Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

On Bc-Lindelof spaces and nearly Bc-Lindelof spaces
 Raad Aziz Hussain Al-Abdulla

\&

Ruaa Muslim Abed

Department of Mathematics
College of Computer Sciences and Mathematics
University of AL-Qadisiya

Recived :19\6\2014
Revised : 1 $110 \backslash 2014$
Accepted :2\10\2014

Abstract

In this paper, we have discussed a new class of $\omega \mathrm{Bc}$-open sets and $\omega \mathrm{Bc}$-regular open sets. Throughout this work, new concepts have been illustrated including an Bc-Lindelof spaces and nearly Bc -Lindelof spaces and the behavior of these invariant under kinds of functions.

Mathematics Subject Classification: 54XX

1.Introduction

The concept of Bc-open set in topological spaces was introduced in 2013 by Hariwan Z [2]. This set was also considered in [3].

This paper consist of three section. In section one, we give similar definition by using of Bc-open sets and also we proof some properties about it. In section two we introduce a new generalization of $\omega \mathrm{Bc}$-open set, $\omega \mathrm{Bc}$-regular open and investigate some properties of this set. In section three we obtain new a characterization and preserving theorems of Bc -Lindelof space and nearly Bc -Lindelof space.

Definition(1.1)[1]:

Let X be a space and $A \subseteq X$. Then A is called b-open set in X if $A \subseteq \overline{A^{\circ}} \cup \bar{A}^{\circ}$. The family of all b-open subset of a topological space (X, τ) is denoted by $B O(X, \tau)$ or (Briefly $B O(X)$).

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Definition(1.2)[2]:

Let X be a space and $A \subset X$. Then A is called Bc-open set in X if for each $\quad x \in$ $A \in B O(X, \tau)$, there exists a closed set F such that $x \in F \subset A$. The family of all Bc-open subset of a topological space (X, τ) is denoted by $B c O(X, \tau)$ or (Briefly $B c O(X)$), A is Bcclosed set if A^{c} is Bc -open set. The family of all Bc -closed subset of a topological space (X, τ) is denoted by $B c C(X, \tau)$ or (Briefly $B c C(X))$.

Example(1.3):

It is clear from the definition that every Bc-open set is b-open, but the converse is not true in general.

Let $X=\{1,2,3\}, \tau=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Then the closed set are: $X, \phi,\{2,3\},\{1,3\},\{3\}$. Hence $B O(X)=\{\phi, X,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\}\}$ and $B c O(X)=\{\phi, X,\{1,3\},\{2,3\}\}$. Then $\{1\}$ is b-open but $\{1\}$ is not Bc-open.

Definition(1.4)[2]:

Let X be a space and $A \subset X$. Then A is called θ-open set in X if for each $x \in A$, there exists an open set G such that $x \in G \subset \bar{G} \subset A$. The family of all θ-open subset of a topological space (X, τ) is denoted by $\theta O(X, \tau)$ or (Briefly $\theta O(X)$).

Remark(1.5)[2]:

1) Every θ-open is Bc -open.
2) Every θ-closed is Bc -closed.

Example(1.6):

The intersection of two Bc -open sets is not Bc -open in general.
Let $X=\{1,2,3\}, \tau=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Then $\{1,3\},\{2,3\}$ is Bc-open set, where as $\{1,3\} \cap\{2,3\}=\{3\}$ is not Bc-open set.

Remark(1.7)[4]:

The intersection of an b-open set and an open set is b-open set.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Remark(1.8):

Let X be a space and $A, B \subset X$. If A is Bc-open set and B is an θ-open set, then $A \cap B$ is Bc-open set.

Proof:

Let A be a Bc -open set and B be an θ-open set, then A is b -open set and B is an open set since every θ-open is open. Then $A \cap B$ is b-open set by (Remark(1.7)). Now, let $x \in A \cap B$, $x \in A$ and $x \in B$. If $x \in A$, then there exists a closed set F such that $x \in F \subset A$ and if $x \in B$, then there exists an open set E such that $x \in E \subset \bar{E} \subset B$. Therefore, $F \cap \bar{E}$ is closed since the intersection of closed sets is closed. Thus $x \in F \cap \bar{E} \subset A \cap B$. Then $A \cap B$ is Bc -open set.

Proposition(1.9)[2]:

Let X be a space and $A \subset X$. Then A is Bc-open set if and only if A is b -open set and it is a union of closed sets. That is $A=\bigcup F_{\alpha}$ where A is b-open set and F_{α} is closed subsets for each α.

Proposition(1.10)[2]:
Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be a collection of Bc-open sets in a topological space X. Then $U\left\{A_{\alpha}: \alpha \in\right.$ $\Lambda\}$ is Bc -open.

Definition(1.11)[2]:

Let X be a space and $A \subset X$. A point $x \in X$ is said to Bc-interior point of A, if there exist a Bc-open set U such that $x \in U \subset A$. The set of all Bc -interior points of A is called Bc -interior of A and is denoted by $A^{\circ B C}$.

Theorem(1.12)[2]:

Let X be a space and $A, B \subset X$, then the following statements are true.

1) $A^{\circ B c}$ is the union of all Bc -open set which are contained in A.
2) $A^{\circ B c}$ is Bc -open set in X.
3) A is Bc-open if and only if $A=A^{\circ B C}$.
4) $A^{\circ B C} \subset A$.
5) $\left(A^{\circ B C}\right)^{\circ B C}=A^{\circ B C}$.
6) If $A \subset B$, then $A^{\circ B C} \subset B^{\circ B c}$.
7) $A^{\circ B C} \cup B^{\circ B C} \subset(A \cup B)^{\circ B C}$.
8) $(A \cap B)^{\circ B C} \subset A^{\circ B C} \cap B^{\circ B c}$.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Definition(1.13)[2]:

Let X be a space and $A \subset X$. The Bc-closure of A is defined by the intersection of all Bcclosed sets in X containing A, and is denoted by $\bar{A}^{B c}$.

Theorem(1.14)[2]:

Let X be a space and $A, B \subset X$. Then the following statements are true.

1) $\bar{A}^{B c}$ is the intersection of all Bc -closed sets containing A.
2) $A \subset \bar{A}^{B c}$.
3) $\bar{A}^{B c}$ is Bc-closed set in X.
4) A is Bc-closed set if and only if $A=\bar{A}^{B c}$.
5) $\overline{\left(\bar{A}^{B C}\right)^{B C}}=\bar{A}^{B C}$.
6) If $A \subset B$. then $\bar{A}^{B C} \subset \bar{B}^{B C}$.
7) $\bar{A}^{B c} \cup \bar{B}^{B C} \subset \overline{(A \cup B)^{B C}}$.
8) $\overline{(A \cap B)^{B C}} \subset \bar{A}^{B c} \cap \bar{B}^{B C}$.

