Fuzzy Generalized Alpha Generalized Closed Sets

المجموعات المعممة ألفا المعممة المغلقة الضبابية

Qays Hatem Imran Department of Mathematics, College of Education for Pure Science Al-Muthanna University, Samawah, Iraq E-mail: <u>gays.imran@gmail.com</u>

Abstract:

In this paper we introduced a new class of fuzzy closed sets called fuzzy $g\alpha g$ -closed sets and study their basic properties in fuzzy topological spaces. We also introduced fuzzy $g\alpha g$ continuous functions with some of its properties. Moreover, the investigation will include some of the properties of the fuzzy separation axioms such fuzzy $g\alpha g$ - R_i -space and fuzzy $g\alpha g$ - T_j -space (note that, the indexes *i* and *j* are natural numbers of the spaces *R* and *T* are from 0 to 1 and from 0 to 2 respectively).

Mathematics Subject Classification (2010): 54A40.

Keywords: Fg α g-closed set, Fg α g-continuous functions, Fg α g- R_i -space, i = 0,1 and Fg α g- T_j -space, j = 0,1,2.

الخلاصة:

1. Introduction

In 1965 Zadeh studied the fuzzy sets (briefly F-sets) (see [5]) which plays such a role in the field of fuzzy topological spaces (or simply FTS). The fuzzy topological spaces investigated by Chang in 1968 (see [2]). A. S. Bin Shahna [1] defined fuzzy α -closed sets. In 1997, fuzzy generalized closed set (briefly Fg-CS) was introduced by G. Balasubramania and P. Sundaram [4]. S. Kalaiselvi and V. Seenivasan [12] introduced the concept of fuzzy gag-closed sets in FTS. The purpose of this paper is to introduce the concept of fuzzy gag-closed sets and study their basic properties in FTS. We also introduce fuzzy gag-continuous functions by using fuzzy gag-closed sets and study some of their fundamental properties. Furthermore, the investigation will include some of the properties of the fuzzy separation axioms such fuzzy gag- R_i -space and fuzzy gag- T_j -space (here the indexes *i* and *j* are natural numbers of the spaces *R* and *T* are from 0 to 1 and from 0 to 2 respectively).

2. Preliminaries

Throughout this paper, (X, τ) , (Y, ψ) and (Z, ρ) (or simply X, Y and Z) always mean FTS on which no separation axioms are assumed unless otherwise mentioned. A fuzzy point [3] with support $x \in X$ and value λ ($0 < \lambda \leq 1$) at $x \in X$ will be denoted by x_{λ} , and for F-set $\mathcal{M}, x_{\lambda} \in \mathcal{M}$ iff $\lambda \leq \mathcal{M}(x)$. Two fuzzy points x_{λ} and y_{μ} are said to be distinct iff their supports are distinct. That is, by 0_X and 1_X we mean the constant F-sets taking the values 0 and 1 on X, respectively. For a Fset \mathcal{M} in a FTS (X, τ) , $cl(\mathcal{M})$, $int(\mathcal{M})$ and $\mathcal{M}^c = 1_X - \mathcal{M}$ denote the fuzzy closure of \mathcal{M} , the fuzzy interior of \mathcal{M} and the fuzzy complement of \mathcal{M} respectively. **Definition 2.1:[11]** A fuzzy point in a set X with support x and membership value 1 is called crisp point, denoted by x_1 . For any F-set \mathcal{M} in X, we have $x_1 \in \mathcal{M}$ iff $\mathcal{M}(x) = 1$.

Proposition 2.2:[10] Let $\mathcal{M}, \mathcal{N}, \mathcal{O}$ be F-sets in a FTS (X, τ) . Then $\mathcal{M}q(\mathcal{N} \lor \mathcal{O})$ iff $\mathcal{M}q\mathcal{N}$ or $\mathcal{M}q\mathcal{O}$.

Definition 2.3:[6] A fuzzy point $x_{\lambda} \in \mathcal{M}$ is called quasi-coincident (briefly *q*-coincident) with the F-set \mathcal{M} is denoted by $x_{\lambda}q\mathcal{M}$ iff $\lambda + \mathcal{M}(x) > 1$. A F-set \mathcal{M} in a FTS (X, τ) is called *q*-coincident with a F-set \mathcal{N} which is denoted by $\mathcal{M}q\mathcal{N}$ iff there exists $x \in X$ such that $\mathcal{M}(x) + \mathcal{N}(x) > 1$. If the F-sets \mathcal{M} and \mathcal{N} in a FTS (X, τ) are not *q*-coincident then we write $\mathcal{M}\bar{q}\mathcal{N}$. Note that $\mathcal{M} \leq \mathcal{N} \Leftrightarrow \mathcal{M}\bar{q}(1_X - \mathcal{N})$.

Definition 2.4:[6] A F-set \mathcal{M} in a FTS (X, τ) is called *q*-neighbourhood(briefly *q*-nhd)of a fuzzy point x_{λ} (resp. F-set \mathcal{N})if there is a F-OS \mathcal{A} in a FTS (X, τ) such that $x_{\lambda}q\mathcal{A} \leq \mathcal{M}$ (resp. $\mathcal{N}q\mathcal{A} \leq \mathcal{M}$).

Proposition 2.5:[4,7] Let \mathcal{M}, \mathcal{N} be two F-sets in a FTS (X, τ) . Then the following properties hold: (i) \mathcal{M} is a F-OS iff $\mathcal{M} = int(\mathcal{M})$. (ii) \mathcal{M} is a F-CS iff $\mathcal{M} = cl(\mathcal{M})$. (iii) $int(\mathcal{M}) \leq \mathcal{M}, int(int(\mathcal{M})) = int(\mathcal{M})$. (iv) $int(\mathcal{M}) \leq int(\mathcal{N})$, whenever $\mathcal{M} \leq \mathcal{N}$. (v) $int(\mathcal{M} \land \mathcal{N}) = int(\mathcal{M}) \land int(\mathcal{N}), int(\mathcal{M} \lor \mathcal{N}) \geq int(\mathcal{M}) \lor int(\mathcal{N})$. (vi) $\mathcal{M} \leq cl(\mathcal{M}), cl(cl(\mathcal{M})) = cl(\mathcal{M})$. (vii) $cl(\mathcal{M}) \leq cl(\mathcal{N}),$ whenever $\mathcal{M} \leq \mathcal{N}$. (viii) $cl(\mathcal{M} \land \mathcal{N}) \leq cl(\mathcal{M}) \land cl(\mathcal{N}), cl(\mathcal{M} \lor \mathcal{N}) = cl(\mathcal{M}) \lor cl(\mathcal{N})$.

Lemma 2.6:[7] Let \mathcal{M} be any F-set in a FTS (X, τ) . Then the following properties hold: (i) $cl(1_X - \mathcal{M}) = 1_X - int(\mathcal{M})$. (ii) $int(1_X - \mathcal{M}) = 1_X - cl(\mathcal{M})$.

