Fuzzy Generalized Alpha Generalized Closed Sets
 المجموعات المعممة ألفا المعممة المغلقة الضبابية

Qays Hatem Imran
Department of Mathematics, College of Education for Pure Science
Al-Muthanna University, Samawah, Iraq
E-mail: qays.imran@gmail.com

\begin{abstract}
:
In this paper we introduced a new class of fuzzy closed sets called fuzzy g $\alpha \mathrm{g}$-closed sets and study their basic properties in fuzzy topological spaces. We also introduced fuzzy g $\alpha \mathrm{g}$ continuous functions with some of its properties. Moreover, the investigation will include some of the properties of the fuzzy separation axioms such fuzzy $\mathrm{g} \alpha \mathrm{g}-R_{i}$-space and fuzzy $\mathrm{g} \alpha \mathrm{g}$ - T_{j}-space (note that, the indexes i and j are natural numbers of the spaces R and T are from 0 to 1 and from 0 to 2 respectively).
Mathematics Subject Classification (2010): 54A40.
Keywords: Fg α g-closed set, $\operatorname{Fg} \alpha \mathrm{g}$-continuous functions, $\operatorname{Fg} \alpha \mathrm{g}-R_{i}$-space, $i=0,1$ and $\operatorname{Fg} \alpha \mathrm{g}-T_{j}$ space, $j=0,1,2$.

1. Introduction

In 1965 Zadeh studied the fuzzy sets (briefly F-sets) (see [5]) which plays such a role in the field of fuzzy topological spaces (or simply FTS). The fuzzy topological spaces investigated by Chang in 1968 (see [2]). A. S. Bin Shahna [1] defined fuzzy α-closed sets. In 1997, fuzzy generalized closed set (briefly Fg-CS) was introduced by G. Balasubramania and P. Sundaram [4]. S. Kalaiselvi and V. Seenivasan [12] introduced the concept of fuzzy gsg-closed sets in FTS. The purpose of this paper is to introduce the concept of fuzzy $\mathrm{g} \alpha \mathrm{g}$-closed sets and study their basic properties in FTS. We also introduce fuzzy g $\alpha \mathrm{g}$-continuous functions by using fuzzy $\mathrm{g} \alpha \mathrm{g}$-closed sets and study some of their fundamental properties. Furthermore, the investigation will include some of the properties of the fuzzy separation axioms such fuzzy $\mathrm{g} \alpha \mathrm{g}$ - R_{i}-space and fuzzy $\mathrm{g} \alpha \mathrm{g}-T_{j}-$ space (here the indexes i and j are natural numbers of the spaces R and T are from 0 to 1 and from 0 to 2 respectively).

2. Preliminaries

Throughout this paper, $(X, \tau),(Y, \psi)$ and (Z, ρ) (or simply X, Y and Z) always mean FTS on which no separation axioms are assumed unless otherwise mentioned. A fuzzy point [3] with support $x \in X$ and value $\lambda(0<\lambda \leq 1)$ at $x \in X$ will be denoted by x_{λ}, and for F -set $\mathcal{M}, x_{\lambda} \in \mathcal{M}$ iff $\lambda \leq \mathcal{M}(x)$. Two fuzzy points x_{λ} and y_{μ} are said to be distinct iff their supports are distinct. That is, by 0_{X} and 1_{X} we mean the constant F -sets taking the values 0 and 1 on X, respectively. For a F set \mathcal{M} in a $\operatorname{FTS}(X, \tau), \operatorname{cl}(\mathcal{M}), \operatorname{int}(\mathcal{M})$ and $\mathcal{M}^{c}=1_{X}-\mathcal{M}$ denote the fuzzy closure of \mathcal{M}, the fuzzy interior of \mathcal{M} and the fuzzy complement of \mathcal{M} respectively.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Definition 2.1:[11] A fuzzy point in a set X with support x and membership value 1 is called crisp point, denoted by x_{1}. For any F-set \mathcal{M} in X, we have $x_{1} \in \mathcal{M}$ iff $\mathcal{M}(x)=1$.
Proposition 2.2:[10] Let $\mathcal{M}, \mathcal{N}, \mathcal{O}$ be F-sets in a FTS (X, τ). Then $\mathcal{M} q(\mathcal{N} \vee \mathcal{O})$ iff $\mathcal{M} q \mathcal{N}$ or $\mathcal{M} q \mathcal{O}$.
Definition 2.3:[6] A fuzzy point $x_{\lambda} \in \mathcal{M}$ is called quasi-coincident (briefly q-coincident) with the F-set \mathcal{M} is denoted by $x_{\lambda} q \mathcal{M}$ iff $\lambda+\mathcal{M}(x)>1$. A F-set \mathcal{M} in a FTS (X, τ) is called q-coincident with a F-set \mathcal{N} which is denoted by $\mathcal{M} q \mathcal{N}$ iff there exists $x \in X$ such that $\mathcal{N}(x)+\mathcal{N}(x)>1$. If the F-sets \mathcal{M} and \mathcal{N} in a FTS (X, τ) are not q-coincident then we write $\mathcal{M} \bar{q} \mathcal{N}$. Note that $\mathcal{M} \leq$ $\mathcal{N} \Leftrightarrow \mathcal{M} \bar{q}\left(1_{X}-\mathcal{N}\right)$.

Definition 2.4:[6] A F-set \mathcal{M} in a FTS (X, τ) is called q-neighbourhood(briefly q-nhd) of a fuzzy point x_{λ} (resp. F-set \mathcal{N})if there is a F-OS \mathcal{A} in a FTS (X, τ) such that $x_{\lambda} q_{\mathcal{A}}^{\mathcal{A}} \leq \mathcal{M}$ (resp. $\mathcal{N} q_{\mathcal{A}} \leq$ $\mathcal{M})$.

Proposition 2.5:[4,7] Let \mathcal{M}, \mathcal{N} be two F-sets in a FTS (X, τ). Then the following properties hold:
(i) \mathcal{M} is a F-OS iff $\mathcal{M}=\operatorname{int}(\mathcal{M})$.
(ii) \mathcal{M} is a F-CS iff $\mathcal{M}=\operatorname{cl}(\mathcal{M})$.
(iii) $\operatorname{int}(\mathcal{M}) \leq \mathcal{M}, \operatorname{int}(\operatorname{int}(\mathcal{M}))=\operatorname{int}(\mathcal{M})$.
(iv) $\operatorname{int}(\mathcal{M}) \leq \operatorname{int}(\mathcal{N})$, whenever $\mathcal{M} \leq \mathcal{N}$.
(v) $\operatorname{int}(\mathcal{M} \wedge \mathcal{N})=\operatorname{int}(\mathcal{M}) \wedge \operatorname{int}(\mathcal{N}), \operatorname{int}(\mathcal{M} \vee \mathcal{N}) \geq \operatorname{int}(\mathcal{M}) \vee \operatorname{int}(\mathcal{N})$.
(vi) $\mathcal{M} \leq \operatorname{cl}(\mathcal{M}), \operatorname{cl}(c l(\mathcal{M}))=c l(\mathcal{M})$.
(vii) $\operatorname{cl}(\mathcal{M}) \leq \operatorname{cl}(\mathcal{N})$, whenever $\mathcal{M} \leq \mathcal{N}$.
(viii) $\operatorname{cl}(\mathcal{M} \wedge \mathcal{N}) \leq \operatorname{cl}(\mathcal{M}) \wedge \operatorname{cl}(\mathcal{N}), \operatorname{cl}(\mathcal{M} \vee \mathcal{N})=\operatorname{cl}(\mathcal{M}) \vee \operatorname{cl}(\mathcal{N})$.

Lemma 2.6:[7] Let \mathcal{M} be any F-set in a FTS (X, τ). Then the following properties hold:
(i) $\operatorname{cl}\left(1_{X}-\mathcal{M}\right)=1_{X}-\operatorname{int}(\mathcal{M})$.
(ii) $\operatorname{int}\left(1_{X}-\mathcal{M}\right)=1_{X}-\operatorname{cl}(\mathcal{M})$.

Definition 2.7:[2] Let X and Y be two non-empty sets, and $f:(X, \tau) \rightarrow(Y, \psi)$ be a function. If \mathcal{M} is a F-set of X and \mathcal{N} is a F-set of Y, then:
(i) $f(\mathcal{M})$ is a F-set of Y, where

$$
f(\mathcal{M})=\left\{\begin{array}{cc}
\sup _{x \in f^{-1}(y)} \mathcal{M}(x), & \text { if } f^{-1}(y) \neq 0, \\
0, & \text { otherwise }
\end{array}\right.
$$

for every $y \in Y$.
(ii) $f^{-1}(\mathcal{N})$ is a F-set of X, where $f^{-1}(\mathcal{N})(x)=\mathcal{N}(f(x))$ for each $x \in X$.
(iii) $f^{-1}\left(1_{Y}-\mathcal{N}\right)=1_{X}-f^{-1}(\mathcal{N})$.

Theorem 2.8:[2] Let X and Y be two non-empty sets, and $f:(X, \tau) \rightarrow(Y, \psi)$ be a function, then:
(i) $f^{-1}\left(\mathcal{N}^{c}\right)=\left(f^{-1}(\mathcal{N})\right)^{c}$, for any F-set \mathcal{N} in Y.
(ii) $f\left(f^{-1}(\mathcal{N})\right) \leq \mathcal{N}$, for any F-set \mathcal{N} in Y.
(iii) $\mathcal{M} \leq f^{-1}(f(\mathcal{M}))$, for any F-set \mathcal{M} in X.

Definition 2.9:[1] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy α-open set (briefly F α-OS) if $\mathcal{M} \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathcal{M}))$) and a fuzzy α-closed set (briefly $\mathrm{F} \alpha$-CS) if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathcal{M}))) \leq \mathcal{M}$. The fuzzy α-closure of a F-set \mathcal{M} of a FTS (X, τ) is the intersection of all $\mathrm{F} \alpha$-CS that contain \mathcal{M} and is denoted by $\alpha c l(\mathcal{M})$.

Definition 2.10:[4] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy g-closed set (briefly Fg-CS) if $\operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X. The complement of a Fg-CS in X is a Fg-OS in X.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Definition 2.11:[9] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy $\alpha \mathrm{g}$-closed set (briefly F $\alpha \mathrm{g}$-CS) if $\operatorname{\alpha cl}(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a $\mathrm{F} \alpha$-OS in X. The complement of a $\mathrm{F} \alpha \mathrm{g}$-CS in X is a F $\alpha \mathrm{g}$-OS in X.

Definition 2.12:[8] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy $\mathrm{g} \alpha$-closed set (briefly $\mathrm{Fg} \alpha$-CS) if $\operatorname{\alpha cl}(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X. The complement of a $\operatorname{Fg} \alpha$-CS in X is a Fg $\alpha-$ OS in X.

Theorem 2.13: $[1,4]$ In a FTS (X, τ), then the following statements hold and the converse of each statements are not true:
(i) Every F-OS (resp. F-CS) is a $\mathrm{F} \alpha-\mathrm{OS}$ (resp. $\mathrm{F} \alpha$-CS).
(ii) Every F-OS (resp. F-CS) is a Fg-OS (resp. Fg-CS).