Proposition(1.15)[2]:

Let X be a space and $A \subset X$, then the following statements are true.

1) $\left(\bar{A}^{B C}\right)^{c}=\left(A^{c}\right)^{\circ B C}$.
2) $\left(A^{o B C}\right)^{c}=\overline{\left(A^{c}\right)^{B C}}$.
3) $\bar{A}^{B C}=\left(A^{c^{\circ B C}}\right)^{c}$.
4) $A^{\circ B C}=\left({\overline{A^{c}}}^{B C}\right)^{c}$.

Definition(1.16):

Let X be a space and $A \subset X$. Then A is called Bc-regular open set in X iff $A=\bar{A}^{B c^{\circ B C}}$. The complement of Bc-regular open set is called Bc-regular closed.

Remark(1.17):

Let X be a space and $A \subset X . A$ is Bc-regular closed set iff $A=\overline{A^{\circ B C}}{ }^{B C}$.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proof:

Let A be a Bc-regular closed set, then A^{c} is a Bc-regular open set

$$
\left(A^{c}\right)^{c}=\left({\overline{A^{c}}}^{B c^{\circ B c}}\right)^{c}=\left({\overline{A^{c^{\circ} B c^{c c}}}{ }^{B c^{c}}}\right)^{c}={\overline{A^{\circ B C}}}^{B c^{c c}}={\overline{A^{\circ B c}}}^{B c} \text {. Then } \quad A={\overline{A^{\circ B C}}}^{B c}
$$

Conversely, let $A={\overline{A^{\circ} B C}}^{B c}$. To prove A is a Bc-regular closed set we must prove that A^{c} is a Bc-regular open set.

$$
A^{c}=\left({\overline{A^{\circ B c}}}^{B c}\right)^{c}=\left({\overline{A^{c}}}^{B c^{c c^{\circ B C}}}\right)^{c}=\overline{A c}^{B c^{\circ B c^{c}}}=
$$ $\overline{A^{c}}{ }^{B c^{\circ B C}}$. Then A^{c} is a Bc-regular open set. Therefore A is Bc-regular closed set.

Remark(1.18):

Let X be a space and $A \subset X . A$ is a Bc-regular open set, then $\bar{A}^{B c^{\circ B C}}$ is a Bc-regular open set.

Proof:

To prove $\bar{A}^{B c^{\circ B C}}$ is a Bc-regular open we must prove that

$$
\bar{A}^{B c^{\circ B C}}=
$$ $\overline{\bar{A}^{B c^{\circ B C}}}{ }^{B c^{\circ B C}}$, since $A \subset \bar{A}^{B c}$, then $A^{\circ B c} \subset \bar{A}^{B c^{\circ B C}}$ and since A is a Bc-open set, hence $A \subset$ $\bar{A}^{B c^{\circ B C}}$

$\bar{A}^{B c^{\circ B C}} \subset \overline{\bar{A}^{B c^{\circ B C}}} \overline{B C}^{B c^{\circ B C}} \ldots$ (1)
 $\bar{A}^{B c^{\circ B C}} \ldots$ (2)

> Since $\frac{\bar{A}^{\circ c^{\circ B C}} B c^{\circ B C}}{} \subset$ From (1) and (2) we get $\bar{A}^{B c^{\circ B C}}=\overline{\bar{A}^{B c^{\circ B C}}}{ }^{B c^{\circ B C}}$. Hence $\bar{A}^{B c^{\circ B C}}$ is a Bc-regular open.

Diagram I shows the relations among $\mathrm{BcO}(\mathrm{X}), \mathrm{BO}(\mathrm{X}), \theta \mathrm{O}(\mathrm{X})$ and $\mathrm{O}(\mathrm{X})$

$\theta \mathrm{O}(\mathrm{X})$	\rightarrow	$\mathrm{O}(\mathrm{X})$
\downarrow		\downarrow
$\mathrm{BcO}(\mathrm{X})$	\rightarrow	$\mathrm{BO}(\mathrm{X})$

Diagram I

Journal of AL-Qadisiyah for computer science and mathematics

Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

2. $\omega B c$-open sets and $\omega B c$-regular open sets

Definition(2.1)[5]:

Let X be a space and $A \subset X$. Then A is said to be $\omega \mathrm{b}$-open if for every $x \in A$, there exists a b-open subset $U_{x} \subseteq X$ containing x such that $U_{x}-A$ is countable. The complement of an ωb-open subset is said to be ω b-closed.

Lemma(2.2)[5]:

Let X be a space and $A \subset X . A$ is said to be $\omega \mathrm{b}$-open if and only if for every $x \in A$, there exists a b-open subset U containing x and a countable subset D such that $U-D \subseteq A$.

Definition(2.3):

Let X be a space and $A \subset X$. Then A is said to to be $\omega \mathrm{Bc}$-open if for each $x \in A$, there exists a Bc-open subset $U_{x} \subseteq X$ containing x such that $U_{x}-A$ is countable. The complement of an $\omega \mathrm{Bc}$-open subset is said to be $\omega \mathrm{Bc}$-closed.

Lemma(2.4):

Every $\omega \mathrm{Bc}$-open is $\omega \mathrm{b}$-open.

Proof:

Let A be an $\omega \mathrm{Bc}$-open, then for each $x \in A$, there exists Bc -open U_{x} subset containing x such that $U_{x}-A$ is countable set. Since every Bc-open set is b-open, then A is $\omega \mathrm{b}$-open.

Lemma(2.5):

Let X be a space and $A \subset X . A$ is said to be $\omega \mathrm{Bc}$-open if and only if for every $x \in A$, there exists a Bc-open subset U containing x and a countable subset D such that $U-D \subseteq A$.

Proof:

Let A be an $\omega \mathrm{Bc}$-open and $x \in A$, then there exists a Bc -open subset U_{x} containing x such that $\left|U_{x}-A\right|$ is countable. Let $D=U_{x}-A=U_{x} \cap A^{c}$, then $U_{x}-D \subseteq A$. Conversely, let $x \in A$, Then there exists a Bc-open subset U_{x} containing x and a countable subset D such that $U_{x}-D \subseteq A$. Thus $U_{x}-A \subseteq D$ and $U_{x}-A$ is countable set.