Definition 2.7:[2] Let X and Y be two non-empty sets, and $f: (X, \tau) \to (Y, \psi)$ be a function. If \mathcal{M} is a F-set of X and \mathcal{N} is a F-set of Y, then:

(i) $f(\mathcal{M})$ is a F-set of Y, where

 $f(\mathcal{M}) = \begin{cases} \sup_{x \in f^{-1}(y)} \mathcal{M}(x), & \text{if } f^{-1}(y) \neq 0, \\ 0, & \text{otherwise} \end{cases}$

for every $y \in Y$. (ii) $f^{-1}(\mathcal{N})$ is a F-set of X, where $f^{-1}(\mathcal{N})(x) = \mathcal{N}(f(x))$ for each $x \in X$. (iii) $f^{-1}(1_Y - \mathcal{N}) = 1_X - f^{-1}(\mathcal{N})$.

Theorem 2.8:[2] Let *X* and *Y* be two non-empty sets, and $f: (X, \tau) \to (Y, \psi)$ be a function, then: (i) $f^{-1}(\mathcal{N}^c) = (f^{-1}(\mathcal{N}))^c$, for any F-set \mathcal{N} in *Y*. (ii) $f(f^{-1}(\mathcal{N})) \leq \mathcal{N}$, for any F-set \mathcal{N} in *Y*. (iii) $\mathcal{M} \leq f^{-1}(f(\mathcal{M}))$, for any F-set \mathcal{M} in *X*.

Definition 2.9:[1] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy α -open set (briefly F α -OS) if $\mathcal{M} \leq int(cl(int(\mathcal{M})))$ and a fuzzy α -closed set (briefly F α -CS) if $cl(int(cl(\mathcal{M}))) \leq \mathcal{M}$. The fuzzy α -closure of a F-set \mathcal{M} of a FTS (X, τ) is the intersection of all F α -CS that contain \mathcal{M} and is denoted by $\alpha cl(\mathcal{M})$.

Definition 2.10:[4] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy g-closed set (briefly Fg-CS) if $cl(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X. The complement of a Fg-CS in X is a Fg-OS in X.

Definition 2.11:[9] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy α g-closed set (briefly F α g-CS) if $\alpha cl(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F α -OS in X. The complement of a F α g-CS in X is a F α g-OS in X.

Definition 2.12:[8] A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy $g\alpha$ -closed set (briefly Fg α -CS) if $\alpha cl(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F-OS in X. The complement of a Fg α -CS in X is a Fg α -OS in X.

Theorem 2.13:[1,4] In a FTS (X, τ), then the following statements hold and the converse of each statements are not true:

(i) Every F-OS (resp. F-CS) is a F α -OS (resp. F α -CS). (ii) Every F-OS (resp. F-CS) is a Fg-OS (resp. Fg-CS).

Theorem 2.14:[8,9] In a FTS (X, τ), then the following statements hold and the converse of each statements are not true:

(i) Every F-OS (resp. F-CS) is a F α g-OS (resp. F α g-CS).

(ii) Every Fg-OS (resp. Fg-CS) is a Fg α -OS (resp. Fg α -CS).

(iii) Every F α -OS (resp. F α -CS) is a F α g-OS (resp. F α g-CS).

(iv) Every F α g-OS (resp. F α g-CS) is a Fg α -OS (resp. Fg α -CS).

Definition 2.15:[4] A FTS (*X*, τ) is said to be a fuzzy $T_{\frac{1}{2}}$ -space (briefly $FT_{\frac{1}{2}}$ -space) if every Fg-CS in it is a F-CS.

Definition 2.16: Let (X, τ) and (Y, ψ) be FTS. Then the function $f: (X, \tau) \to (Y, \psi)$ is called: (i) F-continuous [2] if $f^{-1}(\mathcal{V})$ is a F-OS (resp. F-CS) set in X, for each F-OS (resp. F-CS) \mathcal{V} in Y. (ii) F α -continuous [1] if $f^{-1}(\mathcal{V})$ is a F α -OS (resp. F α -CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y. (iii) Fg-continuous [4] if $f^{-1}(\mathcal{V})$ is a Fg-OS (resp. Fg-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y. (iv) F α g-continuous [9] if $f^{-1}(\mathcal{V})$ is a F α g-OS (resp. F α g-CS) in X, for each F-OS (resp. F-CS) \mathcal{V} in Y.

(v) Fg α -continuous [8] if $f^{-1}(\mathcal{V})$ is a Fg α -OS (resp. Fg α -CS) in *X*, for each F-OS (resp. F-CS) \mathcal{V} in *Y*.

Theorem 2.17:[1,4] Let $f: (X, \tau) \to (Y, \psi)$ be a function. Then the following statements hold and the converse of each statements are not true:

(i) Every F-continuous function is a $F\alpha$ -continuous.

(ii) Every F-continuous function is a Fg-continuous.

Theorem 2.18:[8,9] Let $f: (X, \tau) \to (Y, \psi)$ be a function. Then the following statements hold and the converse of each statements are not true:

(i) Every Fg-continuous function is a Fg α -continuous.

(ii) Every $F\alpha$ -continuous function is a $F\alpha g$ -continuous.

(iii) Every Fag-continuous function is a Fga-continuous.

3. Fuzzy g*α*g-Closed Sets

Definition 3.1: A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy generalized α g-closed set (briefly Fg α g-CS) if $cl(\mathcal{M}) \leq \mathcal{U}$ whenever $\mathcal{M} \leq \mathcal{U}$ and \mathcal{U} is a F α g-OS in X. The family of all Fg α g-CS of a FTS (X, τ) is denoted by Fg α g-C(X).

Example 3.2: Let $X = \{a, b\}$ and the F-set \mathcal{M} in X defined as follows: $\mathcal{M}(a) = 0.5$, $\mathcal{M}(b) = 0.5$. Let $\tau = \{0_X, \mathcal{M}, 1_X\}$ be a FTS. Then the F-sets $0_X, \mathcal{M}$ and 1_X are Fgag-CS in X.

Definition 3.3: The intersection of all Fg α g-CS in a FTS (X, τ) containing \mathcal{M} is called fuzzy g α g-closure of \mathcal{M} and is denoted by $g\alpha$ g- $cl(\mathcal{M})$, $g\alpha$ g- $cl(\mathcal{M}) = \wedge \{\mathcal{N}: \mathcal{M} \leq \mathcal{N}, \mathcal{N} \text{ is a Fg}\alpha$ g-CS}.

Theorem 3.4: In a FTS (X, τ), then the following statements are true:

(i) Every F-CS is a Fg α g-CS.

(ii) Every $Fg\alpha g$ -CS is a Fg-CS.

(iii) Every $Fg\alpha g$ -CS is a $F\alpha g$ -CS.

(iv) Every $Fg\alpha g$ -CS is a $Fg\alpha$ -CS.

Proof: (i) Let \mathcal{M} be a F-CS in a FTS (X, τ) and let \mathcal{U} be any F α g-OS containing \mathcal{M} . Then $cl(\mathcal{M}) = \mathcal{M} \leq \mathcal{U}$. Hence \mathcal{M} is a Fg α g-CS.

(ii) Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any F-OS containing \mathcal{M} . By theorem (2.14) part (i), \mathcal{U} is a F α g-OS in X. Since \mathcal{M} is a Fg α g-CS, we have $cl(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a Fg-CS.

(iii) Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any F α -OS containing \mathcal{M} . By theorem (2.14) part (iii), \mathcal{U} is a F α g-OS in X. Since \mathcal{M} is a Fg α g-CS, we have $\alpha cl(\mathcal{M}) \leq cl(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a F α g-CS.

