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Abstract. In this paper, we consider the class       consisting of analytic function with 

positive coefficients. We obtain some geometric properties, like, arithmetic mean, some 

distortion theorems and Hadmard product in the class       . 

Keywords:Univalent function, Distortion theorem, Integral operator, Hadamard product,  - 

Neighborhood.  

 

AMS Subject Classification :30C45. 

 

1. Introduction and Definitions. 

Let  denote the class of functions: 

                                                          ∑    
 

 

   

                                                      

which are analytic andunivalent in    {          | |   }. 

Let   denote the subclass of    consisting of functions of the form: 

                                           ∑   
 

 

   

                   {     }       

A function     is called univalent starlike of order           if   is satisfies the condition 

  ,
      

    
-                
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Also a function   is called univalent convex of order          if   is satisfies the 

condition 

      ,  
      

     
-                

Definition 1.1[5].The Gaussian hypergeometric function defined by2F1 and is defined by  

2 1F  
          ∑

        
       

                                      

 

   

 

where      
      

    
                     It is well known (see[2]) that under the 

conditions                   , we have 

∑
        
       

  

 

   

  
            

            
   

Definition 1.2. Let     be of the form (2.1). Then the Hohlov operator         is defined by 

means of Hadamard product below  

               
2 1F                

                            ∑
            

             
   

                                              

 

   

 

               
  {         }        

The same operator have been studied by  Atshan [4] on a class of univalent functions. 

Definition 1.3.  The Hadamard product of the two functions           given by (1.3) and 

                          ∑   
 

 

   

      

is defined by 

(             )      ∑          
      

 

   

 

where                             
            

            
                                                                                    

 
 

Definition 1.4.  A function     is said to be in the class        if satisfies the condition 

                {
(             )

 
        (             )

 
   

  (             )
 
         

}                     

where             . 

Lemma 1.1.[3]If     , then         if and only if |       |  |       |   where   

be any complex number. 
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2. Coefficient Bounds. 

We obtain here a necessary and sufficient condition to be the function     in the 

class      .  

Theorem 2.1. Let    . Then           if and only if  

∑      [          ]                                                       

 

   

 

where    is defined by (1.5) and                  . The result is sharp for the 

function  

       
   

     [          ]  
      

Proof .Suppose that the inequalities (2.1) holds true and let | |    , in view of (1.6), we need 

to prove that         , where  

  
(             )

 
        (             )

 
   

  (             )
 
         

 

 

  
n 2





     [        ]      
   

  
n 2





                 

 

 
    

    
                                                                                  

By Lemma 1.1 , it suffices to show that  

|              |  |              |     

Therefore , we obtain 

|              |  |              | 

   ∑      [               ]     | |
                 

 

   

 ∑      [               ]     | |
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   ∑      [          ]                                               

 

   

 ∑      [        ]     

 

   

 

      ∑      [            ]     

 

   

 

 ∑      [          ]                                          

 

   

 

by hypothesis. Then by maximum modulus Theorem, we have         . Conversely , assume 

that  

  {
(             )

 
        (             )

 
   

  (             )
 
         

} 

               

{
 
 

 
   

n 2





     [        ]      
   

  
n 2





                 

}
 
 

 
 

                             

we can choose the value of   on the real axis and let      , through real values, so we can 

write (2.3) as  

∑      [          ]                                        

 

   

 

Finally , sharpness follows if we take 

       
   

     [          ]  
                                       

Corollary 2.1. If            . Then  

   
   

     [          ]  
             

Theorem 2.2.Let the function      defined by (1.1) be in the class       . Then  

  
   

[         ]    
   |    |    

   

[         ]    
         

The result is sharp for the function      given by  

       
   

[         ]    
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Proof. Let            . Then by Theorem (2.1), we have  

∑    
   

[         ]    

 

   

  

Hence  

|    |  | |  ∑  

 

   

| |        | |       

     ∑  

 

   

 

                                                  
   

[         ]    
                                        

Similarly, we obtain  

|    |  | |  ∑  

 

   

| |  

     ∑  

 

   

 

                                             
   

[         ]    
        

From bounds (2.6) and (2.7), we get (2.5). 

Theorem 2.3.Let the function      defined by (1.1) be in the class       . Then  

  
   

[        ]    
   |     |    

   

[        ]    
        

The result is sharp for the function      given by  

       
   

[        ]    
     

Proof.Let             . Then by Theorem (2.1), we have  

∑    
   

[        ]    

 

   

  

Hence  

|     |  | |  ∑  

 

   

  | |    

                                               
   

[        ]    
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Similarly, we obtain  

|     |  | |  ∑  

 

   

   | |    

                                    
   

[        ]    
                                           

From bounds (2.9) and (2.10), we get (2.8). 