Theorem 2.14: $[8,9]$ In a FTS (X, τ), then the following statements hold and the converse of each statements are not true:
(i) Every F-OS (resp. F-CS) is a F α g-OS (resp. F α g-CS).
(ii) Every Fg -OS (resp. Fg -CS) is a $\mathrm{Fg} \alpha-\mathrm{OS}$ (resp. $\mathrm{Fg} \alpha-\mathrm{CS}$).
(iii) Every $\mathrm{F} \alpha$-OS (resp. $\mathrm{F} \alpha$-CS) is a $\mathrm{F} \alpha \mathrm{g}$-OS (resp. F $\alpha \mathrm{g}$-CS).
(iv) Every F α g-OS (resp. $\mathrm{F} \alpha \mathrm{g}-\mathrm{CS}$) is a $\mathrm{Fg} \alpha-\mathrm{OS}$ (resp. $\mathrm{Fg} \alpha$-CS).

Definition 2.15:[4] A FTS (X, τ) is said to be a fuzzy $T_{\frac{1}{2}}$-space (briefly $\mathrm{F}_{\frac{1}{2}}$-space) if every Fg-CS in it is a F-CS.

Definition 2.16: Let (X, τ) and (Y, ψ) be FTS. Then the function $f:(X, \tau) \rightarrow(Y, \psi)$ is called:
(i) F-continuous [2] if $f^{-1}(\mathcal{V})$ is a F-OS (resp. F-CS) set in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.
(ii) $\mathrm{F} \alpha$-continuous [1] if $f^{-1}(\mathcal{V})$ is a $\mathrm{F} \alpha$-OS (resp. $\mathrm{F} \alpha$-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.
(iii) Fg-continuous [4] if $f^{-1}(\mathcal{V})$ is a Fg-OS (resp. Fg-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.
(iv) F α g-continuous [9] if $f^{-1}(\mathcal{V}$) is a F α g-OS (resp. F α g-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.
(v) $\operatorname{Fg} \alpha$-continuous [8] if $f^{-1}(\mathcal{V})$ is a $\operatorname{Fg} \alpha$-OS (resp. Fg α-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.

Theorem 2.17:[1,4] Let $f:(X, \tau) \longrightarrow(Y, \psi)$ be a function. Then the following statements hold and the converse of each statements are not true:
(i) Every F-continuous function is a $\mathrm{F} \alpha$-continuous.
(ii) Every F-continuous function is a Fg-continuous.

Theorem 2.18:[8,9] Let $f:(X, \tau) \rightarrow(Y, \psi)$ be a function. Then the following statements hold and the converse of each statements are not true:
(i) Every Fg-continuous function is a $\operatorname{Fg} \alpha$-continuous.
(ii) Every $\mathrm{F} \alpha$-continuous function is a $\mathrm{F} \alpha \mathrm{g}$-continuous.
(iii) Every $\mathrm{F} \alpha \mathrm{g}$-continuous function is a $\mathrm{Fg} \alpha$-continuous.

3. Fuzzy g α g-Closed Sets

Definition 3.1: A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy generalized $\alpha \mathrm{g}$-closed set (briefly $\operatorname{Fg} \alpha \mathrm{g}$-CS) if $\operatorname{cl}(\mathcal{M}) \leq U$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a $\mathrm{F} \alpha \mathrm{g}$-OS in X. The family of all $\mathrm{Fg} \alpha \mathrm{g}$-CS of a FTS (X, τ) is denoted by $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{C}(X)$.
Example 3.2: Let $X=\{a, b\}$ and the F-set \mathcal{M} in X defined as follows: $\mathcal{M}(a)=0.5, \mathcal{M}(b)=0.5$. Let $\tau=\left\{0_{X}, \mathcal{M}, 1_{X}\right\}$ be a FTS. Then the F-sets $0_{X}, \mathcal{M}$ and 1_{X} are Fg αg-CS in X.

Definition 3.3: The intersection of all Fg $\alpha \mathrm{g}$-CS in a FTS (X, τ) containing \mathcal{M} is called fuzzy $\mathrm{g} \alpha \mathrm{g}$ closure of \mathcal{M} and is denoted by $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M}), \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})=\wedge\{\mathcal{N}: \mathcal{M} \leq \mathcal{N}, \mathcal{N}$ is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}\}$.

Theorem 3.4: In a FTS (X, τ), then the following statements are true:
(i) Every F-CS is a Fg $\alpha \mathrm{g}$-CS.
(ii) Every Fg αg-CS is a Fg-CS.
(iii) Every $\mathrm{Fg} \alpha \mathrm{g}$-CS is a $\mathrm{F} \alpha \mathrm{g}$-CS.
(iv) Every Fg $\alpha \mathrm{g}$-CS is a $\operatorname{Fg} \alpha$-CS.

Proof: (i) Let \mathcal{M} be a F-CS in a FTS (X, τ) and let \mathcal{U} be any F α g-OS containing \mathcal{M}. Then $\operatorname{cl}(\mathcal{M})=$ $\mathcal{M} \leq \mathcal{U}$. Hence \mathcal{M} is a Fg $\alpha \mathrm{g}$-CS.
(ii) Let \mathcal{M} be a Fgag-CS in a FTS (X, τ) and let \mathcal{U} be any F-OS containing \mathcal{M}. By theorem (2.14) part (i), \mathcal{U} is a Fg-OS in X. Since \mathcal{M} is a $\operatorname{Fg} \alpha$ g-CS, we have $\operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a Fg-CS.
(iii) Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any $\mathrm{F} \alpha$-OS containing \mathcal{M}. By theorem (2.14) part (iii), \mathcal{U} is a $\operatorname{F} \alpha \mathrm{g}$-OS in X. Since \mathcal{M} is a $\operatorname{Fg} \alpha \mathrm{g}$-CS, we have $\alpha \operatorname{cl}(\mathcal{M}) \leq \operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a F $\alpha \mathrm{g}$-CS.
(iv) Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any F-OS containing \mathcal{M}. By theorem (2.14) part (i), \mathcal{U} is a Fg-OS in X. Since \mathcal{M} is a $\operatorname{Fg} \alpha \mathrm{g}$-CS, we have $\alpha \operatorname{cl}(\mathcal{M}) \leq \operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a Fg α-CS.

The converse of the above theorem need not be true as shown in the following examples.
Example 3.5: Let $X=\{x, y, z\}$ and the F-sets \mathcal{M}, \mathcal{N} and \mathcal{O} from X to [0,1] be defined as:
$\mathcal{M}(x)=0.0, \mathcal{M}(y)=0.0, \mathcal{M}(z)=0.4 ; \mathcal{N}(x)=0.9, \mathcal{N}(y)=0.6, \mathcal{N}(z)=0.0 ; \mathcal{O}(x)=1.0$, $\mathcal{O}(y)=0.7, \mathcal{O}(z)=1.0$. Let $\tau=\left\{0_{X}, \mathcal{M}, \mathcal{N}, \mathcal{M} \vee \mathcal{N}, 1_{X}\right\}$ be a FTS. Then the F-set \mathcal{O} is a Fg $\alpha \mathrm{g}-\mathrm{CS}$ but not F-CS in X.

Example 3.6: Let $X=\{x, y, z\}$ and the F -sets $\mathcal{M}, \mathcal{N}, \mathcal{O}$ and \mathcal{P} from X to $[0,1]$ be defined as: $\mathcal{M}(x)=0.7, \mathcal{M}(y)=0.3, \mathcal{M}(z)=1.0 ; \mathcal{N}(x)=0.7, \mathcal{N}(y)=0.0, \mathcal{N}(z)=0.0 ; \mathcal{O}(x)=0.9$, $\mathcal{O}(y)=0.2, \mathcal{O}(z)=0.1 ; \mathcal{P}(x)=0.2, \mathcal{P}(y)=0.7, \mathcal{P}(z)=0.2$. Let $\tau=\left\{0_{X}, \mathcal{M}, \mathcal{N}, 1_{X}\right\}$ be a FTS. Then the F-set \mathcal{O} is a Fg-CS and hence $\mathrm{Fg} \alpha-\mathrm{CS}$, but not Fg α-CS in X. And the F-set \mathcal{P} is a F $\alpha \mathrm{g}$-CS but not Fg α g-CS in X.
Definition 3.7: A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy generalized $\alpha \mathrm{g}$-open set (briefly Fg $\alpha \mathrm{g}$-open set) iff $1_{X}-\mathcal{M}$ is a Fg $\alpha \mathrm{g}$-CS. The family of all $\operatorname{Fg} \alpha \mathrm{g}$-open sets of a FTS (X, τ) is denoted by Fg $\alpha \mathrm{g}-\mathrm{O}(X)$.

Example 3.8: By example (3.2). Then the F -sets $0_{X}, \mathcal{M}$ and 1_{X} are $\mathrm{Fg} \alpha \mathrm{g}-\mathrm{OS}$ in X.
Definition 3.9: The union of all $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS}$ in a FTS (X, τ) contained in \mathcal{M} is called fuzzy g $\alpha \mathrm{g}$ interior of \mathcal{M} and is denoted by $\alpha \alpha \mathrm{g}-\operatorname{int}(\mathcal{M}), \operatorname{g} \alpha \mathrm{g}-\operatorname{int}(\mathcal{M})=\vee\{\mathcal{N}: \mathcal{M} \geq \mathcal{N}, \mathcal{N}$ is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS}\}$.
Proposition 3.10: Let \mathcal{M} be any F-set in a FTS (X, τ). Then the following properties hold:
(i) $\operatorname{g} \alpha g-\operatorname{int}(\mathcal{M})=\mathcal{M}$ iff \mathcal{M} is a $\operatorname{Fg} \alpha g$-OS.
(ii) $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})=\mathcal{M}$ iff \mathcal{M} is a Fg $\alpha \mathrm{g}$-CS.
(iii) $\mathrm{g} \alpha \mathrm{g}-\operatorname{int}(\mathcal{M})$ is the largest $\mathrm{Fg} \alpha \mathrm{g}$-OS contained in \mathcal{M}.
(iv) $\operatorname{gag}-c l(\mathcal{M})$ is the smallest $\operatorname{Fg} \alpha \mathrm{g}$-CS containing \mathcal{M}.

Proof: (i), (ii), (iii) and (iv) are obvious.
Proposition 3.11: Let \mathcal{M} be any F-set in a FTS (X, τ). Then the following properties hold:
(i) $\operatorname{g\alpha g}-\operatorname{int}\left(1_{X}-\mathcal{M}\right)=1_{X}-(\operatorname{g} \alpha g-c l(\mathcal{M}))$,
(ii) $\operatorname{g\alpha g}-c l\left(1_{X}-\mathcal{M}\right)=1_{X}-(\operatorname{g} \alpha \operatorname{g}-\operatorname{int}(\mathcal{M}))$.

Proof: (i) By definition, $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})=\wedge\{\mathcal{N}: \mathcal{M} \leq \mathcal{N}, \mathcal{N}$ is a $\operatorname{Fg} \alpha \mathrm{g}$-CS $\}$
$1_{X}-(\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M}))=1_{X}-\wedge\{\mathcal{N}: \mathcal{M} \leq \mathcal{N}, \mathcal{N}$ is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}\}$
$=V\left\{1_{X}-\mathcal{N}: \mathcal{M} \leq \mathcal{N}, \mathcal{N}\right.$ is a Fg α g-CS $\}$
$=\mathrm{v}\left\{\mathcal{U}: 1_{X}-\mathcal{M} \geq \mathcal{U}, \mathcal{U}\right.$ is a Fg $\left.\alpha \mathrm{g}-\mathrm{OS}\right\}$

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

$$
=\operatorname{g} \alpha \mathrm{g}-\operatorname{int}\left(1_{X}-\mathcal{M}\right)
$$

(ii) The proof is similar to (i).

