Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

On Essentially Normality of the Composition Operator $\mathrm{C}_{\boldsymbol{\sigma}}$

By
Aqeel Mohammed Hussain
\section*{Department of Mathematics}

College of Education
University of Qadisyia

Recived :28\212013 Revised : 169912014 Accepted :2819\2014

Abstract

In this paper we have studied the composition operator induced by the automorphism $\boldsymbol{\sigma}$ and discussed the adjoint of the composition of the symbol $\boldsymbol{\sigma}$.We have look also at some known properties on composition operators and tried to see the analogue properties in order to show how the results are changed by changing the function $\boldsymbol{\sigma}$ on U .

In order to make the work accessible to the reader, we have included some known results with the details of the proofs for some cases and proofs for the properties .

Mathematics Subject Classification: 47B38+47A58

Introduction

In this paper we are going to the composition operator $\mathbf{C}_{\boldsymbol{\sigma}}$ induced by the symbol $\boldsymbol{\sigma}$ and properties of $\mathbf{C}_{\boldsymbol{\sigma}}$ and also discuss the adjoint of Composition Operator $\mathbf{C}_{\boldsymbol{\sigma}}$ induced by the symbol $\boldsymbol{\sigma}$ and we discuss the normality of $\mathbf{C}_{\boldsymbol{\sigma}}$. Moreover, we study the essential normality of $\mathrm{C}_{\boldsymbol{\sigma}}$.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Aqeel.M

Definition(1.1) : [4]

Let $\mathrm{U}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<1\}$ is called unit ball in complex numbers C and $\partial \mathrm{U}=\{\mathrm{z} \in \mathrm{C}$: $|z|=1\}$ is called boundary of U

Definition (1.2):

For $\gamma \in U$, define $\sigma(z)=\frac{z}{-1+\gamma z} \quad(z \in U)$. Since the denominator equal zero only at $\mathrm{z}=\frac{1}{\gamma}$, the function σ is holomorphic on the ball $\left\{|\mathrm{z}|<\frac{1}{|\gamma|}\right\}$. Since $(\gamma \in \mathrm{U})$ then this ball contains U. Hence σ take U into U and holomorphic on U.

Definition (1.3): [4]

Let U denote the unit ball in the complex plane, the Hardy space H^{2} is the set of functions $f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ holomorphic on U such that $\sum_{n=0}^{\infty}\left|f^{\wedge}(n)\right|^{2}<\infty$ with $f^{\wedge}(n)$ denotes then the Taylor coefficient of f.

Remark (1.4) : [1]

We can define an inner product of the Hardy space H^{2} as follows:
$f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ and $g(z)=\sum_{n=0}^{\infty} g^{\wedge}(n) z^{n}$, then inner product of f and g is:
$\langle f, g\rangle=\sum_{n=0}^{\infty} f^{\wedge}(n) \overline{g^{\wedge}(n)}$

Example (1.5) :[10]

Let $K_{\alpha}(z)=\frac{1}{1-\bar{\alpha} \mathrm{z}}$. Since $\alpha \in U$, then $|\alpha|<1$, hence the geometric series $\sum_{\mathrm{n}=0}^{\infty}|\alpha|^{2 n}$ is convergent and thus $\mathrm{K}_{\alpha} \in \mathrm{H}^{2}$ and $\mathrm{K}_{\alpha}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty}(\bar{\alpha})^{\mathrm{n}} \mathrm{z}^{\mathrm{n}}$.

Definition(1.6) : [4]

Let $\psi: U \rightarrow U$ and holomorphic on U , the composition operator C_{ψ} induced by ψ is defined on H^{2} by the equation $C_{\psi} f=f^{\circ} \psi\left(f \in H^{2}\right)$

Definition(1.7) : [2]

Let T be a bounded operator on a Hilbert space H , then the norm of an operator T is defined by $\|T\|=\sup \{\|T f\|: f \in H,\|f\|=1\}$.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Aqeel.M

Littlewood's Subordination principle (1.8) : [11]

Let $\psi: \mathrm{U} \rightarrow \mathrm{U}$ and holomorphic on U with $\psi(0)=0$, then for each $\mathrm{f} \in \mathrm{H}^{2}$, $\mathrm{f}^{\circ} \psi \in \mathrm{H}^{2}$ and $\left\|\mathrm{f}^{\circ} \psi\right\| \leq\|\mathrm{f}\|$.