(iv) Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any F-OS containing \mathcal{M} . By theorem (2.14) part (i), \mathcal{U} is a F α g-OS in X. Since \mathcal{M} is a Fg α g-CS, we have $\alpha cl(\mathcal{M}) \leq cl(\mathcal{M}) \leq \mathcal{U}$. Hence \mathcal{M} is a Fg α -CS.

The converse of the above theorem need not be true as shown in the following examples.

Example 3.5: Let $X = \{x, y, z\}$ and the F-sets \mathcal{M} , \mathcal{N} and \mathcal{O} from X to [0,1] be defined as: $\mathcal{M}(x) = 0.0, \ \mathcal{M}(y) = 0.0, \ \mathcal{M}(z) = 0.4; \ \mathcal{N}(x) = 0.9, \ \mathcal{N}(y) = 0.6, \ \mathcal{N}(z) = 0.0; \ \mathcal{O}(x) = 1.0, \ \mathcal{O}(y) = 0.7, \ \mathcal{O}(z) = 1.0.$ Let $\tau = \{0_X, \mathcal{M}, \mathcal{N}, \mathcal{M} \lor \mathcal{N}, 1_X\}$ be a FTS. Then the F-set \mathcal{O} is a Fg α g-CS but not F-CS in X.

Example 3.6: Let $X = \{x, y, z\}$ and the F-sets $\mathcal{M}, \mathcal{N}, \mathcal{O}$ and \mathcal{P} from X to [0,1] be defined as: $\mathcal{M}(x) = 0.7, \ \mathcal{M}(y) = 0.3, \ \mathcal{M}(z) = 1.0; \ \mathcal{N}(x) = 0.7, \ \mathcal{N}(y) = 0.0, \ \mathcal{N}(z) = 0.0; \ \mathcal{O}(x) = 0.9, \ \mathcal{O}(y) = 0.2, \ \mathcal{O}(z) = 0.1; \ \mathcal{P}(x) = 0.2, \ \mathcal{P}(y) = 0.7, \ \mathcal{P}(z) = 0.2.$ Let $\tau = \{0_X, \mathcal{M}, \mathcal{N}, 1_X\}$ be a FTS. Then the F-set \mathcal{O} is a Fg-CS and hence Fg α -CS, but not Fg α g-CS in X. And the F-set \mathcal{P} is a F α g-CS but not Fg α g-CS in X.

Definition 3.7: A F-set \mathcal{M} of a FTS (X, τ) is said to be a fuzzy generalized α g-open set (briefly Fg α g-open set) iff $1_X - \mathcal{M}$ is a Fg α g-CS. The family of all Fg α g-open sets of a FTS (X, τ) is denoted by Fg α g-O(X).

Example 3.8: By example (3.2). Then the F-sets 0_X , \mathcal{M} and 1_X are Fg α g-OS in X.

Definition 3.9: The union of all Fg α g-OS in a FTS (X, τ) contained in \mathcal{M} is called fuzzy g α g-interior of \mathcal{M} and is denoted by $g\alpha$ g-int (\mathcal{M}) , $g\alpha$ g-int $(\mathcal{M}) = \vee \{\mathcal{N}: \mathcal{M} \geq \mathcal{N}, \mathcal{N} \text{ is a Fg}\alpha$ g-OS}.

Proposition 3.10: Let \mathcal{M} be any F-set in a FTS (X, τ). Then the following properties hold:

(i) gαg-int(M) = M iff M is a Fgαg-OS.
(ii) gαg-cl(M) = M iff M is a Fgαg-CS.
(iii) gαg-int(M) is the largest Fgαg-OS contained in M.

(iv) $g\alpha g$ - $cl(\mathcal{M})$ is the smallest Fg αg -CS containing \mathcal{M} .

Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 3.11: Let \mathcal{M} be any F-set in a FTS (X, τ) . Then the following properties hold: (i) $g\alpha g\text{-}int(1_X - \mathcal{M}) = 1_X - (g\alpha g\text{-}cl(\mathcal{M}))$, (ii) $g\alpha g\text{-}cl(1_X - \mathcal{M}) = 1_X - (g\alpha g\text{-}int(\mathcal{M}))$.

Proof: (i) By definition,
$$g\alpha g - cl(\mathcal{M}) = \land \{\mathcal{N} : \mathcal{M} \leq \mathcal{N}, \mathcal{N} \text{ is a Fg}\alpha g - CS\}$$

 $1_X - (g\alpha g - cl(\mathcal{M})) = 1_X - \land \{\mathcal{N} : \mathcal{M} \leq \mathcal{N}, \mathcal{N} \text{ is a Fg}\alpha g - CS\}$
 $= \lor \{1_X - \mathcal{N} : \mathcal{M} \leq \mathcal{N}, \mathcal{N} \text{ is a Fg}\alpha g - CS\}$
 $= \lor \{\mathcal{U} : 1_X - \mathcal{M} \geq \mathcal{U}, \mathcal{U} \text{ is a Fg}\alpha g - CS\}$

= g α g-int $(1_X - \mathcal{M})$

(ii) The proof is similar to (i).

Theorem 3.12: Let (X, τ) be a FTS. If \mathcal{M} is a F-OS, then it is a Fg α g-OS in X.

Proof: Let \mathcal{M} be a F-OS in a FTS (X, τ) , then $1_X - \mathcal{M}$ is a F-CS in X. By theorem (3.4) part (i), $1_X - \mathcal{M}$ is a Fg α g-CS. Hence \mathcal{M} is a Fg α g-OS in X.

Theorem 3.13: Let (X, τ) be a FTS. If \mathcal{M} is a Fg α g-OS, then it is a Fg-OS in X.

Proof: Let \mathcal{M} be a Fg α g-OS in a FTS (X, τ), then $1_X - \mathcal{M}$ is a Fg α g-CS in X. By theorem (3.4) part (ii), $1_X - \mathcal{M}$ is a Fg-CS. Hence \mathcal{M} is a Fg-OS in X.

Lemma 3.14: Let (X, τ) be a FTS. If \mathcal{M} is a Fg α g-OS, then it is a F α g-OS (resp. Fg α -OS) in X.

Proof: Similar to above theorem.

Proposition 3.15: If \mathcal{M} and \mathcal{N} are Fg α g-CS in a FTS (X, τ), then $\mathcal{M} \vee \mathcal{N}$ is a Fg α g-CS.

Proof: Let \mathcal{M} and \mathcal{N} be Fg α g-CS in a FTS (X, τ) and let \mathcal{U} be any F α g-OS containing \mathcal{M} and \mathcal{N} . Then $\mathcal{M} \vee \mathcal{N} \leq \mathcal{U}$. Then $\mathcal{M} \leq \mathcal{U}$ and $\mathcal{N} \leq \mathcal{U}$. Since \mathcal{M} and \mathcal{N} are Fg α g-CS, $cl(\mathcal{M}) \leq \mathcal{U}$ and $cl(\mathcal{N}) \leq \mathcal{U}$. Now, $cl(\mathcal{M} \vee \mathcal{N}) = cl(\mathcal{M}) \vee cl(\mathcal{N}) \leq \mathcal{U}$ and so $cl(\mathcal{M} \vee \mathcal{N}) \leq \mathcal{U}$. Hence $\mathcal{M} \vee \mathcal{N}$ is a Fg α g-CS.