Theorem 2.4.Let the function    defined by  

        ∑    

 

   

   

be in the class        for every            . Then the function  

          ∑  

 

   

                    

also belongs to the class        , where 

   
 

 
∑    

 

   

                              

Proof. Since          , if follows from Theorem (2.1), that  

∑      [          ]                                          

 

   

 

for every        . Hence  

∑      [          ]       

 

   

∑      [          ]   .
 

 
∑    

 

   

/

 

   

 

                     
 

 
∑           

 

   

  

which shows that            . 

Theorem 2.5. Let the function               defined by  

        ∑     

 

   

            

be in the class       . Then the function  

       ∑(    
      

 )
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also belong to the class       , where  

  
       [        ]         [          ] 

                [          ] 
   

Proof. We must find the largest   such that  

n 2





     [          ]   

   
(    

      
 )     

Since               belong to the class        , we have  

n 2





   
    [          ]   

 

      
    
  

(

 
 n 2





     [          ]   

   
     

)

 
 

 

   

and  

n 2





   
    [          ]   

 

      
    
  

(

 
 n 2





     [          ]   

   
     

)

 
 

 

    

Hence , we have 

∑
 

 

 

   

(
  
    [          ]   

 

      
) (    

      
 )     

            if and only if  

∑
    [          ]   

   

 

   

(    
      

 )     

Therefore , we need to find the largest   such that  

    [          ]   

   
 

  
    [          ]   

 

      
                        

From (2.11) , we have 

  
       [        ]         [          ] 

                [          ] 
   

The concept of neighborhood of analytic functions was first introduced by Goodman [5] and 

Ruscheweyh [7] investigated this concept for the elements of several famous subclasses of analytic 

functions and Altintas and Owa [1] considered for a certain family of analytic functions with 

negative coefficients. 



 

 

 90 

Journal of AL-Qadisiyah for computer science and mathematics 

Vol.6    No.2   Year  2014 

                                                                                               Waggas.G/Huda.K 

Now, we define the       –neighborhood of a function     by  

        {           ∑    
 

 

   

     ∑  |       |          }        

 

   

 

for the identity function       , we have  

        {           ∑    
 

 

   

     ∑  |   |    }  

 

   

 

Definition 1.5.  A function     is said to be in the class        if there exists a function 

         such that  

|
    

    
  |                                                    

Theorem 2.6.If          and  

                           
 

 

[         ]    
[         ]          

                                              

Then                . 

Proof.Let          . We want to find from (2.12) that  

∑   |       |     

 

   

 

which readily implies the following coefficient inequality  

∑|       |  
 

 

 

   

  

Next , since          in view of Theorem (2.1) such that  

∑   

 

   

 
   

[         ]    
   

So that  

|
    

    
  |  

n 2





 |       |

  
n 2





    

 

                               
 

 

[         ]          

[         ]    
       

Thus by Definition (1.5) ,         for   given by (2.13). 
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Theorem 2.7.Let   real number such that     . If          , then the function   defined by  

     
   

  
∫     

 

 

         

also belong to       . 

Proof. Let   

       ∑     
 

 

   

  

Then from the representation of  , it follows that  

       ∑    
  

 

   

 

where     
   

   
   . Therefore using Theorem (2.1) for the coefficients of  , we have  

∑      [          ]     

 

   

 

 ∑      [          ] (
   

   
)     

 

   

     

Since 
   

   
   and         . Hence           

Theorem 2.8.Let            . Then               where   
 [        ]

        
. 

Proof. Let the function      given by (1.2) belong to the class       . Then , by using Theorem 

2.1. , we get  

n 2





  [          ]

   
                                                                  

In order to prove that         , we must have  

n 2





  [          ]

   
                                                             

Note that (2.14) satisfies if  

 [          ]   

   
 

 [          ]   

   
                                 

from (2.15), we havewhere   
 [        ]

        
. 
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Theorem 2.9. Let 

       ∑    
 

 

   

        ∑    
 

 

   

 

belong to       . Then the Hadamard product of  and   given by 

           ∑       
 

 

   

  

belong to       . 

Proof. Since   and         , we have  

∑ *
 [          ]      

   
+

 

   

      

and 

∑ *
 [          ]      

   
+

 

   

      

and by applying the Cauchy –Schwarz inequality , we have 

∑ [
 [          ]   √      

   
]

 

   

√       

 (∑*
 [          ]      

   
+

 

   

   )

 
 ⁄

 (∑*
 [          ]      

   
+

 

   

   )

 
 ⁄

 

However , we obtain  

∑ [
 [          ]   √      

   
]

 

   

√          

Now , we want to prove  

∑ *
 [          ]   

   
+

 

   

          

Since 

∑*
 [          ]   

   
+

 

   

       ∑ [
 [          ]   √      

   
]

 

   

√         

Hence , we get the required result. 
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