Remark (1.9) : [4]

1) One can easily show that $C_{\phi} C_{\psi}=C_{\psi}{ }^{\circ} \phi$ and hence $C_{\phi}^{n}=C_{\phi} C_{\phi} \ldots \ldots C_{\phi}=C_{\phi^{\circ} \phi \ldots . .{ }^{\circ} \phi=}=$ $\mathrm{C}_{\phi_{\mathrm{n}}}$
2) C_{ψ} is the identity operator on H^{2} if and only if ψ is identity map from U into U and holomorphic on U .
3) It is simple to prove that $\mathrm{C}_{\kappa}=\mathrm{C}_{\psi}$ if and only if $\kappa=\psi$.

Definition(1.10): [3]

Let T be an operator on a Hilbert space H , The operator T^{*} is the adjoint of T if $\left\langle T^{*} \mathrm{x}, \mathrm{y}\right\rangle=\langle\mathrm{x}, \mathrm{Ty}\rangle$ for each $\mathrm{x}, \mathrm{y} \in \mathrm{H}$.

Theorem (1.11) : [5]

$\mathrm{V}_{\alpha \in \mathrm{U}}\left\{\mathrm{K}_{\alpha}\right\}$ forms a dense subset of H^{2}.

Theorem (1.12) : [10]

Let $\psi: U \rightarrow U$ and holomorphic on U, then for all $\alpha \in U$
$\mathrm{C}_{\psi}^{*} \mathrm{~K}_{\alpha}=\mathrm{K}_{\psi(\alpha)}$

Definition(1.13): [11]

Let H^{∞} be the set of all bounded holomorphic on U .

Definition(1.14): [6]

Let $\mathrm{g} \in \mathrm{H}^{\infty}$, the Toeplits operator T_{g} is the operator on H^{2} is given by :

$$
\left(\mathrm{T}_{\mathrm{g}} \mathrm{f}\right)(\mathrm{z})=\mathrm{g}(\mathrm{z}) \mathrm{f}(\mathrm{z})\left(\mathrm{f} \in \mathrm{H}^{2}, \mathrm{z} \in \mathrm{U}\right)
$$

Remark (1.15) : [7]

For each $\mathrm{f} \in \mathrm{H}^{2}$, it is well- know that $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}=\mathrm{T}_{\mathrm{h}} \mathrm{f}$ such that $\mathrm{h} \in \mathrm{H}^{\infty}$.

Proposition(1.16):

Let $\alpha \in \mathrm{U}, \mathrm{C}_{\sigma}^{*}=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \mathrm{T}_{\mathrm{h}}^{*}$, where $\mathrm{h}(\mathrm{z})=1-\gamma \mathrm{z}, \mathrm{g}(\mathrm{z})=1, \beta(\mathrm{z})=\bar{\gamma}-\mathrm{z}$

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Aqeel.M

Proof:

By (1.15), $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}=\mathrm{T}_{\mathrm{h}} \mathrm{f}$ for each $\mathrm{f} \in \mathrm{H}^{2}$. Hence for all $\alpha \in \mathrm{U}$,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{T}_{\mathrm{h}} \mathrm{f}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}\right\rangle \ldots .(1-1)
$$

On the other hand,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\mathrm{h}} \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~h}(\alpha) \mathrm{K}_{\alpha}\right\rangle \ldots(1-2)
$$