Theorem 3.12: Let (X, τ) be a FTS. If \mathcal{M} is a F-OS, then it is a Fg $\alpha g-O S$ in X.
Proof: Let \mathcal{M} be a F-OS in a FTS (X, τ), then $1_{X}-\mathcal{M}$ is a F-CS in X. By theorem (3.4) part (i), $1_{X}-\mathcal{M}$ is a Fg α g-CS. Hence \mathcal{M} is a Fg αg-OS in X.

Theorem 3.13: Let (X, τ) be a FTS. If \mathcal{M} is a Fg $\alpha g-O S$, then it is a Fg-OS in X.
Proof: Let \mathcal{M} be a Fgag-OS in a FTS (X, τ), then $1_{X}-\mathcal{M}$ is a Fg $\alpha g-\mathrm{CS}$ in X. By theorem (3.4) part (ii), $1_{X}-\mathcal{M}$ is a Fg-CS. Hence \mathcal{M} is a Fg-OS in X.

Lemma 3.14: Let (X, τ) be a FTS. If \mathcal{M} is a Fg α-OS, then it is a F $\alpha g-\mathrm{OS}$ (resp. Fg $\alpha-\mathrm{OS}$) in X.
Proof: Similar to above theorem.
Proposition 3.15: If \mathcal{M} and \mathcal{N} are $\operatorname{Fg} \alpha g$-CS in a $\operatorname{FTS}(X, \tau)$, then $\mathcal{M} \vee \mathcal{N}$ is a Fg $\alpha g-\mathrm{CS}$.
Proof: Let \mathcal{M} and \mathcal{N} be Fg α g-CS in a $\operatorname{FTS}(X, \tau)$ and let \mathcal{U} be any $\mathrm{F} \alpha \mathrm{g}-\mathrm{OS}$ containing \mathcal{M} and \mathcal{N}. Then $\mathcal{M} \vee \mathcal{N} \leq \mathcal{U}$. Then $\mathcal{M} \leq \mathcal{U}$ and $\mathcal{N} \leq \mathcal{U}$. Since \mathcal{M} and \mathcal{N} are Fgag-CS, $\operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$ and $\operatorname{cl}(\mathcal{N}) \leq \mathcal{U}$. Now, $\operatorname{cl}(\mathcal{M} \vee \mathcal{N})=\operatorname{cl}(\mathcal{M}) \vee \operatorname{cl}(\mathcal{N}) \leq \mathcal{U}$ and so $\operatorname{cl}(\mathcal{M} \vee \mathcal{N}) \leq \mathcal{U}$. Hence $\mathcal{M} \vee \mathcal{N}$ is a Fg $\alpha \mathrm{g}-\mathrm{CS}$.

Proposition 3.16: If \mathcal{M} and \mathcal{N} are $\operatorname{Fg} \alpha g-O S$ in a $\operatorname{FTS}(X, \tau)$, then $\mathcal{M} \wedge \mathcal{N}$ is a Fg $\alpha g-O S$.
Proof: Let \mathcal{M} and \mathcal{N} be Fg $\alpha g-0 S$ in a FTS (X, τ). Then $1_{X}-\mathcal{M}$ and $1_{X}-\mathcal{N}$ are Fg $\alpha g-\mathrm{CS}$. By proposition (3.15), $\left(1_{X}-\mathcal{M}\right) \vee\left(1_{X}-\mathcal{N}\right)$ is a Fg α-CS. Since $\left(1_{X}-\mathcal{M}\right) \vee\left(1_{X}-\mathcal{N}\right)=1_{X}-$ $(\mathcal{M} \wedge \mathcal{N})$. Hence $\mathcal{M} \wedge \mathcal{N}$ is a Fg α g-OS.
Proposition 3.17: If a F -set \mathcal{M} is $\mathrm{Fg} \alpha \mathrm{g}-\mathrm{CS}$ in a $\mathrm{FTS}(X, \tau)$, then $\operatorname{cl}(\mathcal{M})-\mathcal{M}$ contains no nonempty F-CS in X.

Proof: Let \mathcal{M} be a $\operatorname{Fg} \alpha g$-CS in a $\operatorname{FTS}(X, \tau)$ and let \mathcal{F} be any $\mathrm{F}-\mathrm{CS}$ in X such that $\mathcal{F} \leq \operatorname{cl}(\mathcal{M})-\mathcal{M}$. Since \mathcal{M} is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}$, we have $\operatorname{cl}(\mathcal{M}) \leq 1_{X}-\mathcal{F}$. This implies $\mathcal{F} \leq 1_{X}-\operatorname{cl}(\mathcal{M})$. Then $\mathcal{F} \leq$ $\operatorname{cl}(\mathcal{M}) \wedge\left(1_{X}-\operatorname{cl}(\mathcal{M})\right)=0_{X}$. Thus, $\mathcal{F}=0_{X}$. Hence $\operatorname{cl}(\mathcal{M})-\mathcal{M}$ contains no non-empty F-CS in X.

Proposition 3.18: If a F -set \mathcal{M} is $\mathrm{Fg} \alpha \mathrm{g}-\mathrm{CS}$ in a $\mathrm{FTS}(X, \tau)$, then $\operatorname{cl}(\mathcal{M})-\mathcal{M}$ contains no nonempty F α g-CS in X.

Proof: Let \mathcal{M} be a $\operatorname{Fg} \alpha$ g-CS in a FTS (X, τ) and let \mathcal{D} be any $\mathrm{F} \alpha \mathrm{g}$-CS in X such that $\mathcal{D} \leq \operatorname{cl}(\mathcal{M})-$ \mathcal{M}. Since \mathcal{M} is a Fgag-CS, we have $\operatorname{cl}(\mathcal{M}) \leq 1_{X}-\mathcal{D}$. This implies $\mathcal{D} \leq 1_{X}-\operatorname{cl}(\mathcal{M})$. Then $\mathcal{D} \leq \operatorname{cl}(\mathcal{M}) \wedge\left(1_{X}-\operatorname{cl}(\mathcal{M})\right)=0_{X}$. Thus, $\mathcal{D}=0_{X}$. Hence $\operatorname{cl}(\mathcal{M})-\mathcal{M}$ contains no non-empty F α g-CS in X.
Theorem 3.19: If \mathcal{M} is a F α g-OS and a Fg αg-CS in a FTS (X, τ), then \mathcal{M} is a F-CS in X.
Proof: Suppose that \mathcal{M} is a $\mathrm{F} \alpha g-\mathrm{OS}$ and a $\mathrm{Fg} \alpha \mathrm{g}-\mathrm{CS}$ in a $\mathrm{FTS}(X, \tau)$, then $\operatorname{cl}(\mathcal{M}) \leq \mathcal{M}$ and since $\mathcal{M} \leq \operatorname{cl}(\mathcal{M})$. Thus, $\operatorname{cl}(\mathcal{M})=\mathcal{M}$. Hence \mathcal{M} is a F-CS.

Theorem 3.20: If \mathcal{M} is a $\operatorname{Fg} \alpha g-\operatorname{CS}$ in a $\operatorname{FTS}(X, \tau)$ and $\mathcal{M} \leq \mathcal{N} \leq \operatorname{cl}(\mathcal{M})$, then \mathcal{N} is a $\operatorname{Fg} \alpha g$-CS in X.

Proof: Suppose that \mathcal{M} is a Fg αg-CS in a FTS (X, τ). Let \mathcal{U} be a $\operatorname{F} \alpha g-O S$ in X such that $\mathcal{N} \leq \mathcal{U}$. Then $\mathcal{M} \leq \mathcal{U}$. Since \mathcal{M} is a Fg αg-CS, it follows that $\operatorname{cl}(\mathcal{M}) \leq \mathcal{U}$. Now, $\mathcal{N} \leq \operatorname{cl}(\mathcal{M})$ implies $\operatorname{cl}(\mathcal{N}) \leq \operatorname{cl}(\operatorname{cl}(\mathcal{M}))=\operatorname{cl}(\mathcal{M})$. Thus, $\operatorname{cl}(\mathcal{N}) \leq \mathcal{U}$. Hence \mathcal{N} is a $\operatorname{Fg} \alpha g-\mathrm{CS}$.

Theorem 3.21: If \mathcal{M} is a $\operatorname{Fg} \alpha g-O S$ in a $\operatorname{FTS}(X, \tau)$ and $\operatorname{int}(\mathcal{M}) \leq \mathcal{N} \leq \mathcal{M}$, then \mathcal{N} is a Fg αg - OS in X.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Proof: Suppose that \mathcal{M} is a Fg α g-OS in a FTS (X, τ) and $\operatorname{int}(\mathcal{M}) \leq \mathcal{N} \leq \mathcal{M}$. Then $1_{X}-\mathcal{M}$ is a $\operatorname{Fg} \alpha \mathrm{g}$-CS and $1_{X}-\mathcal{M} \leq 1_{X}-\mathcal{N} \leq \operatorname{cl}\left(1_{X}-\mathcal{M}\right)$. Then $1_{X}-\mathcal{N}$ is a Fg α-CS by theorem (3.20). Hence, \mathcal{N} is a Fg α g-OS.
Theorem 3.22: A F-set \mathcal{M} is $\operatorname{Fg} \alpha g$-OS iff $\mathcal{C} \leq \operatorname{int}(\mathcal{M})$ where \mathcal{C} is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}$ and $\mathcal{C} \leq \mathcal{M}$.
Proof: Suppose that $\mathcal{C} \leq \operatorname{int}(\mathcal{M})$ where \mathcal{C} is a $\operatorname{Fg} \alpha$ g-CS and $\mathcal{C} \leq \mathcal{M}$. Then $1_{X}-\mathcal{M} \leq 1_{X}-\mathcal{C}$ and $1_{X}-\mathcal{C}$ is a $\alpha \alpha$ g-OS by lemma (3.14). Now, $\operatorname{cl}\left(1_{X}-\mathcal{M}\right)=1_{X}-\operatorname{int}(\mathcal{M}) \leq 1_{X}-\mathcal{C}$. Then $1_{X}-\mathcal{M}$ is a $\operatorname{Fg} \alpha \mathrm{g}$-CS. Hence \mathcal{M} is a Fgog-OS.
Conversely, let \mathcal{M} be a Fg $\alpha \mathrm{g}$-OS and \mathcal{C} be a Fg $\alpha \mathrm{g}$-CS and $\mathcal{C} \leq \mathcal{M}$. Then $1_{X}-\mathcal{M} \leq 1_{X}-\mathcal{C}$. Since $1_{X}-\mathcal{M}$ is a Fg α g-CS and $1_{X}-\mathcal{C}$ is a F α g-OS, we have $\operatorname{cl}\left(1_{X}-\mathcal{M}\right) \leq 1_{X}-\mathcal{C}$. Then $\mathcal{C} \leq$ $\operatorname{int}(\mathcal{M})$.