Proposition 3.16: If \mathcal{M} and \mathcal{N} are Fg α g-OS in a FTS (X, τ), then $\mathcal{M} \wedge \mathcal{N}$ is a Fg α g-OS.

Proof: Let \mathcal{M} and \mathcal{N} be Fgag-OS in a FTS (X, τ) . Then $1_X - \mathcal{M}$ and $1_X - \mathcal{N}$ are Fgag-CS. By proposition (3.15), $(1_X - \mathcal{M}) \lor (1_X - \mathcal{N})$ is a Fgag-CS. Since $(1_X - \mathcal{M}) \lor (1_X - \mathcal{N}) = 1_X - (\mathcal{M} \land \mathcal{N})$. Hence $\mathcal{M} \land \mathcal{N}$ is a Fgag-OS.

Proposition 3.17: If a F-set \mathcal{M} is Fg α g-CS in a FTS (X, τ) , then $cl(\mathcal{M}) - \mathcal{M}$ contains no nonempty F-CS in X.

Proof: Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{F} be any F-CS in X such that $\mathcal{F} \leq cl(\mathcal{M}) - \mathcal{M}$. Since \mathcal{M} is a Fg α g-CS, we have $cl(\mathcal{M}) \leq 1_X - \mathcal{F}$. This implies $\mathcal{F} \leq 1_X - cl(\mathcal{M})$. Then $\mathcal{F} \leq cl(\mathcal{M}) \wedge (1_X - cl(\mathcal{M})) = 0_X$. Thus, $\mathcal{F} = 0_X$. Hence $cl(\mathcal{M}) - \mathcal{M}$ contains no non-empty F-CS in X.

Proposition 3.18: If a F-set \mathcal{M} is Fg α g-CS in a FTS (X, τ) , then $cl(\mathcal{M}) - \mathcal{M}$ contains no nonempty F α g-CS in X.

Proof: Let \mathcal{M} be a Fg α g-CS in a FTS (X, τ) and let \mathcal{D} be any F α g-CS in X such that $\mathcal{D} \leq cl(\mathcal{M}) - \mathcal{M}$. Since \mathcal{M} is a Fg α g-CS, we have $cl(\mathcal{M}) \leq 1_X - \mathcal{D}$. This implies $\mathcal{D} \leq 1_X - cl(\mathcal{M})$. Then $\mathcal{D} \leq cl(\mathcal{M}) \wedge (1_X - cl(\mathcal{M})) = 0_X$. Thus, $\mathcal{D} = 0_X$. Hence $cl(\mathcal{M}) - \mathcal{M}$ contains no non-empty F α g-CS in X.

Theorem 3.19: If \mathcal{M} is a F α g-OS and a Fg α g-CS in a FTS (X, τ), then \mathcal{M} is a F-CS in X.

Proof: Suppose that \mathcal{M} is a F α g-OS and a Fg α g-CS in a FTS (X, τ) , then $cl(\mathcal{M}) \leq \mathcal{M}$ and since $\mathcal{M} \leq cl(\mathcal{M})$. Thus, $cl(\mathcal{M}) = \mathcal{M}$. Hence \mathcal{M} is a F-CS.

Theorem 3.20: If \mathcal{M} is a Fg α g-CS in a FTS (X, τ) and $\mathcal{M} \leq \mathcal{N} \leq cl(\mathcal{M})$, then \mathcal{N} is a Fg α g-CS in X.

Proof: Suppose that \mathcal{M} is a Fg α g-CS in a FTS (X, τ) . Let \mathcal{U} be a F α g-OS in X such that $\mathcal{N} \leq \mathcal{U}$. Then $\mathcal{M} \leq \mathcal{U}$. Since \mathcal{M} is a Fg α g-CS, it follows that $cl(\mathcal{M}) \leq \mathcal{U}$. Now, $\mathcal{N} \leq cl(\mathcal{M})$ implies $cl(\mathcal{N}) \leq cl(cl(\mathcal{M})) = cl(\mathcal{M})$. Thus, $cl(\mathcal{N}) \leq \mathcal{U}$. Hence \mathcal{N} is a Fg α g-CS.

Theorem 3.21: If \mathcal{M} is a Fg α g-OS in a FTS (X, τ) and $int(\mathcal{M}) \leq \mathcal{N} \leq \mathcal{M}$, then \mathcal{N} is a Fg α g-OS in *X*.

Proof: Suppose that \mathcal{M} is a Fg α g-OS in a FTS (X, τ) and $int(\mathcal{M}) \leq \mathcal{N} \leq \mathcal{M}$. Then $1_X - \mathcal{M}$ is a Fg α g-CS and $1_X - \mathcal{M} \leq 1_X - \mathcal{N} \leq cl(1_X - \mathcal{M})$. Then $1_X - \mathcal{N}$ is a Fg α g-CS by theorem (3.20). Hence, \mathcal{N} is a Fg α g-OS.

Theorem 3.22: A F-set \mathcal{M} is Fg α g-OS iff $\mathcal{C} \leq int(\mathcal{M})$ where \mathcal{C} is a Fg α g-CS and $\mathcal{C} \leq \mathcal{M}$.

Proof: Suppose that $C \leq int(\mathcal{M})$ where C is a Fg α g-CS and $C \leq \mathcal{M}$. Then $1_X - \mathcal{M} \leq 1_X - C$ and $1_X - C$ is a F α g-OS by lemma (3.14). Now, $cl(1_X - \mathcal{M}) = 1_X - int(\mathcal{M}) \leq 1_X - C$. Then $1_X - \mathcal{M}$ is a Fg α g-CS. Hence \mathcal{M} is a Fg α g-OS.

Conversely, let \mathcal{M} be a Fg α g-OS and \mathcal{C} be a Fg α g-CS and $\mathcal{C} \leq \mathcal{M}$. Then $1_X - \mathcal{M} \leq 1_X - \mathcal{C}$. Since $1_X - \mathcal{M}$ is a Fg α g-CS and $1_X - \mathcal{C}$ is a F α g-OS, we have $cl(1_X - \mathcal{M}) \leq 1_X - \mathcal{C}$. Then $\mathcal{C} \leq int(\mathcal{M})$.

Definition 3.23: A F-set \mathcal{M} in a FTS (X, τ) is said to be a fuzzy g α g-neighbourhood (briefly Fg α g-nhd) of a fuzzy point x_{λ} if there exists a Fg α g-OS \mathcal{N} such that $x_{\lambda} \in \mathcal{N} \leq \mathcal{M}$. A Fg α g-nhd \mathcal{M} is said to be a Fg α g-open-nhd (resp. Fg α g-closed-nhd) iff \mathcal{M} is a Fg α g-OS (resp. Fg α g-CS). A F-set \mathcal{M} in a FTS (X, τ) is said to be a fuzzy g α g-q-neighbourhood (briefly Fg α g-q-nhd) of a fuzzy point x_{λ} (resp. F-set \mathcal{N}) if there exists a Fg α g-OS \mathcal{A} in a FTS (X, τ) such that $x_{\lambda}q\mathcal{A} \leq \mathcal{M}$ (resp. $\mathcal{N}q\mathcal{A} \leq \mathcal{M}$).