Theorem(2.6):

Let X be a space and $D \subseteq X$. If D is $\omega \mathrm{Bc}$-closed, then $D \subseteq K \cup B$ for some Bc-closed subset K and a countable subset B.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proof:

If D is $\omega \mathrm{Bc}$-closed, then D^{c} is $\omega \mathrm{Bc}$-open and hence for every $x \in D^{c}$, there exists a Bcopen set U containing x and a countable set B such that $U-B \subseteq D^{c}$. Thus $D \subseteq(U-B)^{c}=$ $\left(U \cap B^{c}\right)^{c}=U^{c} \cup B$. Let $K=U^{c}$, then K is Bc-closed such that $D \subseteq K \cup B$.

Proposition(2.7):

The union of any family of $\omega \mathrm{Bc}$-open is $\omega \mathrm{Bc}$-open.

Proof:

If $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is a collection of $\omega \mathrm{Bc}$-open subset of X, then for every $x \in \mathrm{U}_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists a Bc-open subset U of X containing x such that $U-A_{\beta}$ is countable. Now as $U-\mathrm{U}_{\alpha \in \Lambda} A_{\alpha} \subseteq U-A_{\beta}$ and thus $U-\left(\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}\right)$ is countable. Therefore $\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}$ is $\omega \mathrm{Bc}$-open set.

Definition(2.8):

Let X be a space and $A \subset X$. Then A is said to be $\omega \mathrm{Bc}^{\star}$-open if for every $x \in A$, there exists a Bc-open subset $U_{x} \subseteq X$ containing x such that $U_{x}-A$ is finite. The complement of an $\omega \mathrm{Bc}^{\star}$-open subset is said to be $\omega \mathrm{Bc}^{\star}$-closed.

Lemma(2.9):

Let X be a space and $A \subset X . A$ is $\omega \mathrm{Bc}^{\star}$-open if and only if for every $x \in A$, there exists a Bc-open subset U containing x and a finite subset D such that $U-D \subseteq A$.

Proof:

Let A be an $\omega \mathrm{Bc}^{*}$-open and $x \in A$, then there exists a Bc-open subset U_{x} containing x such that $U_{x}-A$ is finite. Let $D=U_{x}-A=U_{x} \cap(A)^{c}$. Then $\quad U_{x}-D \subseteq A$. Conversely, let $x \in A$, then there exists a Bc-open subset U_{x} containing x and a finite subset D such that $U_{x}-D \subseteq A$, thus $U_{x}-A \subseteq D$ and $U_{x}-A$ is finite set.

Theorem(2.10):

Let X be a space and $D \subseteq X$ if D is $\omega \mathrm{Bc}^{\star}$-closed, then $D \subseteq K \cup B$ for some Bc-closed subset K and a finite subset B.

Proof:

If D is $\omega \mathrm{Bc}^{*}$-closed, then D^{c} is $\omega \mathrm{Bc}^{*}$-open and hence for every $x \in D^{c}$, there exists a Bc open set U containing x and a finite set B such that $U-B \subseteq D^{c}$, thus $D \subseteq(U-B)^{c}=$ $\left(U \cap(B)^{c}\right)^{c}=U^{c} \cup B$. Let $K=U^{c}$. Then K is Bc-closed such that $D \subseteq K \cup B$.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proposition(2.11):

The union of any family of $\omega \mathrm{Bc}^{*}$-open sets is $\omega \mathrm{Bc}^{*}$-open.

Proof:

If $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is a collection of $\omega \mathrm{Bc}^{*}$-open subset of X, then for every $x \in \mathrm{U}_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-open subset U of X containing x such that $U-A_{\beta}$ is finite. Now as $U-\mathrm{U}_{\alpha \in \Lambda} A_{\alpha} \subseteq U-A_{\beta}$ and thus $U-\left(\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}\right)$ is finite. Therefore, $\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}$ is $\omega \mathrm{Bc}^{*}$-open set.

The following diagram shows the implication for properties of subsets

$$
\begin{array}{cc}
\omega \mathrm{Bc}^{*} \text {-open } & \rightarrow \\
\uparrow & \nearrow \\
\text { Bc-open } & \\
& \text { Diagram II }
\end{array}
$$

Lemma(2.12):

Every $\omega \mathrm{Bc}^{*}$-open is $\omega \mathrm{Bc}$-open.

Proof:

Let A be an $\omega \mathrm{Bc}^{*}$-open, then for each $x \in A$ there exists Bc -open subset $U_{x} \subseteq X$ containing x such that $U_{x}-A$ is finite. Since every finite is countable, then $U_{x}-A$ is countable. Therefore, A is a $\omega \mathrm{Bc}$-open.

Lemma(2.13):

Every Bc -open is $\omega \mathrm{Bc}$-open and $\omega \mathrm{Bc}^{*}$-open

Proof:

1)

Let A be a Bc-open, then for each $x \in A$ there exists Bc-open set $U_{x}=A$ containing x such that $U_{x}-A=\phi$, then $U_{x}-A$ is countable. Therefore, A is a $\omega \mathrm{Bc}$-open. 2)

Let A be a Bc-open, then for each $x \in A$ there exists Bc-open set $U_{x}=A$ containing x such that $U_{x}-A=\phi$, then $U_{x}-A$ is finite. Therefore, A is a $\omega \mathrm{Bc}^{*}$-open.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Example(2.14):

Let \mathbb{R} be the set of all real numbers with the usual topology and \mathbb{Q} the set of all rational numbers. Then $A=\mathbb{R}-\mathbb{Q}$ is an $\omega \mathrm{Bc}$-open set but it is not $\omega \mathrm{Bc}^{*}$-open.

Example(2.15):

Let $X=\{1,2,3\}, \tau=\{\phi, X,\{1\},\{1,2\},\{2,3\}\} . \quad$ Then $B c O(X)=\{\phi, X,\{1,3\},\{2,3\}\}$. Therefore, $\{3\}$ is $\omega \mathrm{Bc}$-open and $\omega \mathrm{Bc}^{*}$-open but it is not Bc -open.

Definition(2.16):

Let X be a space and $A \subset X$. Then A is $\omega \mathrm{Bc}$-regular open if for each $x \in A$, there exists a Bc-regular open subset U_{x} containing x such that $U_{x}-A$ is a countable.

Lemma(2.17):

Every Bc -regular open is $\omega \mathrm{Bc}$-regular open.

Proof:

Let A be a Bc-regular open, then for each $x \in A$ there exists Bc-regular open subset $U_{x}=A$ containing x such that $U_{x}-A=\phi$, then $U_{x}-A$ is countable. Therefore, A be a $\omega \mathrm{Bc}$-regular open.

Lemma(2.18):

Let X be a space and $A \subset X . A$ is $\omega \mathrm{Bc}$-regular open if and only if for every $x \in A$, there exists a Bc-regular open subset U_{x} containing x and a countable subset D such that $U_{x}-$ $D \subseteq A$.

