Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Subclass of Univalent Functions with Positive Coefficients
 Waggas Galib Atshan* and Huda Khalid AbidZaid Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya-Iraq
 E-mail: *waggas_hnd@yahoo.com, waggashnd@gmail.com, hafesh11656@yahoo.com

Recived :181312014
Revised : \}
Accepted :4\612014

Abstract

In this paper, we consider the class $H(\gamma, \alpha)$ consisting of analytic function with positive coefficients. We obtain some geometric properties, like, arithmetic mean, some distortion theorems and Hadmard product in the class $H(\gamma, \alpha)$.

Keywords:Univalent function, Distortion theorem, Integral operator, Hadamard product, δ Neighborhood.

AMS Subject Classification :30C45.

1. Introduction and Definitions.

Let T denote the class of functions:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic andunivalent in $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
Let H denote the subclass of T consisting of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0, n \in \mathbb{N}=\{1,2, \ldots\}\right) \tag{1.2}
\end{equation*}
$$

A function $f \in T$ is called univalent starlike of order $\beta(0 \leq \beta<1)$ if f is satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, \quad(z \in U)
$$

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Waggas.G/Huda.K
Also a function $f \in T$ is called univalent convex of order $\beta(0 \leq \beta<1)$ if f is satisfies the condition

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta, \quad(z \in U)
$$

Definition 1.1[5].The Gaussian hypergeometric function defined by $_{2} \mathrm{~F}_{1}$ and is defined by

$$
{ }_{2} \mathrm{~F}_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},
$$

where $(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}, c>b>0$ and $\stackrel{n=0}{c}>a+b$.It is well known (see[2]) that under the conditions $c>b>0$ and $c>a+b$, we have

$$
\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} .
$$

Definition 1.2. Let $f \in H$ be of the form (2.1). Then the Hohlov operator $F(a, b, c)$ is defined by means of Hadamard product below

$$
\begin{align*}
& F(a, b, c) f(z)=z_{2} \mathrm{~F}_{1}(a, b ; c ; z) * f(z) \\
&= z+e^{i \vartheta} \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n}, \tag{1.3}\\
&\left(a, b, c \in \mathbb{N}_{0}, c \neq \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; z \in U\right) .
\end{align*}
$$

The same operator have been studied by Atshan [4] on a class of univalent functions.
Definition 1.3. The Hadamard product of the two functions $F(a, b, c) f$ given by (1.3) and

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

is defined by

$$
(g * F(a, b, c)(f))(z)=z+\sum_{n=2}^{\infty} \Gamma_{n} a_{n} b_{n} z^{n}
$$

where

$$
\begin{equation*}
\Gamma_{\mathrm{n}}=\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} . \tag{1.5}
\end{equation*}
$$

Definition 1.4. A function $f \in H$ is said to be in the class $H(\gamma, \alpha)$ if satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(g * F(a, b, c)(f))^{\prime}(z)+\gamma z(g * F(a, b, c)(f))^{\prime \prime}(z)}{\gamma(g * F(a, b, c)(f))^{\prime}(z)+(1-\gamma)}\right\}>\alpha \tag{1.6}
\end{equation*}
$$

where $0 \leq \alpha<1,0<\gamma<1$.
Lemma 1.1.[3]If $\alpha \geq 0$, then $\operatorname{Re} w>\alpha$ if and only if $|w-(1+\alpha)|<|w+(1-\alpha)|$, where w be any complex number.

Waggas.G/Huda.K

2. Coefficient Bounds.

We obtain here a necessary and sufficient condition to be the function $f(z)$ in the class $H(\gamma, \alpha)$.
Theorem 2.1. Let $f \in T$. Then $f \in H(\gamma, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \Gamma_{\mathrm{n}} n[\gamma(n-\alpha-1)+1] a_{n} b_{n} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where Γ_{n} is defined by (1.5) and $0 \leq \alpha<1,0<\gamma<1, z \in U$. The result is sharp for the function

$$
f(z)=z+\frac{1-\alpha}{\Gamma_{\mathrm{n}} n[\gamma(n-\alpha-1)+1] b_{n}} z^{n}
$$