Theorem 3.24: A F-set \mathcal{M} of a FTS (X, τ) is Fg α g-CS iff $\mathcal{M}\bar{q}\mathcal{C} \Rightarrow cl(\mathcal{M})\bar{q}\mathcal{C}$, for every F α g-CS \mathcal{C} of X.

Proof: Necessity. Let \mathcal{C} be a F α g-CS and $\mathcal{M}\overline{q}\mathcal{C}$. Then $\mathcal{M} \leq 1_X - \mathcal{C}$ and $1_X - \mathcal{C}$ is a F α g-OS in X which implies that $cl(\mathcal{M}) \leq 1_X - \mathcal{C}$ as \mathcal{M} is a Fg α g-CS. Hence, $cl(\mathcal{M})\overline{q}\mathcal{C}$.

Sufficiency. Let \mathcal{U} be a F α g-OS of a FTS (X, τ) such that $\mathcal{M} \leq \mathcal{U}$. Then $\mathcal{M}\bar{q}(1_X - \mathcal{U})$ and $1_X - \mathcal{U}$ is a F α g-CS in X. By hypothesis, $cl(\mathcal{M})\bar{q}(1_X - \mathcal{U})$ implies $cl(\mathcal{M}) \leq \mathcal{U}$. Hence, \mathcal{M} is a Fg α g-CS in X.

Theorem 3.25: Let x_{λ} and \mathcal{M} be a fuzzy point and a F-set respectively in a FTS (X, τ) . Then $x_{\lambda} \in g\alpha g$ - $cl(\mathcal{M})$ iff every Fg αg -q-nhd of x_{λ} is q-coincident with \mathcal{M} .

Proof: We prove by contradiction. Let $x_{\lambda} \in g\alpha g \cdot cl(\mathcal{M})$. Suppose there exists a Fg $\alpha g \cdot q \cdot nhd \mathcal{A}$ of x_{λ} such that $\mathcal{A}\bar{q}\mathcal{M}$. Since \mathcal{A} is a Fg $\alpha g \cdot q \cdot nhd$ of x_{λ} , there exists a Fg $\alpha g \cdot OS \mathcal{B}$ in X such that $x_{\lambda}q\mathcal{B} \leq \mathcal{A}$ which gives that $\mathcal{B}\bar{q}\mathcal{M}$ and hence $\mathcal{M} \leq 1_X - \mathcal{B}$. Then $g\alpha g \cdot cl(\mathcal{M}) \leq 1_X - \mathcal{B}$, as $1_X - \mathcal{B}$ is a Fg $\alpha g \cdot CS$. Since $x_{\lambda} \notin 1_X - \mathcal{B}$, we have $x_{\lambda} \notin g\alpha g \cdot cl(\mathcal{M})$, a contradiction. Thus every Fg $\alpha g \cdot q \cdot nhd$ of x_{λ} is q-coincident with \mathcal{M} .

Conversely, suppose $x_{\lambda} \notin g\alpha g - cl(\mathcal{M})$. Then there exists a Fg αg -CS \mathcal{N} such that $\mathcal{M} \leq \mathcal{N}$ and $x_{\lambda} \notin \mathcal{N}$. Then we have $x_{\lambda}q(1_X - \mathcal{N})$ and $\mathcal{M}\overline{q}(1_X - \mathcal{N})$, a contradiction. Hence $x_{\lambda} \in g\alpha g - cl(\mathcal{M})$.

Proposition 3.26: Let \mathcal{M} and \mathcal{N} be two F-sets in a FTS (X, τ) . Then the following properties hold: (i) $g\alpha g$ - $cl(0_X) = 0_X$, $g\alpha g$ - $cl(1_X) = 1_X$.

(ii) $g\alpha g - cl(\mathcal{M})$ is a $Fg\alpha g$ -CS in X. (iii) $g\alpha g - cl(\mathcal{M}) \le g\alpha g - cl(\mathcal{N})$ when $\mathcal{M} \le \mathcal{N}$. (iv) $\mathcal{A}q\mathcal{M}$ iff $\mathcal{A}qg\alpha g - cl(\mathcal{M})$, when \mathcal{A} is a $Fg\alpha g$ -OS in X. (v) $g\alpha g - cl(\mathcal{M}) = g\alpha g - cl(g\alpha g - cl(\mathcal{M}))$. (vi) $g\alpha g - cl(\mathcal{M} \land \mathcal{N}) \le g\alpha g - cl(\mathcal{M}) \land g\alpha g - cl(\mathcal{N})$. (vii) $g\alpha g - cl(\mathcal{M} \lor \mathcal{N}) = g\alpha g - cl(\mathcal{M}) \lor g\alpha g - cl(\mathcal{N})$.

Proof: (i) and (ii) are obvious.

(iii) Suppose that $x_{\lambda} \notin g\alpha g \cdot cl(\mathcal{N})$. By theorem (3.25), there is a Fg $\alpha g \cdot q$ -nhd \mathcal{B} of a fuzzy point x_{λ} such that $\mathcal{B}\bar{q}\mathcal{N}$, so there is a Fg αg -OS \mathcal{A} such that $x_{\lambda}q\mathcal{A} \leq \mathcal{B}$ and $\mathcal{A}\bar{q}\mathcal{N}$. Since $\mathcal{M} \leq \mathcal{N}$, then $\mathcal{A}\bar{q}\mathcal{M}$. Hence $x_{\lambda} \notin g\alpha g \cdot cl(\mathcal{M})$ by theorem (3.25). This shows that $g\alpha g \cdot cl(\mathcal{M}) \leq g\alpha g \cdot cl(\mathcal{N})$.

(iv) Let \mathcal{A} be a Fg α g-OS in X. Suppose that $\mathcal{A}\bar{q}\mathcal{M}$, then $\mathcal{M} \leq 1_X - \mathcal{A}$. Since $1_X - \mathcal{A}$ is a Fg α g-CS and by a part (iii), $g\alpha$ g- $cl(\mathcal{M}) \leq g\alpha$ g- $cl(1_X - \mathcal{A}) = 1_X - \mathcal{A}$. Hence, $\mathcal{A}\bar{q}g\alpha$ g- $cl(\mathcal{M})$.

Conversely, suppose that $\mathcal{A}\bar{q}g\alpha g\text{-}cl(\mathcal{M})$. Then $g\alpha g\text{-}cl(\mathcal{M}) \leq 1_X - \mathcal{A}$. Since $\mathcal{M} \leq g\alpha g\text{-}cl(\mathcal{M})$, we have $\mathcal{M} \leq 1_X - \mathcal{A}$. Hence $\mathcal{A}\bar{q}\mathcal{M}$. Thus $\mathcal{A}q\mathcal{M}$ if and only if $\mathcal{A}qg\alpha g\text{-}cl(\mathcal{M})$.