From (1-1) and (1-2) one can see that $T_{\bar{h}}^{*} \mathrm{~K}_{\alpha}=\mathrm{h}(\alpha) \mathrm{K}_{\alpha}$. Hence $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}=\overline{\mathrm{h}(\alpha)} \mathrm{K}_{\alpha}$.
Calculation give:

$$
\begin{aligned}
& \mathrm{C}_{\sigma}^{*} \mathrm{~K}_{\alpha}(\mathrm{z})=\mathrm{K}_{\sigma(\alpha)}(\mathrm{z}) \\
& =\frac{1}{1-\bar{\sigma}(\alpha) z}=\frac{1}{1-\frac{\bar{\alpha} z}{-1+\bar{\gamma} \bar{\alpha}}}=\frac{1}{\frac{-1+\overline{\bar{\alpha}}-\bar{\alpha} \bar{z}}{-1+\overline{\bar{\gamma}}}} \\
& =\frac{1}{\frac{-1+\bar{\gamma}-\bar{\alpha} z}{-1+\bar{\gamma} \bar{\alpha}}}=\frac{1-\bar{\gamma} \bar{\alpha}}{1-\bar{\alpha}(\bar{\gamma}-z)}=\frac{\overline{(1-\gamma \alpha)}}{1-\bar{\alpha}(\bar{\gamma}-z)} \\
& =\overline{(1-\gamma \alpha)} \cdot 1 \cdot \frac{1}{1-\bar{\alpha}(\bar{\gamma}-z)} \\
& =\overline{\mathrm{h}(\alpha)} \mathrm{T}_{\mathrm{g}} \mathrm{~K}_{\alpha}(\beta(\mathrm{z}))=\overline{\mathrm{h}(\alpha)} \mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \mathrm{K}_{\alpha}(\mathrm{z}) \\
& =T_{g} \overline{\mathrm{~h}(\alpha)} \mathrm{C}_{\beta} \mathrm{K}_{\alpha}(\mathrm{z})=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \stackrel{g}{\mathrm{~h}(\alpha)} \mathrm{K}_{\alpha}(\mathrm{z}) \\
& =\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}(\mathrm{z}) \text {, therefore } \\
& \mathrm{C}_{\sigma}^{*} \mathrm{~K}_{\alpha}(\mathrm{z})=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}(\mathrm{z}) . \\
& \text { But } \overline{V_{\alpha \in U}\left\{\mathrm{~K}_{\alpha}\right\}}=\mathrm{H}^{2} \text { then } \mathrm{C}_{\sigma}^{*}=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\beta} \mathrm{T}_{\mathrm{h}}^{*} \text {. }
\end{aligned}
$$

Definition (1.17) : [3]

Let T be an operator on a Hilbert space H , T is called normal operator if $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}$ and T is called unitary operator if if $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$, and T is called isometric operator if $\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$

Theorem (1.18) : [9]

If $\phi: U \rightarrow U$ is holomorphic map on U, then C_{ϕ} is normal if and only if $\phi(z)=\lambda z$ for some $\lambda,|\lambda| \leq 1$.

Theorem (1.19) :

If $\phi: U \rightarrow U$ be holomorphic map on U, then C_{ϕ} is unitary if and only if $\phi(z)=\lambda z$ for some $\lambda,|\lambda|=1$

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Aqeel.M

Proof:

Suppose C_{ϕ} is unitary, hence by (1.17) $\mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*}=\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi}=\mathrm{I}$, hence $\mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*}=\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi}$, hence C_{ϕ} is normal operator, hence by (1.18) $\phi(\mathrm{z})=\lambda \mathrm{z}$ for some $\lambda,|\lambda| \leq 1$. It is enough to show that $|\lambda|=1$

$$
\begin{aligned}
\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi} \mathrm{K}_{\beta}(\mathrm{z}) & =\mathrm{C}_{\phi}^{*} \mathrm{~K}_{\beta}(\phi(\mathrm{z}))=\mathrm{K}_{\phi(\beta)}(\phi(\mathrm{z})) . \\
& =\frac{1}{1-\overline{\phi(\alpha)} \phi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda \mathrm{z}}=\frac{1}{1-|\lambda|^{2} \bar{\beta} \mathrm{z}}
\end{aligned}
$$