Proof:

Let A be an $\omega \mathrm{Bc}$-regular open and $x \in A$, then there exists a Bc-regular open subset U_{x} containing x such that $U_{x}-A$ is countable. Let $D=U_{x}-A=U_{x} \cap(A)^{c}$. Then $U_{x}-D \subseteq A$. Conversely, let $x \in A$. Then there exists a Bc-regular open subset U_{x} containing x and a countable subset D such that $U_{x}-D \subseteq A$. Thus $U_{x}-A \subseteq D$ and $U_{x}-A$ is countable.

Theorem(2.19):

Let X be a space and $F \subseteq X$. If F is $\omega \mathrm{Bc}$-regular closed, then $F \subseteq K \cup D$ for some Bc regular closed subset K and a countable subset F.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proof:

If F is $\omega \mathrm{Bc}$-regular closed, then F^{c} is $\omega \mathrm{Bc}$-regular open and hence choose $x \in F^{c}$, there exists a Bc-regular open set U_{x} containing x and a countable set D_{x} such that $U_{x}-D_{x} \subseteq F^{c}$. Thus $F \subseteq\left(U_{x}-D_{x}\right)^{c}=\left(U_{x} \cap\left(D_{x}\right)^{c}\right)^{c}=U_{x}{ }^{c} \cup D_{x}$. Let $K=U_{x}{ }^{c}$. Then K is Bc-closed such that $F \subseteq K \cup D_{x}$.

Proposition(2.20):

The union of any family of $\omega \mathrm{Bc}$-regular open is $\omega \mathrm{Bc}$-regular open.

Proof:

If $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is a collection of ω Bc-regular open subset of X, then for every $x \in$ $\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-regular open subset U of X containing x such that $U-A_{\beta}$ is countable. Now as $U-\bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq U-A_{\beta}$ and thus $U-\left(\cup_{\alpha \in \Lambda} A_{\alpha}\right)$ is countable. Therefore, $\cup_{\alpha \in \Lambda} A_{\alpha}$ is $\omega \mathrm{Bc}$-regular open set.

Definition(2.21):

Let X be a space and $A \subset X$. Then A is is said to be $\omega \mathrm{Bc}^{*}$-regular open if for each $x \in A$, there exists a Bc-regular open subset U_{x} containing x such that $U_{x}-A$ is a finite set.

Lemma(2.22):

Let X be a space and $A \subset X . A$ is $\omega \mathrm{Bc}^{*}$-regular open if and only if for every $x \in A$, there exist a Bc-regular open subset U containing x and a finite subset D such that $U-A$.

Proof:

Let A be an $\omega \mathrm{Bc}^{\star}$-open and $x \in A$, then there exists a Bc- regular open subset U containing x such that $U-A$ is finite. Let $D=U-A=U \cap(A)^{c}$. Then $U-D \subseteq A$. Conversely, let $x \in A$, then there exists a Bc- regular open subset U containing x and a finite subset D such that $U-D \subseteq A$, thus $U-A \subseteq D$ and $U-A$ is finite set.

Theorem(2.23):

Let X be a space and $F \subseteq X$. If F is $\omega \mathrm{Bc}^{*}$-regular closed, then $F \subseteq K \cup D$ for some Bcregular closed subset K and a finite subset F.

Proof:

If F is $\omega \mathrm{Bc}^{*}$-regular closed, then F^{c} is $\omega \mathrm{Bc}^{*}$-regular open and hence choose $x \in F^{c}$, there exists a Bc-regular open set U_{x} containing x and a finite set D_{x} such that $U_{x}-D_{x} \subseteq F^{c}$. Thus $F \subseteq\left(U_{x}-D_{x}\right)^{c}=\left(U_{x} \cap\left(D_{x}\right)^{c}\right)^{c}=U_{x}{ }^{c} \cup D_{x}$. Let $K=U_{x}{ }^{c}$. Then K is Bc-closed such that $D \subseteq K \cup D_{x}$.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proposition(2.24):

The union of any family of $\omega \mathrm{Bc}^{\star}$-regular open sets is $\omega \mathrm{Bc}^{\star}$-regular open.

Proof:

If $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is a collection of $\omega \mathrm{Bc}^{*}$-regular open subset of X, then for every $x \in \mathrm{U}_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-regular open subset U of X containing x such that $U-A_{\beta}$ is finite. Now as $U-\cup_{\alpha \in \Lambda} A_{\alpha} \subseteq U-A_{\beta}$ and thus $U-$ $\left(\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}\right)$ is finite. Therefore, $\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}$ is $\omega \mathrm{Bc}^{*}$-regular open set.

Definition(2.25)[6]:

A covering of a space X is the family $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ of subsets such that $\mathrm{U}_{\alpha \in \Lambda} A_{\alpha}=X$. If each A_{α} is open, then $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is called an open covering, and if each set A_{α} is closed, then $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ is called a closed covering. A covering $\left\{B_{\gamma}: \gamma \in \Gamma\right\}$ is said to be refinement of a covering $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ if for each γ in Γ there exists some α in Λ such that $B_{\gamma} \subset A_{\alpha}$.

Definition(2.26):

Let $f: X \rightarrow Y$ be a function

1) f is called Bc-continuous function if $f^{-1}(A)$ is Bc-open subset of X for each θ-open subset A of Y.
2) f is called Bc^{*}-continuous function if $f^{-1}(A)$ is Bc-open subset of X for each Bc -open subset A of Y.
3) f is called $\omega \mathrm{Bc}^{*}$-closed function if $f(A)$ is $\omega \mathrm{Bc}^{*}$-closed of Y for each Bc-closed set A of X.
4) f is called $\omega \mathrm{Bc}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}$-open subset of X for each θ-open subset A of Y.
5) f is called $\omega \mathrm{Bc}^{*}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}$-open subset of X for each Bc -open subset A of Y.
6) f is called $\omega \mathrm{Bc}^{* *}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}^{*}$-open subset of X for each θ open subset A of Y.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Remark(2.27):

Every $\omega \mathrm{Bc} * *$-continuous is $\omega \mathrm{Bc}$-continuous.

Proof:

Let $f: X \rightarrow Y$ be a function and let A be an θ-open of Y. Since f is an $\omega \mathrm{Bc}^{* *}$-continuous function, then $f^{-1}(A)$ is an $\omega \mathrm{Bc}^{*}$-open of X. Since every $\omega \mathrm{Bc}^{*}$-open is $\omega \mathrm{Bc}$-open, then $f^{-1}(A)$ is an $\omega \mathrm{Bc}$-open of X. Thus f is an $\omega \mathrm{Bc}$-continuous.