(v) Since $g\alpha g - cl(\mathcal{M}) \leq g\alpha g - cl(g\alpha g - cl(\mathcal{M}))$. We prove that $g\alpha g - cl(g\alpha g - cl(\mathcal{M})) \leq g\alpha g - cl(\mathcal{M})$. Suppose that $x_{\lambda} \notin g\alpha g - cl(\mathcal{M})$. Then by theorem (3.25), there exists a Fg\alpha g - q - nhd \mathcal{B} of a fuzzy point x_{λ} such that $\mathcal{B}\bar{q}\mathcal{M}$ and so there is a Fg\alpha g - OS \mathcal{A} in X such that $x_{\lambda}q\mathcal{A} \leq \mathcal{B}$ and $\mathcal{A}\bar{q}\mathcal{M}$. By a part (iv), $\mathcal{A}\bar{q}g\alpha g - cl(\mathcal{M})$. Then by theorem (3.25), $x_{\lambda} \notin g\alpha g - cl(g\alpha g - cl(\mathcal{M}))$. Thus $g\alpha g - cl(g\alpha g - cl(\mathcal{M}))$. Thus $g\alpha g - cl(g\alpha g - cl(\mathcal{M}))$.

(vi) Since $\mathcal{M} \wedge \mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \wedge \mathcal{N} \leq \mathcal{N}$. Then $g\alpha g \cdot cl(\mathcal{M} \wedge \mathcal{N}) \leq g\alpha g \cdot cl(\mathcal{M})$ and $g\alpha g \cdot cl(\mathcal{M} \wedge \mathcal{N}) \leq g\alpha g \cdot cl(\mathcal{N})$ by a part (iii). Hence, $g\alpha g \cdot cl(\mathcal{M} \wedge \mathcal{N}) \leq g\alpha g \cdot cl(\mathcal{M}) \wedge g\alpha g \cdot cl(\mathcal{N})$.

(vii) Since $\mathcal{M} \leq \mathcal{M} \vee \mathcal{N}$ and $\mathcal{N} \leq \mathcal{M} \vee \mathcal{N}$. By a part (iii), we have $g\alpha g \cdot cl(\mathcal{M}) \leq g\alpha g \cdot cl(\mathcal{M} \vee \mathcal{N})$ and $g\alpha g \cdot cl(\mathcal{N}) \leq g\alpha g \cdot cl(\mathcal{M} \vee \mathcal{N})$. Then $g\alpha g \cdot cl(\mathcal{M}) \vee g\alpha g \cdot cl(\mathcal{N}) \leq g\alpha g \cdot cl(\mathcal{M} \vee \mathcal{N})$.

Conversely, let $x_{\lambda} \in g\alpha g$ - $cl(\mathcal{M} \vee \mathcal{N})$. Then by theorem (3.25), there exists a Fg αg -q-nhd \mathcal{A} of a fuzzy point x_{λ} such that $\mathcal{A}q(\mathcal{M} \vee \mathcal{N})$. By proposition (2.2), either $\mathcal{A}q\mathcal{M}$ or $\mathcal{A}q\mathcal{N}$. Then by theorem (3.25), $x_{\lambda} \in g\alpha g$ - $cl(\mathcal{M})$ or $x_{\lambda} \in g\alpha g$ - $cl(\mathcal{N})$. That is $x_{\lambda} \in g\alpha g$ - $cl(\mathcal{M}) \vee g\alpha g$ - $cl(\mathcal{N})$. Then $g\alpha g$ - $cl(\mathcal{M} \vee \mathcal{N}) \leq g\alpha g$ - $cl(\mathcal{M}) \vee g\alpha g$ - $cl(\mathcal{N})$. Hence, $g\alpha g$ - $cl(\mathcal{M} \vee \mathcal{N}) = g\alpha g$ - $cl(\mathcal{M}) \vee g\alpha g$ - $cl(\mathcal{N})$.

Proposition 3.27: Let \mathcal{M} and \mathcal{N} be two F-sets in a FTS (X, τ) . Then the following properties hold: (i) $g\alpha g$ -*int* $(0_X) = 0_X$, $g\alpha g$ -*int* $(1_X) = 1_X$.

(ii) $gag-int(\mathcal{M})$ is a Fgag-OS in X. (iii) $gag-int(\mathcal{M}) \leq gag-int(\mathcal{N})$ when $\mathcal{M} \leq \mathcal{N}$. (iv) $gag-int(\mathcal{M}) = gag-int(gag-int(\mathcal{M}))$. (v) $gag-int(\mathcal{M} \wedge \mathcal{N}) = gag-int(\mathcal{M}) \wedge gag-int(\mathcal{N})$. (vi) $gag-int(\mathcal{M} \vee \mathcal{N}) \geq gag-int(\mathcal{M}) \vee gag-int(\mathcal{N})$.

Proof: Obvious.

Remark 3.28: The following diagram shows the relations among the different types of weakly F-CS that were studied in this section:

4. Fuzzy gαg-Continuous Functions

Definition 4.1: A function $f: (X, \tau) \to (Y, \psi)$ is said to be a fuzzy gag-continuous (briefly Fgagcontinuous) if $f^{-1}(\mathcal{V})$ is a Fgag-CS in X for every F-CS \mathcal{V} in Y.

Proposition 4.2: Let (X, τ) and (Y, ψ) be FTS, and $f: (X, \tau) \to (Y, \psi)$ be a function. Then f is a Fg α g-continuous function iff $f^{-1}(\mathcal{V})$ is a Fg α g-OS in X, for every F-OS \mathcal{V} in Y.

Proof: Let \mathcal{V} be a F-OS in Y. Then $1_Y - \mathcal{V}$ is a F-CS in Y, so $f^{-1}(1_Y - \mathcal{V}) = 1_X - f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Thus, $f^{-1}(\mathcal{V})$ is a Fg α g-OS in X. The proof of the converse is obvious.

Theorem 4.3: Every $Fg\alpha g$ -continuous function is a $F\alpha g$ -continuous.

Proof: Let $f: (X, \tau) \to (Y, \psi)$ be a Fg α g-continuous function and let \mathcal{V} be a F-CS in Y. Since f is a Fg α g-continuous, $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. By theorem (3.4) part (iii), $f^{-1}(\mathcal{V})$ is a F α g-CS in X. Thus, f is a F α g-continuous.

Theorem 4.4: Every $Fg\alpha g$ -continuous function is a $Fg\alpha$ -continuous.

Proof: Let $f: (X, \tau) \to (Y, \psi)$ be a Fg α g-continuous function and let \mathcal{V} be a F-CS in Y. Since f is a Fg α g-continuous, $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. By theorem (3.4) part (iv), $f^{-1}(\mathcal{V})$ is a Fg α -CS in X. Thus, f is a Fg α -continuous.

The converse of the above theorems need not be true as shown in the following example.

Example 4.5: Let $X = \{x, y\}$, $Y = \{u, v\}$. F-set \mathcal{M} is defined as: $\mathcal{M}(x) = 0.4$, $\mathcal{M}(y) = 0.6$. Let $\tau = \{0_X, \mathcal{M}, 1_X\}$ and $\psi = \{0_Y, 1_Y\}$ be FTS. Then the function $f: (X, \tau) \to (Y, \psi)$ defined by f(x) = u, f(y) = v is a F α g-continuous and hence Fg α -continuous but not Fg α g-continuous.

Theorem 4.6: If $f: (X, \tau) \to (Y, \psi)$ is a Fg α g-continuous function then for each fuzzy point x_{λ} of X and $\mathcal{N} \in \psi$ such that $f(x_{\lambda}) \in \mathcal{N}$, there exists a Fg α g-OS \mathcal{M} of X such that $x_{\lambda} \in \mathcal{M}$ and $f(\mathcal{M}) \leq \mathcal{N}$.