Proof .Suppose that the inequalities (2.1) holds true and let $|z|=1$, in view of (1.6), we need to prove that $\operatorname{Re}(w)>\alpha$, where

$$
\begin{aligned}
w & =\frac{(g * F(a, b, c)(f))^{\prime}(z)+\gamma z(g * F(a, b, c)(f))^{\prime \prime}(z)}{\gamma(g * F(a, b, c)(f))^{\prime}(z)+(1-\gamma)} \\
& =\frac{1+\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} n[\gamma(\mathrm{n}-1)+1] a_{n} b_{n} z^{n-1}}{1+\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} \gamma n a_{n} b_{n} z^{n-1}} \\
& =\frac{A(z)}{B(z)} .
\end{aligned}
$$

By Lemma 1.1, it suffices to show that

$$
|A(z)-(1+\alpha) B(z)|-|A(z)+(1-\alpha) B(z)| \leq 0
$$

Therefore, we obtain

$$
\begin{aligned}
& |A(z)-(1+\alpha) B(z)|-|A(z)+(1-\alpha) B(z)| \\
& \leq \alpha+\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-1)+1-(1+\alpha) \gamma] a_{n} b_{n}|z|^{n-1}-(2-\alpha) \\
& \quad+\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-1)+1+(1-\alpha) \gamma] a_{n} b_{n}|z|^{n-1}
\end{aligned}
$$

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Waggas.G/Huda.K

$$
\begin{aligned}
&=\alpha+\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-2-\alpha)+1] a_{n} b_{n}-(2-\alpha) \\
&+\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha)+1] a_{n} b_{n} \\
&= 2 \alpha-2+\sum_{n=2}^{\infty} \Gamma_{n} n[2 \gamma n-2 \gamma \alpha-2 \gamma+2] a_{n} b_{n} \\
&= \sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] a_{n} b_{n}-(1-\alpha) \leq 0,
\end{aligned}
$$

by hypothesis. Then by maximum modulus Theorem, we have $f \in H(\gamma, \alpha)$. Conversely, assume that

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{(g * F(a, b, c)(f))^{\prime}(z)+\gamma z(g * F(a, b, c)(f))^{\prime \prime}(z)}{\gamma(g * F(a, b, c)(f))^{\prime}(z)+(1-\gamma)}\right\} \\
= & \operatorname{Re}\left\{\frac{1+\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} n[\gamma(\mathrm{n}-1)+1] a_{n} b_{n} z^{n-1}}{1+\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} \gamma n a_{n} b_{n} z^{n-1}}\right\}>\alpha, \tag{2.3}
\end{align*}
$$

we can choose the value of z on the real axis and let $z \rightarrow 1^{-}$, through real values, so we can write (2.3) as

$$
\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] a_{n} b_{n} \leq(1-\alpha)
$$

Finally, sharpness follows if we take

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{\Gamma_{\mathrm{n}} n[\gamma(n-\alpha-1)+1] b_{n}} z^{n}, n=2,3, \ldots . \tag{2.4}
\end{equation*}
$$

Corollary 2.1. If $f(z) \in H(\gamma, \alpha)$. Then

$$
a_{n} \leq \frac{1-\alpha}{\Gamma_{\mathrm{n}} n[\gamma(n-\alpha-1)+1] b_{n}}, n=2,3, \ldots .
$$

Theorem 2.2.Let the function $f(z)$ defined by (1.1) be in the class $H(\gamma, \alpha)$. Then

$$
\begin{equation*}
r-\frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}} r^{2} \leq|f(z)| \leq r+\frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}} r^{2} \tag{2.5}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
f(z)=z+\frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}} z^{2} .
$$

Proof. Let $f(z) \in H(\gamma, \alpha)$. Then by Theorem (2.1), we have

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}}
$$

Hence

$$
\begin{gather*}
|f(z)| \leq|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \quad,(|z|=r<1) \\
\leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
\leq r+\frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}} r^{2} \tag{2.6}
\end{gather*}
$$

Similarly, we obtain

$$
\begin{aligned}
|f(z)| & \geq|z|-\sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& \geq r-r^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq r-\frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} b_{2}} r^{2}(2.7)
\end{aligned}
$$

From bounds (2.6) and (2.7), we get (2.5).
Theorem 2.3.Let the function $f(z)$ defined by (1.1) be in the class $H(\gamma, \alpha)$. Then

$$
\begin{equation*}
1-\frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}} r \tag{2.8}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by

$$
f(z)=z+\frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}} z^{2} .
$$

Proof.Let $f(z) \in H(\gamma, \alpha)$. Then by Theorem (2.1), we have

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}}
$$

Hence

$$
\begin{align*}
& \left|f^{\prime}(z)\right| \leq|1|+\sum_{n=2}^{\infty} a_{n} n|z|^{n-1} \\
& \quad \leq 1+\frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}} r \tag{2.9}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
& \left|f^{\prime}(z)\right| \geq|1|-\sum_{n=2}^{\infty} a_{n} n|z|^{n-1} \\
& \quad \geq 1-\frac{1-\alpha}{[\gamma(1-\alpha)+1] \Gamma_{2} b_{2}} r \tag{2.10}
\end{align*}
$$