Definition(2.28):

Let $f: X \rightarrow Y$ be a function

1) f is called BcR -continuous function if $f^{-1}(A)$ is Bc-regular open subset of X for each θ open subset A of Y.
2) f is called $\mathrm{Bc}^{*} \mathrm{R}$-continuous function if $f^{-1}(A)$ is Bc-regular open subset of X for each Bc-open subset A of Y.
3) f is called $\omega \mathrm{Bc}^{*} \mathrm{R}$-closed function if $f(A)$ is $\omega \mathrm{Bc}^{*}$-regular closed of Y for each Bc -closed set A of X.
4) f is called $\omega \mathrm{BcR}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}$-regular open subset of X for each θ-open subset A of Y.
5) f is called $\omega \mathrm{Bc} * \mathrm{R}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}$-regular open subset of X for each Bc-open subset A of Y.
6) f is called $\omega \mathrm{Bc}^{*} * \mathrm{R}$-continuous function if $f^{-1}(A)$ is $\omega \mathrm{Bc}^{*}$-regular open subset of X for each θ-open subset A of Y.

Remark(2.29):

Every $\omega \mathrm{Bc}{ }^{*} *$ R-continuous is $\omega \mathrm{BcR}$-continuous.

Proof:

Let $f: X \rightarrow Y$ be a function and let A be an θ-open of Y. Since f is an $\omega \mathrm{Bc} * * \mathrm{R}$-continuous function, then $f^{-1}(A)$ is an $\omega \mathrm{Bc}^{*}$-regular open of X. Since every $\omega \mathrm{Bc}^{*}$-regular open is $\omega \mathrm{Bc}$ regular open, then $f^{-1}(A)$ is an $\omega \mathrm{Bc}$-regular open of X. Thus f is an $\omega \mathrm{BcR}$-continuous.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

3.Bc-Lindelof space and nearly Bc-Lindelof space

Definition(3.1):

A space X is said to be θ-Lindelof if every θ-open cover of X has a countable subcover.

Definition(3.2):

1) A space X is said to be Bc-Lindelof if every Bc-open cover of X has a countable subcover.
2) For a subset B of a space X is said to be Bc-Lindelof relative to X if every cover of B by Bc-open sets of X has a countable subcover.

Theorem(3.3):

For any space X, the following properties are equivalent:

1) X is Bc-Lindelof.
2) Every $\omega \mathrm{Bc}$-open cover of X has a countable subcover.

Proof:

$1 \rightarrow 2$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any $\omega \mathrm{Bc}$-open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is $\omega \mathrm{Bc}$-open, there exists Bc-open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)}-G_{\alpha(x)}$ is a countable. The family $\left\{V_{\alpha(x)}: x \in X\right\}$ is a Bc-open cover of X. Since X is Bc -Lindelof, then there exists a countable subset, say $\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right), \ldots . \quad$ such that $X=U\left\{V_{\alpha(x i)}: i \in N\right\}$. Now, we have

$$
\begin{aligned}
X & =\bigcup_{i \in N}\left\{\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right) \cup G_{\alpha(x i)}\right\} \\
& =\left(\cup_{i \in N}\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right) .
\end{aligned}
$$

For each $\alpha(x i), V_{\alpha(x i)}-G_{\alpha(x i)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(x i)}$ of Λ such that $V_{\alpha(x i)}-G_{\alpha(x i)} \subseteq \bigcup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}$. Therefore, we have $X \subseteq\left(\cup_{i \in N}\left(\cup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right)$.
$2 \rightarrow 1$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any Bc-open cover of X. To prove X is Bc-Lindelof, since every Bcopen is $\omega \mathrm{Bc}$-open by lemma(2.13). $\mathrm{By}(2)$, then $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-open cover of X has a countable subcover. Therefore, X is Bc -Lindelof.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proposition(3.4):

For any space X, the following properties are equivalent:

1) X is Bc-Lindelof.
2) Every $\omega \mathrm{Bc}^{*}$-open cover of X has a countable subcover.

Proof:

$1 \rightarrow 2$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any $\omega \mathrm{Bc}^{*}$-open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is $\omega \mathrm{Bc}^{*}$-open, there exists Bc -open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)}-G_{\alpha(x)}$ is a finite. Since every finite is countable, then $V_{\alpha(x)}-G_{\alpha(x)}$ is a countable. The family $\left\{V_{\alpha(x)}: x \in X\right\}$ is a Bc-open cover of X and since X is Bc-Lindelof, then there exists a countable subset, say $\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right), \ldots$ such that $X=U\left\{V_{\alpha(x i)}: i \in N\right\}$. Now, we have

$$
\begin{aligned}
X & =\bigcup_{i \in N}\left\{\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right) \cup G_{\alpha(x i)}\right\} \\
& =\left(\cup_{i \in N}\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right)
\end{aligned}
$$

For each $\alpha(x i), V_{\alpha(x i)}-G_{\alpha(x i)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(x i)}$ of $\quad \Lambda$ such that $V_{\alpha(x i)}-G_{\alpha(x i)} \subseteq \cup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}$. Therefore, we have $X \subseteq\left(\cup_{i \in N}\left(\cup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right)$.
$2 \rightarrow 1$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any Bc-open cover of X. To prove X is Bc-Lindelof, since every Bcopen is $\omega \mathrm{Bc}$-open, then $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-open cover of X has a countable subcover by theorem(3.3). Therefore, X is Bc -Lindelof.

Proposition(3.5):

If X is a space such that every Bc-open subset of X is a Bc-Lindelof relative to X, then every subset is Bc -Lindelof relative to X.

Proof:

Let B be an arbitrary subset of X and let $\left\{U_{i}: i \in \mathrm{I}\right\}$ be a cover of B by Bc-open set. Then the family $\left\{U_{i}: i \in \mathrm{I}\right\}$ is a Bc -open cover of the Bc -open set $\mathrm{U}\left\{U_{i}: i \in \mathrm{I}\right\}$ by proposition(1.10). Hence by assumption there is a countable subfamily $\left\{U_{i j}: j \in \mathrm{I}\right\}$ which covers $U\left\{U_{i}: i \in \mathrm{I}\right\}$. This subfamily is also a cover of the set B.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proposition(3.6):

For any space X, the following statements are equivalent:

1) X is Bc-Lindelof.
2) Every family of $\omega \mathrm{Bc}$-closed sets $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha}=\phi$.
3) Every family of $\omega \mathrm{Bc}^{*}$-closed sets $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha}=\phi$.
4) Every family of Bc-closed sets $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha}=\phi$.