Proof: Let x_{λ} be a fuzzy point of X and $\mathcal{N} \in \psi$ such that $f(x_{\lambda}) \in \mathcal{N}$. Take $\mathcal{M} = f^{-1}(\mathcal{N})$. Since $1_Y - \mathcal{N}$ is a F-CS in Y and f is a Fg α g-continuous function, we have $f^{-1}(1_Y - \mathcal{N}) = 1_X - f^{-1}(\mathcal{N})$ is a Fg α g-CS in X. This gives $\mathcal{M} = f^{-1}(\mathcal{N})$ is a Fg α g-OS in X and $x_{\lambda} \in \mathcal{M}$ and $f(\mathcal{M}) = f(f^{-1}(\mathcal{N})) \leq \mathcal{N}$.

Theorem 4.7: If $f: (X, \tau) \to (Y, \psi)$ is a Fg α g-continuous function then for each fuzzy point x_{λ} of X and $\mathcal{N} \in \psi$ such that $f(x_{\lambda})q\mathcal{N}$, there exists a Fg α g-OS \mathcal{M} of X such that $x_{\lambda}q\mathcal{M}$ and $f(\mathcal{M}) \leq \mathcal{N}$.

Proof: Let x_{λ} be a fuzzy point of X and $\mathcal{N} \in \psi$ such that $f(x_{\lambda})q\mathcal{N}$. Take $\mathcal{M} = f^{-1}(\mathcal{N})$. By above theorem (4.6), \mathcal{M} is a Fg α g-OS in X and $x_{\lambda}q\mathcal{M}$ and $f(\mathcal{M}) = f(f^{-1}(\mathcal{N})) \leq \mathcal{N}$.

Definition 4.8: A function $f: (X, \tau) \to (Y, \psi)$ is said to be a fuzzy gag-irresolute (briefly Fgagirresolute) if $f^{-1}(\mathcal{V})$ is a Fgag-CS in X for every Fgag-CS \mathcal{V} in Y.

Proposition 4.9: Let (X, τ) and (Y, ψ) be FTS, and $f: (X, \tau) \to (Y, \psi)$ be a function. Then f is a Fg α g-irresolute function iff $f^{-1}(\mathcal{V})$ is a Fg α g-OS in X, for every Fg α g-OS \mathcal{V} in Y.

Proof: Let \mathcal{V} be a Fg α g-OS in Y. Then $1_Y - \mathcal{V}$ is a Fg α g-CS in Y, so $f^{-1}(1_Y - \mathcal{V}) = 1_X - f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Thus, $f^{-1}(\mathcal{V})$ is a Fg α g-OS in X. The proof of the converse is obvious.

Theorem 4.10: Every $Fg\alpha g$ -irresolute function is a $Fg\alpha g$ -continuous.

Proof: Let $f:(X,\tau) \to (Y,\psi)$ be a Fg α g-irresolute function and let \mathcal{V} be a F-CS in Y, by theorem (3.4) part (i), then \mathcal{V} is a Fg α g-CS in Y. Since f is a Fg α g-irresolute, then $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Thus, f is a Fg α g-continuous.

The following example shows that the converse of the above theorem not be true.

Example 4.11: Let $X = \{x, y, z\}$, $Y = \{u, v, w\}$. F-sets \mathcal{M} and \mathcal{N} are defined as follows: $\mathcal{M}(x) = 0.7$, $\mathcal{M}(y) = 0.2$, $\mathcal{M}(z) = 0.1$; $\mathcal{N}(u) = 0.1$, $\mathcal{N}(v) = 0.7$, $\mathcal{N}(w) = 0.2$. Let $\tau = \{0_X, \mathcal{M}, 1_X\}$ and $\psi = \{0_Y, \mathcal{N}, 1_Y\}$ be FTS. Then the function $f: (X, \tau) \to (Y, \psi)$ defined by f(x) = v, f(y) = w, f(z) = u is a Fg α g-continuous and it is not a Fg α g-irresolute.

Definition 4.12: A FTS (X, τ) is said to be a fuzzy $T_{g\alpha g}$ -space (briefly $FT_{g\alpha g}$ -space) if every $Fg\alpha g$ -CS in it is a F-CS.

Proposition 4.13: Every $FT_{\frac{1}{2}}$ -space is a $FT_{g\alpha g}$ -space.

Proof: Let (X, τ) be a $FT_{\frac{1}{2}}$ -space and let \mathcal{M} be a Fg α g-CS in X. Then \mathcal{M} is a Fg-CS, by theorem (3.4) part (ii). Since (X, τ) is a $FT_{\frac{1}{2}}$ -space, then \mathcal{M} is a F-CS in X. Hence (X, τ) is a $FT_{g\alpha g}$ -space.

The following example shows that the converse of the above proposition not be true.

Example 4.14: Let $X = \{x, y, z\}$ and the F-sets \mathcal{M} and \mathcal{N} from X to [0,1] be defined as: $\mathcal{M}(x) = 0.7$, $\mathcal{M}(y) = 0.3$, $\mathcal{M}(z) = 1.0$; $\mathcal{N}(x) = 0.7$, $\mathcal{N}(y) = 0.0$, $\mathcal{N}(z) = 0.0$. Let $\tau = \{0_X, \mathcal{M}, \mathcal{N}, 1_X\}$ be a FTS. Then (X, τ) is a $FT_{g\alpha g}$ -space but not $FT_{\frac{1}{2}}$ -space.

Theorem 4.15: If $f_1: (X, \tau) \to (Y, \psi)$ is a Fg α g-continuous function and $f_2: (Y, \psi) \to (Z, \rho)$ is a Fg-continuous function and (Y, ψ) is a $FT_{\frac{1}{2}}$ -space. Then $f_2 \circ f_1: (X, \tau) \to (Z, \rho)$ is a Fg α g-continuous function.

Proof: Let \mathcal{W} be a F-CS in Z. Since f_2 is a Fg-continuous function and (Y, ψ) is a $FT_{\frac{1}{2}}$ -space, $f_2^{-1}(\mathcal{W})$ is a F-CS in Y. Since f_1 is a Fg α g-continuous function, $f_1^{-1}(f_2^{-1}(\mathcal{W}))$ is a Fg α g-CS in X. Thus, $f_2 \circ f_1$ is a Fg α g-continuous.

Theorem 4.16: Let (X, τ) and (Y, ψ) be FTS, and $f: (X, \tau) \to (Y, \psi)$ be a function: (i) If (X, τ) is a $FT_{\frac{1}{2}}$ -space then f is a Fg-continuous iff it is a Fg α g-continuous. (ii) If (X, τ) is a $FT_{g\alpha g}$ -space then f is a F-continuous iff it is a Fg α g-continuous.

(i) If (x, t) is a Figag space then f is a F continuous in this a Figag continuous.

Proof: (i) Let \mathcal{V} be any F-CS in Y. Since f is a Fg-continuous, $f^{-1}(\mathcal{V})$ is a Fg-CS in X. By (X, τ) is a $FT_{\frac{1}{2}}$ -space, which implies, $f^{-1}(\mathcal{V})$ is a F-CS. By theorem (3.4) part (i), $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Hence f is a Fg α g-continuous.

Conversely, suppose that f is a Fg α g-continuous. Let \mathcal{V} be any F-CS in Y. Then $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. By theorem (3.4) part (ii), $f^{-1}(\mathcal{V})$ is a Fg-CS in X. Hence f is a Fg-continuous.