From bounds (2.9) and (2.10), we get (2.8).
Theorem 2.4.Let the function f_{k} defined by

$$
f_{k}(z)=z+\sum_{n=2}^{\infty} a_{n, k} z^{n}
$$

be in the class $H(\gamma, \alpha)$ for every $k=1,2,3, \ldots, \ell$. Then the function

$$
w(z)=z+\sum_{n=2}^{\infty} e_{n} z^{n} \quad,\left(e_{n} \geq 0, n \in \mathbb{N}\right)
$$

also belongs to the class $H(\gamma, \alpha)$, where

$$
e_{n}=\frac{1}{\ell} \sum_{k=1}^{\ell} a_{n, k}
$$

Proof. Since $f_{k} \in H(\gamma, \alpha)$, if follows from Theorem (2.1), that

$$
\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] a_{n, k} b_{n} \leq(1-\alpha)
$$

for every $k=1, \ldots, \ell$. Hence

$$
\begin{aligned}
\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] e_{n} b_{n} & =\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] b_{n}\left(\frac{1}{\ell} \sum_{k=1}^{\ell} a_{n, k}\right) \\
& \leq \frac{1}{\ell} \sum_{k=1}^{\ell}(1-\alpha)=(1-\alpha)
\end{aligned}
$$

which shows that $w(z) \in H(\gamma, \alpha)$.
Theorem 2.5. Let the function $f_{j}(z),(j=1,2)$ defined by

$$
f_{j}(z)=z+\sum_{n=2}^{\infty} a_{n, j} z^{n}, \quad(j=1,2)
$$

be in the class $H(\gamma, \alpha)$. Then the function

$$
T(z)=z+\sum_{n=2}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n}
$$

Waggas.G/Huda.K
also belong to the class $H(\gamma, \epsilon)$, where

$$
\epsilon \geq \frac{2(1-\alpha)^{2}[\gamma(n-1)+1]-n \Gamma_{n} b_{n}[\gamma(n-\alpha-1)+1]^{2}}{2 \gamma(1-\alpha)^{2}+n \Gamma_{n} b_{n}[\gamma(n-\alpha-1)+1]^{2}}
$$

Proof. We must find the largest ϵ such that

$$
\frac{\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} n[\gamma(\mathrm{n}-\epsilon-1)+1] b_{n}}{1-\epsilon}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 .
$$

Since $f_{j}(z),(j=1,2)$ belong to the class $H(\gamma, \alpha)$, we have

$$
\frac{\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n}^{2} n^{2}[\gamma(\mathrm{n}-\alpha-1)+1]^{2} b_{n}^{2}}{(1-\alpha)^{2}} a_{n, 1}^{2} \leq\left(\frac{\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} n[\gamma(\mathrm{n}-\alpha-1)+1] b_{n}}{1-\alpha} a_{n, 1}\right)^{2} \leq 1
$$

and

$$
\frac{\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n}^{2} n^{2}[\gamma(\mathrm{n}-\alpha-1)+1]^{2} b_{n}^{2}}{(1-\alpha)^{2}} a_{n, 2}^{2} \leq\left(\frac{\sum_{\mathrm{n}=2}^{\infty} \Gamma_{n} n[\gamma(\mathrm{n}-\alpha-1)+1] b_{n}}{1-\alpha} a_{n, 2}\right)^{2} \leq 1
$$

Hence, we have

$$
\sum_{n=2}^{\infty} \frac{1}{2}\left(\frac{\Gamma_{n}^{2} n^{2}[\gamma(\mathrm{n}-\alpha-1)+1]^{2} b_{n}^{2}}{(1-\alpha)^{2}}\right)\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1
$$

$T(z) \in H(\gamma, \epsilon)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{\Gamma_{n} n[\gamma(\mathrm{n}-\epsilon-1)+1] b_{n}}{1-\epsilon}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1
$$