Proof:

$1 \rightarrow 2$
Suppose that X is Bc -Lindelof. Let $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ be a family of $\omega \mathrm{Bc}$-closed subsets of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$. Then the family $\left\{F_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-open cover of Bc -Lindelof space X, there exists a countable subset Λ_{\circ} of Λ such that
$\mathrm{U}\left\{F_{\alpha}{ }^{c}: \alpha \in \Lambda_{\circ}\right\}$.Then
$\left(\bigcup\left\{F_{\alpha}{ }^{c}: \alpha \in \Lambda_{\circ}\right\}\right)^{c}=\cap\left\{\left(F_{\alpha}{ }^{c}\right)^{c}: \alpha \in \Lambda_{\circ}\right\}=\cap\left\{F_{\alpha}: \alpha \in \Lambda_{\circ}\right\}$
$2 \rightarrow 3$
It is clear since every $\omega \mathrm{Bc}^{*}$-closed is $\omega \mathrm{Bc}$-closed.
$3 \rightarrow 4$
It is clear since every Bc -closed is $\omega \mathrm{Bc}^{*}$-closed.
$4 \rightarrow 1$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any a Bc-open cover of X. Then $\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ is a family of Bcclosed subset of X with $\cap\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}=\phi$. By assumption, there exists a countable subset Λ_{\circ} of Λ, then $\cap\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda_{\circ}\right\}=\phi$. So that

$$
X=\left(\cap \left\{G_{\alpha}^{c}: \alpha \in\right.\right.
$$ $\left.\left.\Lambda_{\circ}\right\}\right)^{c}=U\left\{G_{\alpha}: \alpha \in \Lambda_{\circ}\right\}$. Hence X is Bc-Lindelof.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Theorem(3.7):

A space X is Bc-Lindelof if and only if for every collection of Bc-closed sets with countable intersection property $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Proof:

Let X is Bc -Lindelof and $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ be a collection of Bc -closed sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Suppose that $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$. Then $X=\bigcup_{\alpha \in \Lambda} F_{\alpha}{ }^{c}$ where $F_{\alpha}{ }^{c}$ is Bc-open set for each $\alpha \in \Lambda$. Therefore, $\left\{F_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ is Bc-open cover of X which is a Bc -Lindelof, there exist countable many members $\alpha_{1}, \ldots, \alpha_{n}, \ldots$ such that $X=\bigcup_{i \in N} F_{\alpha i}^{c}=\left(\bigcap_{i \in N} F_{\alpha i}\right)^{c}$
$\bigcap_{i \in N} F_{\alpha i}=F_{\alpha 1} \cap \ldots \cap F_{\alpha n} \cap \ldots=\phi$
which is a contradiction with our assumption that $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ has a countable intersection property. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Conversely, let every collection of Bc-closed subset of X with the countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Suppose that X is not Bc-Lindelof, then there exist Bc-open cover $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ of X has no countable subcover $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ i.e $X=G_{\alpha 1} \cup \ldots \cup G_{\alpha n} \cup \ldots$. Then

$$
\left(\cup_{i \in N} G_{\alpha i}\right)^{c}=\bigcap_{i \in N} G_{\alpha i}^{c} \neq \phi
$$ But $\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ be a collection of Bc - closed of X with countable intersection property by assumption. Then $\bigcap_{\alpha \in \Lambda} G_{\alpha}{ }^{c} \neq \phi,\left(\cup_{\alpha \in \Lambda} G_{\alpha}\right)^{c} \neq \phi$ which is a contradiction that G is Bcopen cover of X. Thus must have countable subcover. Hence X is Bc-Lindelof.

Theorem(3.8):

Every $\omega \mathrm{Bc}$-closed subset of a Bc -Lindelof space of X is Bc -Lindelof relative to X.

Proof:

Let A be an $\omega \mathrm{Bc}$-closed subset of X. Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a cover of A by Bc-open set of X. Now, for each $x \in A^{c}$, there is a Bc-open set V_{x} such that $V_{x} \cap A$ is a countable. Since X is Bc-Lindelof and the collection $\left\{G_{\alpha}: \alpha \in \Lambda\right\} \cup\left\{V_{x}: x \in A^{c}\right\}$ is a Bc-open cover of X, there exists a countable subcover $\left\{G_{\alpha i}: i \in N\right\} \cup\left\{V_{x i}: i \in N\right\}$. Since $\cup_{i \in N}\left(V_{x i} \cap A\right)$ is countable, so for each $x_{j} \in \cup\left(V_{x i} \cap A\right)$, there is $\quad G_{\alpha(x j)} \in\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ such that $x_{j} \in G_{\alpha(x j)}$ and $j \in N$. Hence $\left\{G_{\alpha i}: i \in N\right\} \cup\left\{G_{\alpha(x j)}: \mathrm{j} \in N\right\}$ is a countable subcover of $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ and it covers A. Therefore, A is Bc -Lindelof relative to X.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Theorem(3.9):

Every Bc-closed subset of a Bc-Lindelof space of X is Bc-Lindelof relative to X.

Proof:

Let A be an Bc-closed subset of X. Then A^{c} is Bc-open ,since every Bc-open is $\omega \mathrm{Bc}$ open. Therefore, A is $\omega \mathrm{Bc}$-closed by theorem(3.8), then A is Bc -Lindelof relative to X.

Proposition(3.10):

Every $\omega \mathrm{Bc}^{*}$-closed subset of a Bc-Lindelof space of X is Bc -Lindelof relative to X.

Proof:

Let A be an $\omega \mathrm{Bc}^{*}$-closed subset of X. Then A^{c} is $\omega \mathrm{Bc}^{*}$-open ,since every $\omega \mathrm{Bc}^{*}$-open is $\omega \mathrm{Bc}$-open. Therefore, A is $\omega \mathrm{Bc}$-closed by theorem(3.8), then A is Bc-Lindelof relative to X.

Theorem(3.11):

Let $f: X \rightarrow Y$ be a Bc -continuous and onto function. If X is a Bc -Lindelof, then Y is an θ Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be an θ-open cover of Y and since f is Bc -continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is Bc-open cover of X. Since X is Bc-Lindelof, then X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=$ G_{α} for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is an θ-Lindelof.

Theorem(3.12):

Let $f: X \rightarrow Y$ be a Bc^{*}-continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a Bc -open cover of Y and since f is Bc^{*}-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is Bc-open cover of X. Since X is Bc-Lindelof, then X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then

$$
f\left(f^{-1}\left(G_{\alpha}\right)\right)=G_{\alpha}
$$ for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is a BcLindelof.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Theorem(3.13):

Let $f: X \rightarrow Y$ be a $\omega \mathrm{Bc}$-continuous and onto function. If X is a Bc -Lindelof, then Y is an θ Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be an θ-open cover of Y and since f is $\omega \mathrm{Bc}$-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-open cover of X. Since X is Bc-Lindelof, then by theorem(3.4), X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=$ G_{α} for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is an θ-Lindelof.