Definition 3.23: A F-set \mathcal{M} in a FTS (X, τ) is said to be a fuzzy $\mathrm{g} \alpha \mathrm{g}$-neighbourhood (briefly Fg $\alpha \mathrm{g}$ nhd) of a fuzzy point x_{λ} if there exists a Fg αg-OS \mathcal{N} such that $x_{\lambda} \in \mathcal{N} \leq \mathcal{M}$. A Fg α g-nhd \mathcal{M} is said to be a Fg α g-open-nhd (resp. Fg α g-closed-nhd) iff \mathcal{M} is a Fg α g-OS (resp. Fg α g-CS). A F-set \mathcal{M} in a FTS (X, τ) is said to be a fuzzy $\alpha \alpha g-q$-neighbourhood (briefly Fg $\alpha \mathrm{g}-q$-nhd) of a fuzzy point $x_{\lambda}($ resp. F-set $\mathcal{N})$ if there exists a $\operatorname{Fg} \alpha \operatorname{g}-\mathrm{OS} \mathcal{A}$ in a $\operatorname{FTS}(X, \tau)$ such that $x_{\lambda} q_{\mathcal{A}} \leq \mathcal{M}\left(\right.$ resp. $\mathcal{N} q_{\mathcal{A}} \leq$ $\mathcal{M})$.

Theorem 3.24: A F-set \mathcal{M} of a FTS (X, τ) is Fg α g-CS iff $\mathcal{M} \bar{q} \mathcal{C} \Rightarrow c l(\mathcal{M}) \bar{q} \mathcal{C}$, for every F $\alpha \mathrm{g}$-CS \mathcal{C} of X.

Proof: Necessity. Let \mathcal{C} be a F $\alpha \mathrm{g}$-CS and $\mathcal{M} \bar{q} \mathcal{C}$. Then $\mathcal{M} \leq 1_{X}-\mathcal{C}$ and $1_{X}-\mathcal{C}$ is a $\alpha \alpha \mathrm{g}-\mathrm{OS}$ in X which implies that $\operatorname{cl}(\mathcal{M}) \leq 1_{X}-\mathcal{C}$ as \mathcal{M} is a Fg α g-CS. Hence, $c l(\mathcal{M}) \bar{q} \mathcal{C}$.
Sufficiency. Let \mathcal{U} be a F $\alpha \mathrm{g}$-OS of a FTS (X, τ) such that $\mathcal{M} \leq \mathcal{U}$. Then $\mathcal{M} \bar{q}\left(1_{X}-\mathcal{U}\right)$ and $1_{X}-\mathcal{U}$ is a $\mathrm{F} \alpha \mathrm{g}$-CS in X. By hypothesis, $c l(\mathcal{M}) \bar{q}\left(1_{X}-\mathcal{U}\right)$ implies $c l(\mathcal{M}) \leq \mathcal{U}$. Hence, \mathcal{M} is a Fg $\alpha \mathrm{g}$-CS in X.

Theorem 3.25: Let x_{λ} and \mathcal{M} be a fuzzy point and a F-set respectively in a FTS (X, τ). Then $x_{\lambda} \in \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$ iff every Fg $\alpha \mathrm{g}-q$-nhd of x_{λ} is q-coincident with \mathcal{M}.
Proof: We prove by contradiction. Let $x_{\lambda} \in \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})$. Suppose there exists a $\operatorname{Fg} \alpha \mathrm{g}-q$-nhd \mathcal{A} of x_{λ} such that $\mathcal{A} \bar{q} \mathcal{M}$. Since \mathcal{A} is a Fgag-q-nhd of x_{λ}, there exists a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{B}$ in X such that $x_{\lambda} q \mathcal{B} \leq \mathcal{A}$ whish gives that $\mathcal{B} \bar{q} \mathcal{M}$ and hence $\mathcal{M} \leq 1_{X}-\mathcal{B}$. Then $\operatorname{gag} \operatorname{cl}(\mathcal{M}) \leq 1_{X}-\mathcal{B}$, as $1_{X}-\mathcal{B}$ is a Fg $\alpha \mathrm{g}$-CS. Since $x_{\lambda} \notin 1_{X}-\mathcal{B}$, we have $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})$, a contradiction. Thus every Fg α - q-nhd of x_{λ} is q-coincident with \mathcal{M}.
Conversely, suppose $x_{\lambda} \notin \operatorname{g} \alpha \operatorname{g}-\operatorname{cl}(\mathcal{M})$. Then there exists a $\operatorname{Fg} \alpha \mathrm{g}$-CS \mathcal{N} such that $\mathcal{N} \leq \mathcal{N}$ and $x_{\lambda} \notin \mathcal{N}$. Then we have $x_{\lambda} q\left(1_{X}-\mathcal{N}\right)$ and $\mathcal{M} \bar{q}\left(1_{X}-\mathcal{N}\right)$, a contradiction. Hence $x_{\lambda} \in \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})$.
Proposition 3.26: Let \mathcal{M} and \mathcal{N} be two F -sets in a FTS (X, τ). Then the following properties hold:
(i) $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}\left(0_{X}\right)=0_{X}, \operatorname{g} \alpha \mathrm{~g}-c l\left(1_{X}\right)=1_{X}$.
(ii) $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$ is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}$ in X.
(iii) $\operatorname{g\alpha g}-c l(\mathcal{M}) \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{N})$ when $\mathcal{M} \leq \mathcal{N}$.
(iv) $\mathcal{A q} \mathcal{M}$ iff $\mathcal{A q g} \alpha \operatorname{g}-c l(\mathcal{M})$, when \mathcal{A} is a $\mathrm{Fg} \alpha \mathrm{g}$-OS in X.
(v) $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})=\mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-c l(\mathcal{M}))$.
(vi) $\operatorname{g\alpha g}-c l(\mathcal{M} \wedge \mathcal{N}) \leq \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M}) \wedge \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{N})$.
(vii) $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M} \vee \mathcal{N})=\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \vee \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{N})$.

Proof: (i) and (ii) are obvious.
(iii) Suppose that $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{N})$. By theorem (3.25), there is a $\operatorname{Fg} \alpha \mathrm{g}-q$-nhd \mathcal{B} of a fuzzy point x_{λ} such that $\mathcal{B} \bar{q} \mathcal{N}$, so there is a $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{A} such that $x_{\lambda} q_{\mathcal{A}} \leq \mathcal{B}$ and $\mathcal{A} \bar{q} \mathcal{N}$. Since $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{A} \bar{q} \mathcal{M}$. Hence $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$ by theorem (3.25). This shows that $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{N})$.
(iv) Let \mathcal{A} be a Fg $\alpha \mathrm{g}$-OS in X. Suppose that $\mathcal{A} \bar{q} \mathcal{M}$, then $\mathcal{M} \leq 1_{X}-\mathcal{A}$. Since $1_{X}-\mathcal{A}$ is a Fg $\alpha \mathrm{g}-\mathrm{CS}$ and by a part (iii), $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \leq \operatorname{g} \alpha \mathrm{g}-c l\left(1_{X}-\mathcal{A}\right)=1_{X}-\mathcal{A}$. Hence, $\mathcal{A} \bar{q} \operatorname{g} \alpha \mathrm{~g}-c l(\mathcal{M})$.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Conversely, suppose that $\mathcal{A} \bar{q} \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M})$. Then $\operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M}) \leq 1_{X}-\mathcal{A}$. Since $\mathcal{M} \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$, we have $\mathcal{M} \leq 1_{X}-\mathcal{A}$. Hence $\mathcal{A} \bar{q} \mathcal{M}$. Thus $\mathcal{A q} \mathcal{M}$ if and only if $\mathcal{A q g} \alpha \mathrm{g}-c l(\mathcal{M})$.
(v) Since $\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \leq \mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-c l(\mathcal{M}))$. We prove that $\operatorname{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-c l(\mathcal{M})) \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$. Suppose that $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-\mathrm{cl}(\mathcal{M})$. Then by theorem (3.25), there exists a $\operatorname{Fg} \alpha \mathrm{g}-q$-nhd \mathcal{B} of a fuzzy point x_{λ} such that $\mathcal{B} \bar{q} \mathcal{M}$ and so there is a $\operatorname{Fg} \alpha$-OS \mathcal{A} in X such that $x_{\lambda} q \mathcal{A} \leq \mathcal{B}$ and $\mathcal{A} \bar{q} \mathcal{M}$. By a part (iv), $\mathcal{A} \bar{q} g \alpha \mathrm{~g}-c l(\mathcal{M})$. Then by theorem (3.25), $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-c l(\mathcal{M}))$. Thus $\mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-$ $c l(\mathcal{M})) \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M})$. Hence $\mathrm{g} \alpha \mathrm{g}-c l(\mathcal{M})=\mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-c l(\mathcal{M}))$.
(vi) Since $\mathcal{M} \wedge \mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \wedge \mathcal{N} \leq \mathcal{N}$. Then $\operatorname{g\alpha g}-c l(\mathcal{M} \wedge \mathcal{N}) \leq \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M})$ and $\operatorname{g} \alpha \mathrm{g}$ $\operatorname{cl}(\mathcal{M} \wedge \mathcal{N}) \leq \operatorname{gag}-c l(\mathcal{N})$ by a part (iii). Hence, $\operatorname{g\alpha g}-c l(\mathcal{M} \wedge \mathcal{N}) \leq \operatorname{gag}-c l(\mathcal{M}) \wedge \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{N})$.
(vii) Since $\mathcal{M} \leq \mathcal{M} \vee \mathcal{N}$ and $\mathcal{N} \leq \mathcal{M} \vee \mathcal{N}$. By a part (iii), we have $\operatorname{g\alpha g}-c l(\mathcal{M}) \leq \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M} \vee$ $\mathcal{N})$ and $\operatorname{g\alpha g}-c l(\mathcal{N}) \leq \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M} \vee \mathcal{N})$. Then $\operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M}) \vee \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{N}) \leq \operatorname{g} \alpha \operatorname{g}-c l(\mathcal{M} \vee \mathcal{N})$.
Conversely, let $x_{\lambda} \in \operatorname{gag}-c l(\mathcal{M} \vee \mathcal{N})$. Then by theorem (3.25), there exists a $\operatorname{Fg} \alpha \mathrm{g}-q-\mathrm{nhd} \mathcal{A}$ of a fuzzy point x_{λ} such that $\mathcal{A q}(\mathcal{M} \vee \mathcal{N})$. By proposition (2.2), either $\mathcal{A q \mathcal { N }}$ or $\mathcal{A q} \mathcal{N}$. Then by theorem (3.25), $x_{\lambda} \in \operatorname{g\alpha g}-c l(\mathcal{M})$ or $x_{\lambda} \in \operatorname{g\alpha g}-c l(\mathcal{N})$. That is $x_{\lambda} \in \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \vee \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{N})$. Then $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M} \vee \mathcal{N}) \leq \operatorname{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{M}) \vee \mathrm{g} \alpha \mathrm{g}-\operatorname{cl}(\mathcal{N})$. Hence, $\quad \operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M} \vee \mathcal{N})=\operatorname{g} \alpha \mathrm{g}-c l(\mathcal{M}) \vee \mathrm{g} \alpha \mathrm{g}-$ $\operatorname{cl}(\mathcal{N})$.