Therefore, we need to find the largest ϵ such that

$$
\begin{equation*}
\frac{\Gamma_{n} n[\gamma(\mathrm{n}-\epsilon-1)+1] b_{n}}{1-\epsilon} \leq \frac{\Gamma_{n}^{2} n^{2}[\gamma(\mathrm{n}-\alpha-1)+1]^{2} b_{n}^{2}}{(1-\alpha)^{2}} \tag{2.11}
\end{equation*}
$$

From (2.11), we have

$$
\epsilon \geq \frac{2(1-\alpha)^{2}[\gamma(n-1)+1]-n \Gamma_{n} b_{n}[\gamma(n-\alpha-1)+1]^{2}}{2 \gamma(1-\alpha)^{2}+n \Gamma_{n} b_{n}[\gamma(n-\alpha-1)+1]^{2}}
$$

The concept of neighborhood of analytic functions was first introduced by Goodman [5] and Ruscheweyh [7] investigated this concept for the elements of several famous subclasses of analytic functions and Altintas and Owa [1] considered for a certain family of analytic functions with negative coefficients.

Waggas.G/Huda.K
Now, we define the (n, δ)-neighborhood of a function $f \in H$ by

$$
\begin{equation*}
N_{n, \delta}(f)=\left\{k \in H: k(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-c_{n}\right| \leq \delta, 0 \leq \delta<1\right\}, \tag{2.12}
\end{equation*}
$$

for the identity function $e(z)=z$, we have

$$
N_{n, \delta}(e)=\left\{k \in H: k(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|c_{n}\right| \leq \delta\right\} .
$$

Definition 1.5. A function $f \in H$ is said to be in the class $H(\gamma, \alpha)$ if there exists a function $k \in H(\gamma, \alpha)$ such that

$$
\left|\frac{f(z)}{k(z)}-1\right|<1-\beta \quad(z \in U, 0 \leq \beta<1)
$$

Theorem 2.6.If $k \in H(\gamma, \alpha)$ and

$$
\begin{equation*}
\beta=1-\frac{\delta}{2} \frac{[2 \gamma(1-\alpha)+2] \Gamma_{2} c_{2}}{[2 \gamma(1-\alpha)+2] \Gamma_{2} c_{2}-(1-\alpha)} . \tag{2.13}
\end{equation*}
$$

Then $N_{n, \delta}(k) \subset H(\gamma, \alpha)$.
Proof.Let $f \in N_{n, \delta}(k)$. We want to find from (2.12) that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-c_{n}\right| \leq \delta
$$

which readily implies the following coefficient inequality

$$
\sum_{n=2}^{\infty}\left|a_{n}-c_{n}\right| \leq \frac{\delta}{2}
$$

Next, since $k \in H(\gamma, \alpha)$ in view of Theorem (2.1) such that

$$
\sum_{n=2}^{\infty} c_{n} \leq \frac{1-\alpha}{[2 \gamma(1-\alpha)+2] \Gamma_{2} c_{2}}
$$

So that

$$
\begin{aligned}
& \left|\frac{f(z)}{k(z)}-1\right| \leq \frac{\sum_{\mathrm{n}=2}^{\infty}\left|a_{n}-c_{n}\right|}{1-\sum_{\mathrm{n}=2}^{\infty} c_{n}} \\
& \leq \frac{\delta}{2} \frac{[2 \gamma(1-\alpha)+2] \Gamma_{2} c_{2}-(1-\alpha)}{[2 \gamma(1-\alpha)+2] \Gamma_{2} c_{2}}=1-\beta .
\end{aligned}
$$

Thus by Definition (1.5), $f \in H(\gamma, \alpha)$ for β given by (2.13).

Theorem 2.7.Let r real number such that $r>-1$. If $f \in H(\gamma, \alpha)$, then the function F defined by

$$
F(z)=\frac{r+1}{z^{r}} \int_{0}^{z} t^{r-1} f(t) d t
$$

also belong to $H(\gamma, \alpha)$.
Proof. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Then from the representation of F, it follows that

$$
F(z)=z+\sum_{n=2}^{\infty} d_{n} z^{n}
$$

where $d_{n}=\frac{r+1}{r+n} a_{n}$. Therefore using Theorem (2.1) for the coefficients of F, we have

$$
\begin{gathered}
\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1] d_{n} b_{n} \\
=\sum_{n=2}^{\infty} \Gamma_{n} n[\gamma(n-\alpha-1)+1]\left(\frac{r+1}{r+n}\right) a_{n} b_{n} \leq 1-\alpha
\end{gathered}
$$

