L) and they prove every closed set is λ - closed set. in this works, several properties of λ - closed sets are proved.

2- Basic Definitions:

In this section, we recall and introduce the basic definitions needed in this work.

Definition (2.1):[1]

- (i) Let (X, τ) be a topological space let $A \subseteq X$, we say that A is a C- set if A = ker(A) where ker $(A) = \text{the intersection of all open sets containing A if A is open, then A is a C set <math>\cdot$
- (ii) if X is an Alexandrof space (that is the arbitrary intersection of open sets is open) [2] \cdot then every C- set is open \cdot

Definition (2.2):[3]

Let $(X,\tau$) be a topological space let $W\subseteq X$ we say that W is λ - closed if $~W=A\cap F$ where A is a C - set and F is a closed set .

Remarks and Examples (2.3):

- 1- Every closed set is λ closed (because if W is closed then $W=X\cap W$, X is a C set hence W is λ closed) .
- 2 Every C- set is λ closed because if W is a C set then W = W \cap X but X is closed hence W is λ closed.
- 3 If X is a T1- space then every subset of X is a C-set , hence every subset of X is λ closed .

Journal University of Kerbala, Vol. 14 No.4 Scientific . 2016

Definition (2.4):[3].

Let (X , T) be a topological space. Let $A \subseteq X$, we say that A is locally closed if $A = W1 \cap W2$ where W1 is open and W2 is closed every open set is locally closed also every closed set is locally closed.

Remark (2.5):

Every locally closed is λ - closed because if A is locally closed then A = W1 \cap W2 where W1 is open and W2 is closed but every open set is a C- set hence A is λ - closed.

3. Main Results:

In this section, we state and prove several properties of $\lambda\text{-}$ closed sets First , we need the following lemma .

Lemma (3.1) :[3]

Let (X, T) be a topological space. Let $A \subseteq X$,then the following statements are equivalent 1- A is λ - closed

2- A = L \cap A where L is a C- set

3- A = ker (A) \cap A

before , we state our first result we recall the following definition.

Definition (3.2)[6]:

Let (X, T) be a topological space. Let $A \subseteq X$, we say that A is g – closed if $A \subseteq U \rightarrow \overline{A} \subseteq U$ where U is open in X every closed set is g – closed.

Remark (3.3)

Let (X, T) be a topological space, let $A \subseteq X$, if A is g – closed then $\overline{A} \subseteq ker$ (A).

Proposition (3.4):

Let (X, T) be a topological space, let $A \subseteq X$, then the following statements are equivalent .

- 1- A is closed.
- 2- A is locally closed and g closed.
- 3- A is λ closed and g closed .

Proof:

 $1 \rightarrow 2 \text{ clear ,} [3].$

 $2\rightarrow 3$ clear because every locally closed is λ - closed

 $3 \rightarrow 1$ if A is g - closed then $\overline{A} \subseteq \text{ker}(A)$ (Remark (3.3) using Lemma (3.1) (part (3) A = ker (A) \cap \overline{A} (A is λ - closed) now $\overline{A} \subseteq \text{ker}(A) \cap \overline{A} = A$ but $A \subseteq \overline{A}$ then $A = \overline{A}$ then A is closed.

Proposition (3.5):[4,3]

Let (X, T) be a topological space then the following statement equivalent

- 1- X is a TO space.
- 2- Every singleton $\{x\}$ is λ closed set before, we state the next result , we recall the following definition .

Definition (3.6):[5]

Let (X, T) be a topological space we say that X is a T¹/₂ - space if every singleton {x} is either open or closed so T1 \rightarrow T¹/₂ \rightarrow T0 \cdot

Journal University of Kerbala, Vol. 14 No.4 Scientific . 2016

Proposition (3.7):[3,5]

Let (X,T) be a topological space then the following statements are equivalent 1- X is a T¹/₂ - space . 2- every subset of X is λ - closed .

Definition (3.8):[4]

Let (X,T) be topological space we say that X is a T¹/₄ - space if given a finite set $F \subseteq X$ and given $y \notin F$, then $\exists W \ni F \subseteq W$ and $y \notin W$ and W is either open or closed

Remark (3.9):

We have the following implications $T1 \rightarrow T^{1/2} \rightarrow T^{1/4} \rightarrow T0$

Proposition (3.10):

Let (X,T) be a topological space then the following statements are equivalent 1- X is T¹/₄ 2- Every finite subset of X is λ - closed

Proposition (3.11):

Finite union of $\,\lambda$ - closed sets need not be λ - closed .

Proof:

Suppose every finite union of λ - closed sets is λ - closed ,then we get that every T0 – space is a T¹/₄ - space which is a contradiction

We explaine this as follows

Let X be a T0 – space then every singleton {x} is λ - closed which implies that every finite set is λ -closed which implies that X is a T¹/₄ - space by proposition (3..10)

Proposition (3.12):

Arbitrary intersection of λ - closed sets is λ - closed

Proof:

Let $\{A \propto | \propto \in \}$ be any collection of λ - closed sets in X now by lemma (3.1) $A \propto = W \propto \cap F \propto$ where $W \propto$ is a C- set and $F \propto$ is closed in X but arbitrary intersections of C – set is also a C – set [1] hence $\bigcap_{\alpha \in \Omega} A \propto$ is λ - closed

4. References:

- [1] H. Maki, "Generalized sets", The special Issue in commemoration of Prof. Kazusada IKEDAS Retirement, I. OCT. (1986), 139–146.
- [2] C. Adams, "Topology, Pure and applied, Pearson", (2008).
- [3] M. Ganster and I.L. Reilly, "Locally closed sets and LC continuous functions ", Inter nat .J Math . SCi 3(1989), 417 -424 .
- [4] C .E. Aull and W. J .Thorn , "separation axioms between T0 and T1" , Indagationesmath . 24 (1962) , 26 37 .
- [5] H.J. Mustafa " $T_{2}^{1/2}$ spaces ", Journal of the college of Education , AL Mustansiriyah University ,(2002) .
- [6] N .Levine, "Generalized closed sets in Topology", Rend .Circ .Mat. Palermo, 19(2), (1970), 89-96.