On the other hand $C_{\phi}^{*} C_{\phi} K_{\beta}(z)=K_{\beta}(z)$, hence $\frac{1}{1-|\lambda|^{2} \overline{\bar{\beta}} \mathrm{z}}=K_{\beta}(\mathrm{z})=\frac{1}{1-\bar{\beta} \mathrm{z}}$.
Thus $|\lambda|^{2} \bar{\beta}=\bar{\beta}$, then $|\lambda|=1$.
Conversely, Suppose $\phi(z)=\lambda z$ for some $\lambda,|\lambda|=1$. For $\beta \in U$, for every $z \in U$

$$
\begin{gathered}
\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi} \mathrm{K}_{\beta}(\mathrm{z})=\mathrm{C}_{\phi}^{*} \mathrm{~K}_{\beta}(\phi(\mathrm{z}))=\mathrm{K}_{\phi(\beta)}(\phi(\mathrm{z})) . \\
=\frac{1}{1-\bar{\phi}(\bar{\beta}) \phi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda \mathrm{z}}=\frac{1}{1-|\lambda|^{2} \bar{\beta} \mathrm{z}} \\
==\frac{1}{1-\bar{\beta} \mathrm{z}}=\mathrm{K}_{\beta}(\mathrm{z})
\end{gathered}
$$

Moreover for every $\mathrm{z} \in \mathrm{U}$

$$
\begin{aligned}
\mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*} \mathrm{~K}_{\beta}(\mathrm{z}) & =\mathrm{C}_{\phi} \mathrm{K}_{\phi(\beta)}(\phi(\mathrm{z}))=\mathrm{K}_{\phi(\beta)}(\phi(\mathrm{z})) . \\
& =\frac{1}{1-\bar{\phi}(\bar{\beta}) \phi(\mathrm{z})}=\frac{1}{1-\bar{\lambda} \bar{\beta} \lambda \mathrm{z}}=\frac{1}{1-|\lambda|^{2} \bar{\beta} \mathrm{z} \mathrm{z}}=\frac{1}{1-\bar{\beta} \mathrm{z}}=\mathrm{K}_{\beta}(\mathrm{z})
\end{aligned}
$$

hence $\mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*}=\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi}=\mathrm{I}$ on the family $\mathrm{V}_{\alpha \in U}\left\{\mathrm{~K}_{\alpha}\right\}$. But by (1.11) $\mathrm{V}_{\alpha \in \mathrm{U}}\left\{\mathrm{K}_{\alpha}\right\}$ forms a dense subset of H^{2}, hence $\mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*}=\mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi}=\mathrm{I}$ on H^{2}. Therefore C_{ϕ} is unitary composition operator on H^{2}.

Proposition(1.20):

If $\gamma=0$, then C_{σ} is an unitary composition operator .

Proof:

Since $\sigma(z)=\frac{z}{-1+\gamma z}$ since $\gamma=0, \sigma(z)=\frac{z}{-1+\gamma z}=-z=\lambda z \cdot \lambda=-1,|\lambda|=1$, hence by (1.19) C_{σ} is unitary composition

Remark(1.21) :

From Definition (1.17), we note every unitary composition operator is a normal composition operator.

Proposition(1.22) :

If $\gamma=0$, then C_{σ} is a normal composition operator .

Proof:

Since $\gamma=0$, then C_{σ} is an unitary composition operator by (1.20), hence by (1.21) C_{σ} is a normal composition operator

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Aqeel.M

Definition (1.23) : [7]

Let T be an operator on a Hilbert space H is subnormal if there exists a normal operator S on a Hilbert space K such that H is a subspace of K, the subspace H is invariant under the operator S and the restriction of S to H coincides with T, and every normal operator is subnormal operator.

Proposition(1.24) :

If $\gamma=0$, then C_{σ} is a subnormal composition operator .