Proposition 3.27: Let \mathcal{M} and \mathcal{N} be two F-sets in a FTS (X, τ). Then the following properties hold:
(i) $\operatorname{g\alpha g}-\operatorname{int}\left(0_{X}\right)=0_{X}, \operatorname{g\alpha g}-\operatorname{int}\left(1_{X}\right)=1_{X}$.
(ii) $\operatorname{g} \alpha g-\operatorname{int}(\mathcal{M})$ is a $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS}$ in X.
(iii) $\operatorname{g\alpha g} \operatorname{-int}(\mathcal{M}) \leq \operatorname{g} \alpha \operatorname{g}-\operatorname{int}(\mathcal{N})$ when $\mathcal{M} \leq \mathcal{N}$.
(iv) $\operatorname{g} \alpha \mathrm{g}-\operatorname{int}(\mathcal{M})=\operatorname{g} \alpha \mathrm{g}-\operatorname{int}(\mathrm{g} \alpha \mathrm{g}-\operatorname{int}(\mathcal{M}))$.
(v) $\operatorname{g\alpha g}-\operatorname{int}(\mathcal{M} \wedge \mathcal{N})=\operatorname{g\alpha g}-\operatorname{int}(\mathcal{M}) \wedge \operatorname{g} \alpha g-\operatorname{int}(\mathcal{N})$.
(vi) $\operatorname{g\alpha g}-\operatorname{int}(\mathcal{M} \vee \mathcal{N}) \geq \operatorname{g} \alpha \operatorname{g}-\operatorname{int}(\mathcal{M}) \vee \operatorname{g} \alpha \operatorname{g}-\operatorname{int}(\mathcal{N})$.

Proof: Obvious.
Remark 3.28: The following diagram shows the relations among the different types of weakly F-CS that were studied in this section:

4. Fuzzy gag-Continuous Functions

Definition 4.1: A function $f:(X, \tau) \rightarrow(Y, \psi)$ is said to be a fuzzy $\mathrm{g} \alpha \mathrm{g}$-continuous (briefly $\mathrm{Fg} \alpha \mathrm{g}$ continuous) if $f^{-1}(\mathcal{V})$ is a Fg α-CS in X for every F-CS \mathcal{V} in Y.

Proposition 4.2: Let (X, τ) and (Y, ψ) be FTS, and $f:(X, \tau) \rightarrow(Y, \psi)$ be a function. Then f is a Fg $\alpha \mathrm{g}$-continuous function iff $f^{-1}(\mathcal{V})$ is a Fg α-OS in X, for every F-OS \mathcal{V} in Y.

Proof: Let \mathcal{V} be a F-OS in Y. Then $1_{Y}-\mathcal{V}$ is a F-CS in Y, so $f^{-1}\left(1_{Y}-\mathcal{V}\right)=1_{X}-f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-CS in X. Thus, $f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-OS in X. The proof of the converse is obvious.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Theorem 4.3: Every $\mathrm{Fg} \alpha \mathrm{g}$-continuous function is a $\mathrm{F} \alpha \mathrm{g}$-continuous.
Proof: Let $f:(X, \tau) \rightarrow(Y, \psi)$ be a Fg α g-continuous function and let \mathcal{V} be a F-CS in Y. Since f is a Fg α g-continuous, $f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-CS in X. By theorem (3.4) part (iii), $f^{-1}(\mathcal{V})$ is a F $\alpha \mathrm{g}$-CS in X. Thus, f is a $\mathrm{F} \alpha \mathrm{g}$-continuous.

Theorem 4.4: Every $\operatorname{Fg} \alpha g$-continuous function is a $\operatorname{Fg} \alpha$-continuous.
Proof: Let $f:(X, \tau) \rightarrow(Y, \psi)$ be a Fg α g-continuous function and let \mathcal{V} be a F-CS in Y. Since f is a Fg $\alpha \mathrm{g}$-continuous, $f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-CS in X. By theorem (3.4) part (iv), $f^{-1}(\mathcal{V})$ is a $\operatorname{Fg} \alpha$-CS in X. Thus, f is a $\mathrm{Fg} \alpha$-continuous.

The converse of the above theorems need not be true as shown in the following example.
Example 4.5: Let $X=\{x, y\}, Y=\{u, v\}$. F-set \mathcal{M} is defined as: $\mathcal{M}(x)=0.4, \mathcal{M}(y)=0.6$.
Let $\tau=\left\{0_{X}, \mathcal{M}, 1_{X}\right\}$ and $\psi=\left\{0_{Y}, 1_{Y}\right\}$ be FTS. Then the function $f:(X, \tau) \rightarrow(Y, \psi)$ defined by $f(x)=u, f(y)=v$ is a $\mathrm{F} \alpha \mathrm{g}$-continuous and hence $\mathrm{Fg} \alpha$-continuous but not $\mathrm{Fg} \alpha \mathrm{g}$-continuous.

Theorem 4.6: If $f:(X, \tau) \rightarrow(Y, \psi)$ is a Fg α g-continuous function then for each fuzzy point x_{λ} of X and $\mathcal{N} \in \psi$ such that $f\left(x_{\lambda}\right) \in \mathcal{N}$, there exists a Fg $\alpha \operatorname{g}-\operatorname{OS} \mathcal{M}$ of X such that $x_{\lambda} \in \mathcal{M}$ and $f(\mathcal{M}) \leq$ \mathcal{N}.

Proof: Let x_{λ} be a fuzzy point of X and $\mathcal{N} \in \psi$ such that $f\left(x_{\lambda}\right) \in \mathcal{N}$. Take $\mathcal{M}=f^{-1}(\mathcal{N})$. Since $1_{Y}-\mathcal{N}$ is a F-CS in Y and f is a $\operatorname{Fg} \alpha$ g-continuous function, we have $f^{-1}\left(1_{Y}-\mathcal{N}\right)=1_{X}-$ $f^{-1}(\mathcal{N})$ is a Fg $\alpha \mathrm{g}$-CS in X. This gives $\mathcal{M}=f^{-1}(\mathcal{N})$ is a Fg α g-OS in X and $x_{\lambda} \in \mathcal{M}$ and $f(\mathcal{M})=$ $f\left(f^{-1}(\mathcal{N})\right) \leq \mathcal{N}$.

Theorem 4.7: If $f:(X, \tau) \rightarrow(Y, \psi)$ is a Fg α g-continuous function then for each fuzzy point x_{λ} of X and $\mathcal{N} \in \psi$ such that $f\left(x_{\lambda}\right) q \mathcal{N}$, there exists a $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{M} of X such that $x_{\lambda} q \mathcal{M}$ and $f(\mathcal{M}) \leq$ \mathcal{N}.

Proof: Let x_{λ} be a fuzzy point of X and $\mathcal{N} \in \psi$ such that $f\left(x_{\lambda}\right) q \mathcal{N}$. Take $\mathcal{M}=f^{-1}(\mathcal{N})$. By above theorem (4.6), \mathcal{M} is a Fg $\alpha \mathrm{g}$-OS in X and $x_{\lambda} q \mathcal{M}$ and $f(\mathcal{M})=f\left(f^{-1}(\mathcal{N})\right) \leq \mathcal{N}$.
Definition 4.8: A function $f:(X, \tau) \rightarrow(Y, \psi)$ is said to be a fuzzy $g \alpha$ g-irresolute (briefly Fg α girresolute) if $f^{-1}(\mathcal{V})$ is a Fg α-CS in X for every Fg α g-CS \mathcal{V} in Y.

Proposition 4.9: Let (X, τ) and (Y, ψ) be FTS, and $f:(X, \tau) \rightarrow(Y, \psi)$ be a function. Then f is a Fg α g-irresolute function iff $f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-OS in X, for every Fg $\alpha \mathrm{g}$-OS \mathcal{V} in Y.
Proof: Let \mathcal{V} be a Fg α g-OS in Y. Then $1_{Y}-\mathcal{V}$ is a Fg α-CS in Y, so $f^{-1}\left(1_{Y}-\mathcal{V}\right)=1_{X}-f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-CS in X. Thus, $f^{-1}(\mathcal{V})$ is a Fg α-OS in X. The proof of the converse is obvious.

Theorem 4.10: Every Fg α g-irresolute function is a Fg αg-continuous.
Proof: Let $f:(X, \tau) \rightarrow(Y, \psi)$ be a Fg α g-irresolute function and let \mathcal{V} be a F-CS in Y, by theorem (3.4) part (i), then \mathcal{V} is a Fg α-CS in Y. Since f is a Fg α g-irresolute, then $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Thus, f is a Fg α g-continuous.

The following example shows that the converse of the above theorem not be true.
Example 4.11: Let $X=\{x, y, z\}, Y=\{u, v, w\}$. F-sets \mathcal{M} and \mathcal{N} are defined as follows:
$\mathcal{M}(x)=0.7, \mathcal{M}(y)=0.2, \mathcal{M}(z)=0.1 ; \mathcal{N}(u)=0.1, \mathcal{N}(v)=0.7, \mathcal{N}(w)=0.2$.
Let $\tau=\left\{0_{X}, \mathcal{M}, 1_{X}\right\}$ and $\psi=\left\{0_{Y}, \mathcal{N}, 1_{Y}\right\}$ be FTS. Then the function $f:(X, \tau) \longrightarrow(Y, \psi)$ defined by $f(x)=v, f(y)=w, f(z)=u$ is a Fg α g-continuous and it is not a Fg α g-irresolute.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Definition 4.12: A FTS (X, τ) is said to be a fuzzy $T_{\mathrm{g} \alpha \mathrm{g}}$-space (briefly $\mathrm{F}_{\mathrm{g} \alpha \mathrm{g}}$-space) if every $\mathrm{Fg} \alpha \mathrm{g}$ CS in it is a F-CS.

Proposition 4.13: Every $\mathrm{F} T_{\frac{1}{2}}$-space is a $\mathrm{F} T_{\mathrm{g} \alpha \mathrm{g}}$-space.
Proof: Let (X, τ) be a $\mathrm{FT}_{\frac{1}{2}}$-space and let \mathcal{M} be a $\operatorname{Fg} \alpha \mathrm{g}$-CS in X. Then \mathcal{M} is a Fg -CS, by theorem (3.4) part (ii). Since (X, τ) is a $\mathrm{F}_{\frac{1}{2}}$-space, then \mathcal{M} is a F -CS in X. Hence (X, τ) is a $\mathrm{F} T_{\mathrm{g} \alpha \mathrm{g}}$-space.

The following example shows that the converse of the above proposition not be true.
Example 4.14: Let $X=\{x, y, z\}$ and the F -sets \mathcal{M} and \mathcal{N} from X to $[0,1]$ be defined as:
$\mathcal{M}(x)=0.7, \mathcal{M}(y)=0.3, \mathcal{M}(z)=1.0 ; \mathcal{N}(x)=0.7, \mathcal{N}(y)=0.0, \mathcal{N}(z)=0.0$.
Let $\tau=\left\{0_{X}, \mathcal{M}, \mathcal{N}, 1_{X}\right\}$ be a FTS. Then (X, τ) is a $T_{\mathrm{g} \alpha \mathrm{g}}$-space but not $\mathrm{FT}_{\frac{1}{2}}$-space.
Theorem 4.15: If $f_{1}:(X, \tau) \rightarrow(Y, \psi)$ is a Fg α g-continuous function and $f_{2}:(Y, \psi) \rightarrow(Z, \rho)$ is a Fg-continuous function and (Y, ψ) is a $\mathrm{FT}_{\frac{1}{2}}$-space. Then $f_{2} \circ f_{1}:(X, \tau) \rightarrow(Z, \rho)$ is a Fg α gcontinuous function.