Theorem(3.14):

Let $f: X \rightarrow Y$ be a $\omega \mathrm{Bc}^{*}$-continuous and onto function. If X is a Bc -Lindelof, then Y is a Bc -Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a Bc-open cover of Y and since f is $\omega \mathrm{Bc}^{*}$-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-open cover of X. Since X is Bc-Lindelof, then by theorem(3.4), X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=$ G_{α} for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is a Bc -Lindelof.

Theorem(3.15):

Let $f: X \rightarrow Y$ be an $\omega \mathrm{Bc}^{* *}$-continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

It is clear since every $\omega \mathrm{Bc}^{* *}$-continuous is $\omega \mathrm{Bc}$-continuous.

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proposition(3.16):

If $f: X \rightarrow Y$ be an $\omega \mathrm{Bc}^{*}$-closed onto such that $f^{-1}(y)$ is Bc-Lindelof relative to X and Y is a Bc-Lindelof for each $y \in Y$, then X is a Bc-Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be an Bc-open cover of X. For each $y \in Y, f^{-1}(y)$ is Bc-Lindelof relative to X and there exists a countable subset $\Lambda_{1}(y)$ of Λ such that $f^{-1}(y) \subset$ $\cup\left\{G_{\alpha}: \alpha \in \Lambda_{1}(y)\right\}$. Now we put $G(y)=\left\{G_{\alpha}: \alpha \in \Lambda_{1}(y)\right\}$ and $V(y)=Y-$ $f\left(U(y)^{c}\right)$. Then, since f is an $\omega \mathrm{Bc}^{*}$-closed, $V(y)$ is an $\omega \mathrm{Bc}^{*}$-open set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since $V(y)$ is an $\omega \mathrm{Bc}^{*}$-open, there exists a Bc-open set $W(y)$ containing y such that $W(y)-V(y)$ is a countable set. For each $y \in Y$, we have $W(y) \subset$ $(W(y)-V(y)) \cup V(y)$ and hence

$$
\begin{aligned}
f^{-1}(W(y)) & \subset\left[f^{-1}(W(y)-V(y))\right] \cup f^{-1}(V(y)) \\
& \subset f^{-1}(W(y)-V(y)) \cup G(y)
\end{aligned}
$$

since $W(y)-V(y)$ is a countable set and $f^{-1}(y)$ is Bc-Lindelof relative to X, there exists a countable set $\Lambda_{2}(y)$ of Λ such that

$$
f^{-1}(W(y)-V(y)) \subset U\left\{G_{\alpha}: \alpha \in \Lambda_{2}(y)\right\}
$$

and hence $f^{-1}(W(y)) \subset\left[\cup\left\{G_{\alpha}: \alpha \in \Lambda_{2}(y)\right\}\right] \cup[G(y)]$. Since $\{W(y): y \in Y\}$ is Bc -open cover of the Bc-Lindelof space Y, there exists a countable points of Y, say $y_{1}, \ldots, y_{n}, \ldots$ such that $\quad Y=U\{W(y i): i \in N\}$. Therefore, we obtain

$$
\begin{aligned}
X=\bigcup_{i \in N} f^{-1}(W(y i)) & =\bigcup_{i \in N}\left[\cup_{\alpha \in \Lambda_{2}(y i)} G_{\alpha}\right] \cup\left(\cup_{\alpha \in \Lambda_{1}(y i)} G_{\alpha}\right) \\
& =\cup\left\{G_{\alpha}: \alpha \in \Lambda_{1}(y i) \cup \Lambda_{2}(y i), i \in N\right\} .
\end{aligned}
$$

Hence X is Bc-Lindelof.

Definition(3.17):

1) A space X is said to be nearly Bc-Lindelof if every Bc-regular open cover of X has a countable subcover.
2) For a subset B of a space X is said to be nearly Bc-Lindelof relative to X if every cover of B by Bc-regular open sets of X has a countable subcover of B.

Theorem(3.18):

For any space X, the following properties are equivalent:

1) X is nearly Bc-Lindelof.
2) Every $\omega \mathrm{Bc}$-regular open cover of X has a countable subcover.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

Proof:

$1 \rightarrow 2$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any $\omega \mathrm{Bc}$-regular open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is $\omega \mathrm{Bc}$-regular open, there exists Bc -regular open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)}-G_{\alpha(x)}$ is a countable. The family $\left\{V_{\alpha(x)}: x \in X\right\}$ is a Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then there exists a countable subset, say $\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right), \ldots$ such that $\quad X=\bigcup\left\{V_{\alpha(x i)}: i \in N\right\}$. Now, we have

$$
\begin{aligned}
X & =\cup_{i \in N}\left\{\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right) \cup G_{\alpha(x i)}\right\} \\
& =\left(\cup_{i \in N}\left(V_{\alpha(x i)}-G_{\alpha(x i)}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right)
\end{aligned}
$$

For each $\alpha(x i), V_{\alpha(x i)}-G_{\alpha(x i)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(x i)}$ of Λ such that $V_{\alpha(x i)}-G_{\alpha(x i)} \subseteq \bigcup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}$.Therefore, we have $X \subseteq$ $\left(\cup_{i \in N}\left(\cup\left\{G_{\alpha}: \alpha \in \Lambda_{\alpha(x i)}\right\}\right)\right) \cup\left(\cup_{i \in N} G_{\alpha(x i)}\right)$.
$2 \rightarrow 1$
Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be any Bc -regular open cover of X. To prove X is nearly Bc-Lindelof, since every Bc -regular open is $\omega \mathrm{Bc}$-regular open by (2), then $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-regular open cover of X has a countable subcover. Therefore, X is nearly Bc-Lindelof.