Since $\frac{r+1}{r+n}<1$ and $f \in H(\gamma, \alpha)$. Hence $F \in H(\gamma, \alpha)$.
Theorem 2.8.Let $0 \leq \alpha<1,0<\gamma<1$. Then $H(\gamma, \alpha) \subset H(\gamma, \tau)$ where $\tau=\frac{\alpha[\gamma(n-2)+1]}{\gamma(n-2)+1}$.
Proof. Let the function $f(z)$ given by (1.2) belong to the class $H(\gamma, \alpha)$. Then, by using Theorem 2.1., we get

$$
\frac{\sum_{\mathrm{n}=2}^{\infty} n[\gamma(\mathrm{n}-\alpha-1)+1]}{1-\alpha} \Gamma_{n} a_{n} b_{n} \leq 1
$$

In order to prove that $f \in H(\gamma, \tau)$, we must have

$$
\begin{equation*}
\frac{\sum_{\mathrm{n}=2}^{\infty} n[\gamma(\mathrm{n}-\tau-1)+1]}{1-\tau} \Gamma_{n} a_{n} b_{n} \leq 1 \tag{2.14}
\end{equation*}
$$

Note that (2.14) satisfies if

$$
\begin{equation*}
\frac{n[\gamma(\mathrm{n}-\tau-1)+1] \Gamma_{n}}{1-\tau} \leq \frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n}}{1-\alpha} \tag{2.15}
\end{equation*}
$$

from (2.15), we havewhere $\tau=\frac{\alpha[\gamma(n-2)+1]}{\gamma(n-2)+1}$.

Theorem 2.9. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \square(z)=z+\sum_{n=2}^{\infty} f_{n} z^{n}
$$

belong to $H(\gamma, \alpha)$. Then the Hadamard product of f and \square given by

$$
(f * \square)(z)=z+\sum_{n=2}^{\infty} a_{n} f_{n} z^{n}
$$

belong to $H(\gamma, \alpha)$.
Proof. Since f and $\square \in H(\gamma, \alpha)$, we have

$$
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} f_{n}}{1-\alpha}\right] a_{n} \leq 1
$$

and

$$
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} a_{n}}{1-\alpha}\right] f_{n} \leq 1
$$

and by applying the Cauchy -Schwarz inequality, we have

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} \sqrt{a_{n} f_{n}}}{1-\alpha}\right] \sqrt{a_{n} f_{n}} \\
\leq\left(\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} f_{n}}{1-\alpha}\right] a_{n}\right)^{1 / 2} \times\left(\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} a_{n}}{1-\alpha}\right] f_{n}\right)^{1 / 2}
\end{gathered}
$$

However, we obtain

$$
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} \sqrt{a_{n} f_{n}}}{1-\alpha}\right] \sqrt{a_{n} f_{n}} \leq 1
$$

Now, we want to prove

$$
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n}}{1-\alpha}\right] a_{n} f_{n} \leq 1
$$

Since

$$
\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n}}{1-\alpha}\right] a_{n} f_{n}=\sum_{n=2}^{\infty}\left[\frac{n[\gamma(\mathrm{n}-\alpha-1)+1] \Gamma_{n} \sqrt{a_{n} f_{n}}}{1-\alpha}\right] \sqrt{a_{n} f_{n}}
$$

Hence, we get the required result.

Journal of AL-Qadisiyah for computer science and mathematics Vol. 6 No. 2 Year 2014

Waggas.G\Huda.K

References

[1] O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients , Int. J. Math. Sci, 19(1996),797-800.
[2] G. E. Andrews, R. Askey and R. Roy, special functions, Cambridge University Press, Cambridge, U.K.,(1999).
[3] E. s. Aqlan, Some problems connected with geometric function theory, Ph.D. Thesies(2004), Pune University , Pune.
[4] W. G. Atshan . Application of fractional calculus operators for a new class of univalent functions with negative coefficients defined by Hohlov operator , J. Math. Slovaca, 60(1)(2010),75-82.
[5] A. W. Goodman, Univalent functions and non -analytic curves, Proc. Amer. Math. Soc, 8(1975), 598-601.
[6] Y. C. Kim and F. Roning, Integral transforms of certain subclasses of analytic functions, J. Math> Anal. Appl. , 258(2001),466-489.
[7] S. Ruscheweyh , Neighborhoods of univalent functions , Proc. Amer. Math. Soc, 81(1981),521-527.