Proof: Let \mathcal{W} be a F-CS in Z. Since f_{2} is a Fg-continuous function and (Y, ψ) is a $\mathrm{FT}_{\frac{1}{2} \text {-space, }}$ $f_{2}^{-1}(\mathcal{W})$ is a F-CS in Y. Since f_{1} is a Fg $\alpha \mathrm{g}$-continuous function, $f_{1}^{-1}\left(f_{2}^{-1}(\mathcal{W})\right)$ is a Fg $\alpha \mathrm{g}$-CS in X. Thus, $f_{2} \circ f_{1}$ is a Fg $\alpha \mathrm{g}$-continuous.
Theorem 4.16: Let (X, τ) and (Y, ψ) be FTS, and $f:(X, \tau) \rightarrow(Y, \psi)$ be a function:
(i) If (X, τ) is a $\mathrm{FT}_{\frac{1}{2}}$-space then f is a Fg -continuous iff it is a $\mathrm{Fg} \alpha \mathrm{g}$-continuous.
(ii) If (X, τ) is a $\mathrm{F}_{\mathrm{g} \alpha \mathrm{g}}$-space then f is a F -continuous iff it is a $\mathrm{Fg} \alpha \mathrm{g}$-continuous.

Proof: (i) Let \mathcal{V} be any F-CS in Y. Since f is a Fg-continuous, $f^{-1}(\mathcal{V})$ is a $\operatorname{Fg}-\mathrm{CS}$ in X. By (X, τ) is a FT $T_{\frac{1}{2}}$-space, which implies, $f^{-1}(\mathcal{V})$ is a F-CS. By theorem (3.4) part (i), $f^{-1}(\mathcal{V})$ is a Fg $\alpha \mathrm{g}$-CS in X. Hence f is a $\mathrm{Fg} \alpha \mathrm{g}$-continuous.
Conversely, suppose that f is a Fg α g-continuous. Let \mathcal{V} be any F-CS in Y. Then $f^{-1}(\mathcal{V})$ is a Fg α gCS in X. By theorem (3.4) part (ii), $f^{-1}(\mathcal{V})$ is a Fg-CS in X. Hence f is a Fg-continuous.
(ii) Let \mathcal{V} be any F-CS in Y. Since f is a F-continuous, $f^{-1}(\mathcal{V})$ is a F-CS in X. By theorem (3.4) part (i), $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Hence f is a Fg α g-continuous.

Conversely, suppose that f is a $\operatorname{Fg} \alpha$ g-continuous. Let \mathcal{V} be any F-CS in Y. Then $f^{-1}(\mathcal{V})$ is a $\operatorname{Fg} \alpha$ gCS in X. By (X, τ) is a $T_{\mathrm{g} \alpha \mathrm{g}}$-space, which implies $f^{-1}(\mathcal{V})$ is a F -CS in X. Hence f is a Fcontinuous.

Remark 4.17: The following diagram shows the relations among the different types of weakly Fcontinuous functions that were studied in this section:

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

5. Fuzzy g α g- $\boldsymbol{R}_{\boldsymbol{i}}$-Spaces, $i=0,1$

Definition 5.1: The intersection of all $\mathrm{Fg} \alpha \mathrm{g}$-open subset of a $\mathrm{FTS}(X, \tau)$ containing \mathcal{A} is called the fuzzy $\operatorname{g} \alpha \mathrm{g}$-kernel of \mathcal{A} (briefly $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}(\mathcal{A})$), this means $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}(\mathcal{A})=\wedge\{\mathcal{M}: \mathcal{M} \in \operatorname{Fg} \alpha \mathrm{g}-\mathrm{O}(X)$ and $\mathcal{A} \leq \mathcal{M}\}$.
Definition 5.2: Let x_{λ} be a fuzzy point of a FTS (X, τ). The fuzzy $\mathrm{g} \alpha \mathrm{g}$-kernel of x_{λ}, denoted by $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is defined to be the $\mathrm{F}-\mathrm{set} \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\wedge\left\{\mathcal{M}: \mathcal{M} \in \operatorname{Fg} \alpha \mathrm{g}-\mathrm{O}(X)\right.$ and $\left.x_{\lambda} \in \mathcal{M}\right\}$.
Definition 5.3: In a FTS (X, τ), a F-set \mathcal{A} is said to be weakly ultra fuzzy g α g-separated from \mathcal{B} if there exists a Fg $\alpha \mathrm{g}$-OS \mathcal{M} such that $\mathcal{M} \wedge \mathcal{B}=0_{X}$ or $\mathcal{A} \wedge \operatorname{g} \alpha \mathrm{g}$ - $\operatorname{cl}(\mathcal{B})=0_{X}$.
By definition (5.3), we have the following: For every two distinct fuzzy points x_{λ} and y_{μ} of a FTS (X, τ),
(i) $\mathrm{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\left\{y_{\mu}:\left\{y_{\mu}\right\}\right.$ is not weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left.\left\{x_{\lambda}\right\}\right\}$.
(ii) $\operatorname{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{y_{\mu}:\left\{x_{\lambda}\right\}\right.$ is not weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left.\left\{y_{\mu}\right\}\right\}$.

Lemma 5.4: Let (X, τ) be a FTS, then $y_{\mu} \in \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ iff $x_{\lambda} \in \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$ for each $x \neq y \in$ X.

Proof: Suppose that $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$. Then there exists a $\operatorname{Fg} \alpha \mathrm{g}$-OS U containing x_{λ} such that $y_{\mu} \notin \mathcal{U}$. Therefore, we have $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$. The converse part can be proved in a similar way.

Definition 5.5: A FTS (X, τ) is said to be fuzzy $\mathrm{g} \alpha \mathrm{g}-R_{0}$-space ($\mathrm{Fg} \alpha \mathrm{g}-R_{0}$-space, for short) if for each $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{U}$ and $x_{\lambda} \in \mathcal{U}$, then $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$.
Definition 5.6: A FTS (X, τ) is said to be fuzzy $\mathrm{g} \alpha \mathrm{g}$ - R_{1}-space ($\mathrm{Fg} \alpha \mathrm{g}$ - R_{1}-space, for short) if for each two distinct fuzzy points x_{λ} and y_{μ} of X with $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$, there exist disjoint Fg α g-OS \mathcal{U}, \mathcal{V} such that $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$ and $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{V}$.
Theorem 5.7: Let (X, τ) be a FTS. Then (X, τ) is a Fg $\alpha \mathrm{g}$ - R_{0}-space iff $\mathrm{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, for each $x \in X$.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-R_{0}$-space. If $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, for each $x \in X$, then there exist another fuzzy point $y \neq x$ such that $y_{\mu} \in \mathrm{g} \alpha \mathrm{g}-\operatorname{cl}\left(\left\{x_{\lambda}\right\}\right)$ and $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ this means there exist an $U_{x_{\lambda}}$ Fg $\alpha \mathrm{g}-\mathrm{OS}, y_{\mu} \notin U_{x_{\lambda}}$ implies $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \nsubseteq U_{x_{\lambda}}$ this contradiction. Thus $g \alpha \mathrm{~g}-$ $c l\left(\left\{x_{\lambda}\right\}\right)=\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$.
Conversely, let $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, for each $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{U}, x_{\lambda} \in \mathcal{U}$, then $\mathrm{g} \alpha \mathrm{g}-$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$ [by definition (5.1)]. Hence by definition (5.5), (X, τ) is a Fg $\alpha g-$ R_{0}-space.
Theorem 5.8: A FTS (X, τ) is an $\operatorname{Fg} \alpha \mathrm{g}-R_{0}$-space iff for each $\mathcal{M} \operatorname{Fg} \alpha \mathrm{g}$-CS and $x_{\lambda} \in \mathcal{M}$, then $\operatorname{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}$.
Proof: Let for each $\mathcal{M} \operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS}$ and $x_{\lambda} \in \mathcal{M}$, then $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}$ and let \mathcal{U} be a Fg $\alpha \mathrm{g}-\mathrm{OS}$, $x_{\lambda} \in U$ then for each $y_{\mu} \notin U$ implies $y_{\mu} \in \mathcal{U}^{c}$ is a Fg α g-CS implies $\operatorname{g} \alpha \operatorname{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}^{c}[$ by assumption]. Therefore $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ implies $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)$ [by lemma (5.4)]. So $\mathrm{g} \alpha \mathrm{g}-$ $c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$. Thus (X, τ) is a Fg $\alpha g-R_{0}$-space.
Conversely, let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-R_{0}$-space and \mathcal{M} be a $\operatorname{Fg} \alpha \mathrm{g}$-CS and $x_{\lambda} \in \mathcal{M}$. Then for each $y_{\mu} \notin \mathcal{M}$ implies $y_{\mu} \in \mathcal{M}^{c}$ is a Fg $\alpha \mathrm{g}$-OS, then $\mathrm{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}^{c}$ [since (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}$ - R_{0}-space], so $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)$. Thus $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}$.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Corollary 5.9: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-R_{0}$-space iff for each $\mathcal{U} \operatorname{Fg} \alpha \mathrm{g}$-OS and $x_{\lambda} \in \mathcal{U}$, then $\mathrm{g} \alpha \mathrm{g}$ $\operatorname{cl}\left(\operatorname{g} \alpha \operatorname{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right) \leq \mathcal{U}$.
Proof: Clearly.
Theorem 5.10: Every Fg $\alpha \mathrm{g}$ - R_{1}-space is a Fg $\alpha \mathrm{g}$ - R_{0}-space.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha g$ - R_{1}-space and let \mathcal{U} be a Fg αg-OS, $x_{\lambda} \in \mathcal{U}$, then for each $y_{\mu} \notin \mathcal{U}$ implies $y_{\mu} \in \mathcal{U}^{c}$ is a Fg $\alpha \mathrm{g}-\mathrm{CS}$ and $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}^{c}$ implies $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$. Hence by definition (5.6), $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$. Thus (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}$ - R_{0}-space.

Theorem 5.11: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space iff for each $x \neq y \in X$ with $\mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, then there exist $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS} \mathcal{M}_{1}, \mathcal{M}_{2}$ such that $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}_{1}, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge$ $\mathcal{M}_{2}=0_{X}$ and $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}_{2}, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \wedge \mathcal{M}_{1}=0_{X}$ and $\mathcal{M}_{1} \vee \mathcal{M}_{2}=1_{X}$.

Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space. Then for each $x \neq y \in X$ with $\mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$. Since every $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space is a $\operatorname{Fg} \alpha \mathrm{g}$ - R_{0}-space [by theorem (5.10)], and by theorem (5.7), $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$, then there exist $\mathrm{Fg} \alpha \mathrm{g}$-OS $\mathcal{U}_{1}, \mathcal{U}_{2}$ such that $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}_{1}$ and $\operatorname{g} \alpha \operatorname{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}_{2}$ and $\mathcal{U}_{1} \wedge \mathcal{U}_{2}=0_{X}$ [since (X, τ) is a Fg α g- R_{1}-space], then \mathcal{U}_{1}^{c} and \mathcal{U}_{2}^{c} are Fg α g-CS such that $\mathcal{U}_{1}^{c} \vee \mathcal{U}_{2}^{c}=1_{X}$. Put $\mathcal{M}_{1}=\mathcal{U}_{1}^{c}$ and $\mathcal{M}_{2}=\mathcal{U}_{2}^{c}$. Thus $x_{\lambda} \in \mathcal{U}_{1} \leq \mathcal{M}_{2}$ and $y_{\mu} \in$ $\mathcal{U}_{2} \leq \mathcal{M}_{1}$ so that $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}_{1} \leq \mathcal{M}_{2}$ and $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}_{2} \leq \mathcal{M}_{1}$.
Conversely, let for each $x \neq y \in X$ with $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, there exist $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS} \mathcal{M}_{1}$, \mathcal{M}_{2} such that $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}_{1}, \mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathcal{M}_{2}=0_{X}$ and $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}_{2}$, $\mathrm{g} \alpha \mathrm{g}-$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \wedge \mathcal{M}_{1}=0_{X}$ and $\mathcal{M}_{1} \vee \mathcal{M}_{2}=1_{X}$, then \mathcal{M}_{1}^{c} and \mathcal{M}_{2}^{c} are Fg $\alpha \mathrm{g}$-OS such that $\mathcal{M}_{1}^{c} \wedge \mathcal{M}_{2}^{c}=$ 0_{X}. Put $\mathcal{M}_{1}^{c}=\mathcal{U}_{2}$ and $\mathcal{M}_{2}^{c}=\mathcal{U}_{1}$. Thus, $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}_{1}$ and $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}_{2}$ and $U_{1} \wedge U_{2}=0_{X}$, so that $x_{\lambda} \in U_{1}$ and $y_{\mu} \in \mathcal{U}_{2}$ implies $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)$, then $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq U_{1}$ and $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{U}_{2}$. Thus, (X, τ) is a Fg $\alpha \mathrm{g}$ - R_{1}-space.

Corollary 5.12: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space iff for each $x \neq y \in X$ with $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}$ $c l\left(\left\{y_{\mu}\right\}\right)$ there exist disjoint $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{U}, \mathcal{V}$ such that $\operatorname{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right) \leq \mathcal{U}$ and $\mathrm{g} \alpha \mathrm{g}-c l(\mathrm{~g} \alpha \mathrm{~g}-$ $\left.\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)\right) \leq \mathcal{V}$.

Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space and let $x \neq y \in X$ with $\operatorname{g} \alpha g-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha g-c l\left(\left\{y_{\mu}\right\}\right)$, then there exist disjoint Fg α g-OS \mathcal{U}, \mathcal{V} such that $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$ and $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{V}$. Also (X, τ) is a Fg $\alpha \mathrm{g}-R_{0}$-space [by theorem (5.10)] implies for each $x \in X$, then $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\operatorname{g} \alpha \mathrm{g}-k e r\left(\left\{x_{\lambda}\right\}\right)$ [by theorem (5.7)], but $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\mathrm{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-c l\left(\left\{x_{\lambda}\right\}\right)\right)=\mathrm{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right)$. Thus $\operatorname{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right) \leq \mathcal{U}$ and $\mathrm{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)\right) \leq \mathcal{V}$.
Conversely, let for each $x \neq y \in X$ with $\operatorname{g} \alpha \operatorname{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$ there exist disjoint Fg $\alpha \mathrm{g}$-OS \mathcal{U}, \mathcal{V} such that $\operatorname{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right) \leq \mathcal{U}$ and $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}\left(\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)\right) \leq \mathcal{V}$. Since $\left\{x_{\lambda}\right\} \leq \mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, then $\mathrm{g} \alpha \mathrm{g}-\operatorname{cl}\left(\left\{x_{\lambda}\right\}\right) \leq \mathrm{g} \alpha \mathrm{g}-\operatorname{cl}\left(\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right)$ for each $x \in X$. So we get $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq$ \mathcal{U} and $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{V}$. Thus, (X, τ) is a Fg $\alpha \mathrm{g}$ - R_{1}-space.

6. Fuzzy g α g- $\boldsymbol{T}_{\boldsymbol{j}}$-Spaces, $\boldsymbol{j}=\mathbf{0}, 1,2$

Definition 6.1: Let (X, τ) be a FTS. Then X is said to be:
(i) fuzzy $\mathrm{g} \alpha \mathrm{g}-T_{0}$-space ($\mathrm{Fg} \alpha \mathrm{g}-T_{0}$-space, for short) iff for each pair of distinct fuzzy points in X, there exists a $\mathrm{Fg} \alpha \mathrm{g}$-OS in X containing one and not the other.
(ii) fuzzy $\mathrm{g} \alpha \mathrm{g}-T_{1}$-space ($\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space, for short) iff for each pair of distinct fuzzy points x_{λ} and y_{μ} of X, there exist $\operatorname{Fg} \alpha g-\operatorname{OS} \mathcal{M}, \mathcal{N}$ containing x_{λ} and y_{μ} respectively such that $y_{\mu} \notin \mathcal{M}$ and $x_{\lambda} \notin \mathcal{N}$.
(iii) fuzzy $\operatorname{g} \alpha \mathrm{g}-T_{2}$-space ($\mathrm{Fg} \alpha \mathrm{g}-T_{2}$-space, for short) iff for each pair of distinct fuzzy points x_{λ} and y_{μ} of X, there exist disjoint $\operatorname{Fg} \alpha \operatorname{g}-\mathrm{OS} \mathcal{M}, \mathcal{N}$ in X such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Example 6.2: Let $X=\{x, y\}$ and $\tau=\left\{0_{X}, x_{1}, 1_{X}\right\}$ be a FTS on X. Then x_{1} is a crisp point in X and (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{0}-space.

Example 6.3: Let $X=\{a, b\}$ and $\tau=\left\{0_{X}, a_{1}, b_{1}, 1_{X}\right\}$ be a FTS on X. Then a_{1}, b_{1} are crisp points in X and (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}-T_{1}$-space and $\mathrm{Fg} \alpha \mathrm{g}$ - T_{2}-space.

Remark 6.4: Every Fg $\alpha \mathrm{g}-T_{k}$-space is a Fg $\alpha \mathrm{g}$ - T_{k-1}-space, $k=1,2$.
Proof: Clearly.
Theorem 6.5: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space iff either $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}$ - $k e r\left(\left\{x_{\lambda}\right\}\right)$ or $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, for each $x \neq y \in X$.

Proof: Let (X, τ) be a Fg $\alpha \mathrm{g}-T_{0}$-space then for each $x \neq y \in X$, there exists a $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Thus either $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ implies $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$ implies $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$.
Conversely, let either $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ or $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, for each $x \neq y \in X$. Then there exists a Fgag-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Thus (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{0^{-}}$ space.

Theorem 6.6: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}$ - T_{0}-space iff either $\mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$ separated from $\left\{y_{\mu}\right\}$ or $\operatorname{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$ for each $x \neq y \in X$.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space then for each $x \neq y \in X$, there exists a $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Now if $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ implies $\operatorname{g} \alpha \operatorname{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$. Or if $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$ implies $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$.
Conversely, let either $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ be weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$ or $\mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ be weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$. Then there exists a $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{M} such that $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}$ and $y_{\mu} \notin \mathcal{M}$ or $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}, x_{\lambda} \notin \mathcal{M}$ implies $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}$ - T_{0}-space.

Theorem 6.7: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space iff for each $x \neq y \in X, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$ and $\mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$.

Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space, then for each $x \neq y \in X$, there exist $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}, y_{\mu} \in \mathcal{V}$. Implies $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$ and $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ is weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$.
Conversely, let $\operatorname{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ be weakly ultra fuzzy $\operatorname{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$ and $\operatorname{g} \alpha \mathrm{g}$-ker $\left(\left\{y_{\mu}\right\}\right)$ be weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{x_{\lambda}\right\}$. Then there exist $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{U}, \mathcal{v} such that $\mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $\operatorname{gag}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{V}, x_{\lambda} \notin \mathcal{V}$ implies $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}$, $y_{\mu} \in \mathcal{V}$. Thus, (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space.
Theorem 6.8: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space iff for each $x \in X, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space and let $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq\left\{x_{\lambda}\right\}$. Then $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ contains another fuzzy point distinct from x_{λ} say y_{μ}. So $y_{\mu} \in \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ implies $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is not weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$. Hence by theorem (6.7), (X, τ) is not a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space this is contradiction. Thus $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$.
Conversely, let $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$, for each $x \in X$ and let (X, τ) be not a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space. Then by theorem (6.7), $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ is not weakly ultra fuzzy $\mathrm{g} \alpha \mathrm{g}$-separated from $\left\{y_{\mu}\right\}$ for some $x \neq y \in X$, this means that for every $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{M}$ contains $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ then $y_{\mu} \in \mathcal{M}$ implies

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

$y_{\mu} \in \wedge\left\{\mathcal{M} \in \operatorname{Fg} \alpha \operatorname{g}-\mathrm{O}(X): x_{\lambda} \in \mathcal{M}\right\}$ implies $y_{\mu} \in \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, this is contradiction. Thus, (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space.

Theorem 6.9: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space iff for each $x \neq y \in X, y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ and $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$.

Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space then for each $x \neq y \in X$, there exist $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{U}, \mathcal{V}$ such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Implies $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ and $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$.
Conversely, let $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ and $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, for each $x \neq y \in X$. Then there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space.
Theorem 6.10: A FTS (X, τ) is $\operatorname{Fg} \alpha$ g- T_{1}-space iff for each $x \neq y \in X$ implies $\operatorname{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge$ $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space. Then $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$ and $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=\left\{y_{\mu}\right\}[$ by theorem (6.8)]. Thus, $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$.
Conversely, let for each $x \neq y \in X$ implies $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$ and let (X, τ) be not Fg $\alpha \mathrm{g}$ - T_{1}-space, then for each $x \neq y \in X$ implies $y_{\mu} \in \mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ or $x_{\lambda} \in \mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ [by theorem (6.9)], then $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \neq 0_{X}$ this is contradiction. Thus, (X, τ) is a Fg $\alpha \mathrm{g}$ - T_{1}-space.

Theorem 6.11: A FTS (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}$ - T_{1}-space iff (X, τ) is $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space and $\operatorname{Fg} \alpha \mathrm{g}$ - R_{0}-space.
Proof: Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space and let $x_{\lambda} \in \mathcal{U}$ be a Fg $\alpha \mathrm{g}-\mathrm{OS}$, then for each $x \neq y \in X, \mathrm{~g} \alpha \mathrm{~g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}\left[\right.$ by theorem (6.10)] implies $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$, this means $\operatorname{g} \alpha \operatorname{g}-\operatorname{cl}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$, hence $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-R_{0}-$ space.
Conversely, let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}$ - T_{0}-space and Fg $\alpha \mathrm{g}$ - R_{0}-space, then for each $x \neq y \in X$ there exists a Fg α g-OS U such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ or $x_{\lambda} \notin U, y_{\mu} \in \mathcal{U}$. Say $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ since (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-R_{0}$-space, then $\operatorname{g} \alpha \mathrm{g}-\operatorname{cl}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{U}$, this means there exists a Fg $\alpha \mathrm{g}$-OS \mathcal{V} such that $y_{\mu} \in \mathcal{V}$, $x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space.
Theorem 6.12: A FTS (X, τ) is Fg $\alpha \mathrm{g}-T_{2}$-space iff
(i) (X, τ) is a Fg α g- T_{0}-space and $\operatorname{Fg} \alpha \mathrm{g}$ - R_{1}-space.
(ii) (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space and $\mathrm{Fg} \alpha \mathrm{g}$ - R_{1}-space.