Proof:

If $\gamma=0$, then C_{σ} is a normal composition operator by (1.22), by (1.23) C_{σ} is a subnormal composition operator.

Definition (1.25) : [13]

Let T be an operator on a Hilbert space H, T is called compact if every sequence x_{n} in H is weakly converges to x in H, then $T x_{n}$ is strongly converges to Tx . Moreover ($\mathrm{x}_{\mathrm{n}} \xrightarrow{\mathrm{w}} \mathrm{x}$ if $\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right\rangle \rightarrow\langle\mathrm{x}, \mathrm{u}\rangle$ and $\mathrm{x}_{\mathrm{n}} \xrightarrow{\mathrm{s}} \mathrm{x}$ if $\left.\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0\right)$.

Definition (1.26) : [13]

Let T be an operator on a Hilbert space H, T is called essentially normal if $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}$ is compact. It is well-known that every normal operator is an essentially normal.

Proposition(1.27):

If $\gamma=0$, then C_{σ} is an essentially normal composition operator .

Proof:

If $\gamma=0$, then C_{σ} is a normal composition operator by (1.22), by (1.26) C_{σ} is an essentially normal composition operator.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Aqeel.M

REFERENCES

[1] L.V., Ahlfors, "Complex Analysis", Sec , Ed., McGraw-Hill Kogakusha Ltd , (1966).
[2] M.J, Appell, P.S., Bourdon \& J.J., Thrall, " Norms of Composition Operators on the Hardy
Space' ${ }^{\prime}$, Experimented Math ., pp.111-117, (1996).
[3] S.K., Berberian, " Introduction to Hilbert Space" ,Sec. Ed .,Chelesa publishing Com., New York ,N.Y., (1976).
[4] S.K., Bourdon, \& J.H., Shapiro, 'Cyclic Phenomena for Composition Operators', Math. Soc., (596),125, (1999).
[5] C.C., Cowen, "Linear Fraction Composition Operator on $\mathbf{H}^{\mathbf{2}}$ ", Integral Equations Operator Theory,11, pp. 151-160, (1988).
[6] J.A., Deddnes, "Analytic Toeplits and Composition Operators ', Con . J. Math. , vol (5), pp. 859-865, (1972).
[7] P.R ., Halmos , "A Hilbert Space Problem Book " , Springer- Verlag , New York , (1982).
[8] H., Radjavi \& P., Rosenthal," Invariant Subspace" , Springer-Verlage, Berlin , Heidelberg ,Newyork , (1973).
[9] H.J., Schwartz , " Composition Operator on H^{2} ", Ph .D.thesis.Univ.of Toled, (1969).
[10] J.H., Shapiro, " Composition operators and Classical Function Theory ', Springer- Verlage, NewYork, (1993).
[11] J.H., Shapiro, " Lectures on Composition operators and Analytic Function Theory " . www.mth.mus.edu. / shapiro / pubrit / Downloads / computer / complutro . pdf .
[12] J.H., Shapiro, " Composition operators and Schroders Functional Equation ", Contemporary,Math., 213, pp.213-228, (1998).
[13] N., Zorboska, "Closed Range Essentially normal Composition Operator are Normal" Acta Sic.Math. (Szeged),65,pp.287-292,(1999) .
حول الطبيعة الجوهرية للمؤثر التركيبي

عقيل محمد حسين
قسم الرياضيات
كلية التربية
جامعة (القادسية

حيث ناقثنا المؤثر المر افق للمؤثر النركيبي المحتث $\boldsymbol{\sigma}$ ر درسنا في هذا البحث المؤثر النركيبي المحتث من الدالة . بالإضافة إلى ذلك نظر نـا إلى بعض النتائج المعروفة وحاو لنا الحصول على نتائج مناظرة لنتمكن من б ومن أجل جعل مهمة القارئ أكثر سهولة، عرضنا بعض النتائج المعروفة عن المؤثرات النركيبية وعرضنا برا هين مفصلة وكذلك بر هنا بعض النتائج التي أعطيت بدون بر هان.