Proposition(3.19):

A space X is nearly Bc -Lindelof if and only if every family $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of $\omega \mathrm{Bc}$-regular closed sets has countable intersection property $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Proof:

Let X be a nearly Bc -Lindelof space and suppose that $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ be a family of $\omega \mathrm{Bc}$ regular closed sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha}=\phi$. Let us consider the $\omega \mathrm{Bc}$-regular open sets $G_{\alpha}=F_{\alpha}{ }^{c}$, the family $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-regular open cover of X. Since X is nearly Bc -Lindelof, the cover $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ has a countable subcover $\left\{G_{\alpha i}: i \in N\right\}$. Therefore, $X=\bigcup\left\{G_{\alpha i}: i \in N\right\}$

$$
\begin{aligned}
& =U\left\{F_{\alpha i}^{c}: i \in N\right\} \\
& =\left(\bigcap\left\{F_{\alpha i}: i \in N\right\}\right)^{c} .
\end{aligned}
$$

Then $\cap\left\{F_{\alpha i}: i \in N\right\}=\phi$. Thus, if the family $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of of ω Bc-regular closed sets with countable intersection property, then $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Conversely, Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be an ω Bcregular open cover of X and suppose that every family $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ of ω Bc-regular closed sets

Journal of AL-Qadisiyah for computer science and mathematics
 Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M
has countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Then $X=\bigcup\left\{G_{\alpha}: \alpha \in \Lambda\right\}$. Therefore, $\phi=X^{c}=\cap\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ and $\left\{G_{\alpha}{ }^{c}: \alpha \in \Lambda\right\}$ is a family of $\omega \mathrm{Bc}$-regular closed sets with an empty intersection. By assumption, there exists a countable subset $\left\{G_{\alpha i}{ }^{c}: i \in N\right\}$ such that $\cap\left\{G_{\alpha i}{ }^{c}: i \in N\right\}=\phi$. Hence $\left(\cap\left\{G_{\alpha i}{ }^{c}: i \in N\right\}\right)^{c}=X=\bigcup\left\{G_{\alpha i}: i \in N\right\}$. Thus X is nearly Bc -Lindelof.

Theorem (3.20):

Every ω Bc-regular closed subset of a nearly Bc-Lindelof space X is nearly Bc-Lindelof relative to X.

Proof:

Let A be an ω Bc-regular closed subset of X. Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a cover by Bc-regular open sets of X. Now, for each $x \in A^{c}$, there is a Bc-regular open set V_{x} such that $V_{x} \cap A$ is a countable. Since X is nearly Bc -Lindelof and the collection

$$
\left\{G_{\alpha}: \alpha \in \Lambda\right\} \cup\left\{V_{x}: x \in\right.
$$ $\left.A^{c}\right\}$ is a Bc-regular open cover of X, there exists a countable subcover $\left\{G_{\alpha i}: i \in N\right\} \cup\left\{V_{x i}: i \in\right.$ $N\}$. Since $\mathrm{U}_{i \in N}\left(V_{x i} \cap A\right)$ is a countable, so for each $x_{j} \in \cup\left(V_{x i} \cap A\right)$, there is $G_{\alpha(x j)} \in$ $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ such that $x_{j} \in G_{\alpha(x j)}$ and $j \in N$. Hence $\left\{G_{\alpha i}: i \in N\right\} \cup\left\{G_{\alpha(x j)}: i \in N\right\}$ is a countable subcover of $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ and it covers A. Therefore, A is nearly Bc-Lindelof relative to X.

Theorem(3.21):

Let $f: X \rightarrow Y$ be an BcR-continuous and onto function. If X is a nearly Bc -Lindelof, then Y is an θ-Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be an θ-open cover of Y and since f is BcR -continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable sub cover of Y. Hence Y is an θ Lindelof.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Theorem(3.22):

Raad.A\Ruaa.M

Let $f: X \rightarrow Y$ be a $\mathrm{Bc}^{*} \mathrm{R}$-continuous and onto function. If X is a nearly Bc -Lindelof, then Y is a Bc-Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a Bc-open cover of Y and since f is $\mathrm{Bc} * \mathrm{R}$-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is Bc -regular open cover of X. Since X is nearly Bc-Lindelof, then X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is a BcLindelof.

Theorem(3.23):

Let $f: X \rightarrow Y$ be a $\omega \mathrm{BcR}$-continuous and onto function. If X is a nearly Bc-Lindelof, then Y is a θ-Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a θ-open cover of Y and since f is $\omega \mathrm{BcR}$-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-regular open cover of X. Since X is Bc-nearly Bc-Lindelof, then by theorem(3.18), X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable sub cover of Y. Hence Y is a θ-Lindelof.

Theorem(3.24):

Let $f: X \rightarrow Y$ be a $\omega \mathrm{Bc} * \mathrm{R}$-continuous and onto function. If X is a nearly Bc -Lindelof, then Y is a Bc -Lindelof.

Proof:

Let $\left\{G_{\alpha}: \alpha \in \Lambda\right\}$ be a Bc -open cover of Y and since f is $\omega \mathrm{Bc} * \mathrm{R}$-continuous function, then $\left\{f^{-1}\left(G_{\alpha}\right): \alpha \in \Lambda\right\}$ is $\omega \mathrm{Bc}$-regular open cover of X. Since X is nearly Bc-Lindelof, then by theorem(3.18), X has a countable subcover $\left\{f^{-1}\left(G_{\alpha 1}\right), \ldots, f^{-1}\left(G_{\alpha n}\right), \ldots\right\}$. Since f is onto, then $f\left(f^{-1}\left(G_{\alpha}\right)\right)=G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\left\{G_{\alpha 1}, \ldots, G_{\alpha n}, \ldots\right\}$ is a countable subcover of Y. Hence Y is a Bc-Lindelof.

Theorem(3.25):

Let $f: X \rightarrow Y$ be an $\omega \mathrm{Bc}^{* *}$ R-continuous and onto function. If X is a nearly Bc -Lindelof, then Y is a θ-Lindelof.

Proof:

It is clear since every $\omega \mathrm{Bc}^{* *} \mathrm{R}$-continuous is $\omega \mathrm{BcR}$-continuous.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Raad.A\Ruaa.M

References

[1] D. Andrijevic, On b-open sets, Math. Vesnik, 59-64, 48(1996).
[2] H. Z. Ibrahim, "Bc-open sets in topological spaces", Advances in pure Math., 3, 34-40, (2013).
[3] N. V. Velicko, H-closed topological spaces, American Mathematical Society, Vol. 78, No. 2, pp. 103-118, (1968).
[4] A. AL-Omari and T. Noiri, "Characterizations of nearly Lindelof spaces", Jordon Journal of Mathematics and Statistics (JJMS) 3(2), 81-92, (2010).
[5] T. N. Noiri, A. Al-Omari, and Mohd. Salmi Md. Noorani, On ωb-open sets and bLindelof spaces, Europen Journal of pure and applied Math. , Vol. 1, No. 3, (3-9), (2008).
[6] A. P. Pears, on Dimension Theory of General Spaces, Cambridge University press, (1975).

المستخلص

(فBc .
 درسنا سلوك هذه الصفات تحت تأثير بعض انواع معينه من الدو ال.