Proof: (i) Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{2}$-space, then it is a Fg $\alpha \mathrm{g}-T_{0}$-space. Now since (X, τ) is a Fg αg - $T_{2^{-}}$ space, then for each $x \neq y \in X$, there exist disjoint $\operatorname{Fg} \alpha \operatorname{g}-\mathrm{OS} \mathcal{U}, \mathcal{V}$ such that $x_{\lambda} \in \mathcal{U}$ and $y_{\mu} \in \mathcal{V}$ implies $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)$, therefore $\mathrm{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\} \leq \mathcal{U}$ and $\mathrm{g} \alpha \mathrm{g}$ $c l\left(\left\{y_{\mu}\right\}\right)=\left\{y_{\mu}\right\} \leq \mathcal{V}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha g$ - R_{1}-space.
Conversely, let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space and $\operatorname{Fg} \alpha \mathrm{g}$ - R_{1}-space, then for each $x \neq y \in X$, there exists a Fg $\alpha \mathrm{g}-\mathrm{OS} \mathcal{U}$ such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ or $y_{\mu} \in \mathcal{U}, x_{\lambda} \notin \mathcal{U}$, implies $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$, since (X, τ) is a Fg $\alpha g-R_{1}$-space [by assumption], then there exist disjoint $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{M}, \mathcal{N} such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha g-T_{2}$-space.
(ii) By the same way of part (i) a $\mathrm{Fg} \alpha \mathrm{g}-T_{2}$-space is $\mathrm{Fg} \alpha \mathrm{g}$ - T_{1}-space and $\mathrm{Fg} \alpha \mathrm{g}-R_{1}$-space.

Conversely, let (X, τ) be a $\operatorname{Fg} \alpha g-T_{1}$-space and $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space, then for each $x \neq y \in X$, there exist Fg $\alpha \mathrm{g}$-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$ implies $\operatorname{g} \alpha \mathrm{g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$, since (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space, then there exist disjoint $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{OS} \mathcal{M}, \mathcal{N}$ such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$. Thus, (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{2}$-space.

Journal University of Kerbala, Vol. 14 No. 3 Scientific . 2016

Corollary 6.13: A Fg $\alpha \mathrm{g}-T_{0}$-space is $\operatorname{Fg} \alpha \mathrm{g}$ - T_{2}-space iff for each $x \neq y \in X$ with $\mathrm{g} \alpha \mathrm{g}$ - $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq$ $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, then there exist $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS} \mathcal{M}_{1}, \mathcal{M}_{2}$ such that $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}_{1}, \mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge$ $\mathcal{M}_{2}=0_{X}$ and $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}_{2}, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \wedge \mathcal{M}_{1}=0_{X}$ and $\mathcal{M}_{1} \vee \mathcal{M}_{2}=1_{X}$.

Proof: By theorem (5.11) and theorem (6.12).
Corollary 6.14: A Fg $\alpha \mathrm{g}-T_{1}$-space is $\operatorname{Fg} \alpha \mathrm{g}-T_{2}$-space iff one of the following conditions holds:
(i) for each $x \neq y \in X$ with $\operatorname{g\alpha g}-c l\left(\left\{x_{\lambda}\right\}\right) \neq \operatorname{g} \alpha \mathrm{g}-c l\left(\left\{y_{\mu}\right\}\right)$, then there exist $\operatorname{Fg} \alpha \mathrm{g}$-OS \mathcal{U}, \mathcal{V} such that $\operatorname{g} \alpha \mathrm{g}-\mathrm{cl}\left(\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)\right) \leq \mathcal{U}$ and $\operatorname{g} \alpha \mathrm{g}-c l\left(\mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)\right) \leq \mathcal{V}$.
(ii) for each $x \neq y \in X$ with $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$, then there exist $\operatorname{Fg} \alpha \mathrm{g}-\mathrm{CS} \mathcal{M}_{1}, \mathcal{M}_{2}$ such that $\operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \leq \mathcal{M}_{1}, \mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathcal{M}_{2}=0_{X}$ and $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \leq \mathcal{M}_{2}, \mathrm{~g} \alpha \mathrm{~g}-$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right) \wedge \mathcal{M}_{1}=0_{X}$ and $\mathcal{M}_{1} \vee \mathcal{M}_{2}=1_{X}$.

Proof: (i) By corollary (5.12) and theorem (6.12).
(ii) By theorem (5.11) and theorem (6.12).

Theorem 6.15: A Fg $\alpha \mathrm{g}$ - R_{1}-space is $\mathrm{Fg} \alpha \mathrm{g}$ - T_{2}-space iff one of the following conditions holds:
(i) for each $x \in X, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$.
(ii) for each $x \neq y \in X, \operatorname{g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ implies $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathrm{g} \alpha \mathrm{g}-$ $\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$.
(iii) for each $x \neq y \in X$, either $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ or $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$.
(iv) for each $x \neq y \in X$ then $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$.

Proof: (i) Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}$ - T_{2}-space. Then (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}$ - T_{1}-space and $\operatorname{Fg} \alpha \mathrm{g}$ - R_{1}-space [by theorem (6.12)]. Hence by theorem (6.8), $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$ for each $x \in X$.
Conversely, let for each $x \in X, \operatorname{g\alpha g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)=\left\{x_{\lambda}\right\}$, then by theorem (6.8), (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}-$ space. Also (X, τ) is a $\operatorname{Fg} \alpha g$ - R_{1}-space by assumption. Hence by theorem (6.12), (X, τ) is a $\operatorname{Fg} \alpha g-T_{2}-$ space.
(ii) Let (X, τ) be a $\operatorname{Fg} \alpha \mathrm{g}-T_{2}$-space. Then (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space [by remark (6.4)]. Hence by theorem (6.10), $\mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$ for each $x \neq y \in X$.
Conversely, assume that for each $x \neq y \in X, \mathrm{~g} \alpha \mathrm{~g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \neq \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ implies $\mathrm{g} \alpha \mathrm{g}$ $\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right) \wedge \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)=0_{X}$. So by theorem (6.10), (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space, also (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - R_{1}-space by assumption. Hence by theorem (6.12), (X, τ) is a Fg $\alpha \mathrm{g}-T_{2}$-space.
(iii) Let (X, τ) be a Fg $\alpha \mathrm{g}$ - T_{2}-space. Then (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space [by remark (6.4)]. Hence by theorem (6.5), either $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ or $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ for each $x \neq y \in X$.
Conversely, assume that for each $x \neq y \in X$, either $x_{\lambda} \notin \operatorname{g\alpha g}-k e r\left(\left\{y_{\mu}\right\}\right)$ or $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$ for each $x \neq y \in X$. So by theorem (6.5), (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{0}$-space, also (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-R_{1}$-space by assumption. Thus (X, τ) is a Fg $\alpha \mathrm{g}$ - T_{2}-space [by theorem (6.12)].
(iv) Let (X, τ) be a Fg $\alpha \mathrm{g}$ - T_{2}-space. Then (X, τ) is a Fg αg - T_{1}-space and Fg $\alpha \mathrm{g}$ - R_{1}-space [by theorem (6.12)]. Hence by theorem (6.9), $x_{\lambda} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \mathrm{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$.

Conversely, let for each $x \neq y \in X$ then $x_{\lambda} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{y_{\mu}\right\}\right)$ and $y_{\mu} \notin \operatorname{g} \alpha \mathrm{g}-\operatorname{ker}\left(\left\{x_{\lambda}\right\}\right)$. Then by theorem (6.9), (X, τ) is a $\operatorname{Fg} \alpha \mathrm{g}-T_{1}$-space. Also (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - R_{1}-space by assumption. Hence by theorem (6.12), (X, τ) is a $\mathrm{Fg} \alpha \mathrm{g}$ - T_{2}-space.

Remark 6.16: Each fuzzy $g \alpha \mathrm{~g}$-separation axiom is defined as the conjunction of two weaker fuzzy axioms: $\operatorname{Fg} \alpha \mathrm{g}-T_{k}$-space $=\mathrm{Fg} \alpha \mathrm{g}-R_{k-1}$-space and $\mathrm{Fg} \alpha \mathrm{g}-T_{k-1}$-space $=\mathrm{Fg} \alpha \mathrm{g}-R_{k-1}$-space and $\mathrm{Fg} \alpha \mathrm{g}$ -T_{0}-space, $k=1,2$.

Remark 6.17: The relation between fuzzy $\mathrm{g} \alpha \mathrm{g}$-separation axioms can be representing as a matrix. Therefore, the element $a_{i j}$ refers to this relation. As the following matrix representation shows:

and	Fg $\alpha \mathrm{g}-\mathrm{T}_{0}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{1}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-R_{0}$	Fg α g- R_{1}
Fg $\alpha \mathrm{g}-\mathrm{T}_{0}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{0}$	Fg $\alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-T_{2}$
Fg $\alpha \mathrm{g}-\mathrm{T}_{1}$	$\operatorname{Fg} \alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-T_{1}$	$\operatorname{Fg} \alpha \mathrm{g}-\mathrm{T}_{2}$	$\operatorname{Fg} \alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$
Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	$\mathrm{Fg} \alpha \mathrm{g}-\mathrm{T}_{2}$	$\operatorname{Fg} \alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$
Fg $\alpha \mathrm{g}-R_{0}$	Fg $\alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-T_{1}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-R_{0}$	Fg $\alpha \mathrm{g}-R_{1}$
Fg $\alpha \mathrm{g}-R_{1}$	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg α g- T_{2}	Fg $\alpha \mathrm{g}-\mathrm{T}_{2}$	Fg $\alpha \mathrm{g}-R_{1}$	Fg α g- R_{1}

Matrix Representation
The relation between fuzzy $\mathrm{g} \alpha \mathrm{g}$-separation axioms

References

[1] A. S. Bin Shahna, "On fuzzy strong semi continuity and fuzzy pre continuity", Fuzzy sets and system, 44(2), (1991), 303-308.
[2] C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., 24(1968), 182-190.
[3] C. K. Wong, "Fuzzy points and local properties of fuzzy topology", J. Math. Anal. Appl., 46(1974), 316-328.
[4] G. Balasubramania and P. Sundaram, "On some generalizations of fuzzy continuous functions", Fuzzy sets and Systems, 86(1), (1997), 93-100.
[5] L. A. Zadeh, "Fuzzy sets", Information and control, 8(1965), 338-353.
[6] P. M. Pu and Y. M. Liu, " Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence", J. Math. Anal. Appl., 76(1980), 571-599.
[7] R. H. Warren, "Neighborhoods, bases and continuity in fuzzy topological spaces", The Rocky Mountain Journal of Mathematics, 8(3), (1978), 459-470.
[8] R. K. Saraf and S. Mishra, "Fg α-closed sets", J. Tripura Math. Soc., 2(2000), 27-32.
[9] R. K. Saraf, G. Navalagi and M. Khanna, "On fuzzy semi pre generalized closed sets", Bull. Malaysian Math. Sci. Soc., 28(1), (2005), 19-30.
[10]S. S. Thakur and S. Singh, "On fuzzy semi pre open sets and fuzzy semi pre continuity", Fuzzy Sets and systems, 98(3), (1998), 383-391.
[11]S. Ganguly and S. Saha, "A note on δ-continuity and δ-connected sets in fuzzy set theory", Simon Stevin, 62(1988).
[12]S. Kalaiselvi and V. Seenivasan, "Fuzzy generalized semi generalized closed sets", International Journal of Pure and Applied Mathematics, 95(3), (2014), 323-338.