(ii) Let \mathcal{V} be any F-CS in Y. Since f is a F-continuous, $f^{-1}(\mathcal{V})$ is a F-CS in X. By theorem (3.4) part (i), $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. Hence f is a Fg α g-continuous.

Conversely, suppose that f is a Fg α g-continuous. Let \mathcal{V} be any F-CS in Y. Then $f^{-1}(\mathcal{V})$ is a Fg α g-CS in X. By (X, τ) is a F $T_{g\alpha g}$ -space, which implies $f^{-1}(\mathcal{V})$ is a F-CS in X. Hence f is a F-continuous.

Remark 4.17: The following diagram shows the relations among the different types of weakly F-continuous functions that were studied in this section:

5. Fuzzy $g\alpha g R_i$ -Spaces, i = 0, 1

Definition 5.1: The intersection of all Fg α g-open subset of a FTS (X, τ) containing \mathcal{A} is called the fuzzy g α g-kernel of \mathcal{A} (briefly g α g-ker (\mathcal{A})), this means g α g-ker $(\mathcal{A}) = \wedge \{\mathcal{M} : \mathcal{M} \in Fg\alpha$ g-O(X) and $\mathcal{A} \leq \mathcal{M}\}$.

Definition 5.2: Let x_{λ} be a fuzzy point of a FTS (X, τ) . The fuzzy gag-kernel of x_{λ} , denoted by $gag-ker(\{x_{\lambda}\})$ is defined to be the F-set $gag-ker(\{x_{\lambda}\}) = \wedge \{\mathcal{M} : \mathcal{M} \in Fgag-O(X) \text{ and } x_{\lambda} \in \mathcal{M}\}.$

Definition 5.3: In a FTS (X, τ), a F-set \mathcal{A} is said to be weakly ultra fuzzy g α g-separated from \mathcal{B} if there exists a Fg α g-OS \mathcal{M} such that $\mathcal{M} \wedge \mathcal{B} = 0_X$ or $\mathcal{A} \wedge g\alpha$ g- $cl(\mathcal{B}) = 0_X$.

By definition (5.3), we have the following: For every two distinct fuzzy points x_{λ} and y_{μ} of a FTS (*X*, τ),

(i) $g\alpha g\text{-}cl(\{x_{\lambda}\}) = \{y_{\mu} : \{y_{\mu}\} \text{ is not weakly ultra fuzzy } g\alpha g\text{-separated from } \{x_{\lambda}\}\}.$

(ii) $g\alpha g\text{-}ker(\{x_{\lambda}\}) = \{y_{\mu} : \{x_{\lambda}\} \text{ is not weakly ultra fuzzy } g\alpha g\text{-separated from } \{y_{\mu}\}\}.$

Lemma 5.4: Let (X, τ) be a FTS, then $y_{\mu} \in g\alpha g\text{-}ker(\{x_{\lambda}\})$ iff $x_{\lambda} \in g\alpha g\text{-}cl(\{y_{\mu}\})$ for each $x \neq y \in X$.

Proof: Suppose that $y_{\mu} \notin g\alpha g \cdot ker(\{x_{\lambda}\})$. Then there exists a Fg α g-OS \mathcal{U} containing x_{λ} such that $y_{\mu} \notin \mathcal{U}$. Therefore, we have $x_{\lambda} \notin g\alpha g \cdot cl(\{y_{\mu}\})$. The converse part can be proved in a similar way.

Definition 5.5: A FTS (X, τ) is said to be fuzzy $g\alpha g \cdot R_0$ -space (Fg $\alpha g \cdot R_0$ -space, for short) if for each Fg αg -OS \mathcal{U} and $x_{\lambda} \in \mathcal{U}$, then $g\alpha g \cdot cl(\{x_{\lambda}\}) \leq \mathcal{U}$.

Definition 5.6: A FTS (X, τ) is said to be fuzzy $g\alpha g \cdot R_1$ -space (Fg $\alpha g \cdot R_1$ -space, for short) if for each two distinct fuzzy points x_λ and y_μ of X with $g\alpha g \cdot cl(\{x_\lambda\}) \neq g\alpha g \cdot cl(\{y_\mu\})$, there exist disjoint Fg $\alpha g \cdot OS \ \mathcal{U}, \mathcal{V}$ such that $g\alpha g \cdot cl(\{x_\lambda\}) \leq \mathcal{U}$ and $g\alpha g \cdot cl(\{y_\mu\}) \leq \mathcal{V}$.

Theorem 5.7: Let (X,τ) be a FTS. Then (X,τ) is a Fg α g- R_0 -space iff $g\alpha$ g- $cl(\{x_{\lambda}\}) = g\alpha$ g- $ker(\{x_{\lambda}\})$, for each $x \in X$.

Proof: Let (X, τ) be a Fg α g- R_0 -space. If $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $ker(\{x_{\lambda}\})$, for each $x \in X$, then there exist another fuzzy point $y \neq x$ such that $y_{\mu} \in g\alpha$ g- $cl(\{x_{\lambda}\})$ and $y_{\mu} \notin g\alpha$ g- $ker(\{x_{\lambda}\})$ this means there exist an $\mathcal{U}_{x_{\lambda}}$ Fg α g-OS, $y_{\mu} \notin \mathcal{U}_{x_{\lambda}}$ implies $g\alpha$ g- $cl(\{x_{\lambda}\}) \notin \mathcal{U}_{x_{\lambda}}$ this contradiction. Thus $g\alpha$ g- $cl(\{x_{\lambda}\}) = g\alpha$ g- $ker(\{x_{\lambda}\})$.

Conversely, let $g\alpha g-cl(\{x_{\lambda}\}) = g\alpha g-ker(\{x_{\lambda}\})$, for each $Fg\alpha g-OS \ \mathcal{U}, x_{\lambda} \in \mathcal{U}$, then $g\alpha g-ker(\{x_{\lambda}\}) = g\alpha g-cl(\{x_{\lambda}\}) \leq \mathcal{U}$ [by definition (5.1)]. Hence by definition (5.5), (X, τ) is a $Fg\alpha g-R_0$ -space.

Theorem 5.8: A FTS (X, τ) is an Fg α g- R_0 -space iff for each \mathcal{M} Fg α g-CS and $x_{\lambda} \in \mathcal{M}$, then g α g- $ker(\{x_{\lambda}\}) \leq \mathcal{M}$.

Proof: Let for each \mathcal{M} Fg α g-CS and $x_{\lambda} \in \mathcal{M}$, then $g\alpha$ g- $ker(\{x_{\lambda}\}) \leq \mathcal{M}$ and let \mathcal{U} be a Fg α g-OS, $x_{\lambda} \in \mathcal{U}$ then for each $y_{\mu} \notin \mathcal{U}$ implies $y_{\mu} \in \mathcal{U}^{c}$ is a Fg α g-CS implies $g\alpha$ g- $ker(\{y_{\mu}\}) \leq \mathcal{U}^{c}$ [by assumption]. Therefore $x_{\lambda} \notin g\alpha$ g- $ker(\{y_{\mu}\})$ implies $y_{\mu} \notin g\alpha$ g- $cl(\{x_{\lambda}\})$ [by lemma (5.4)]. So $g\alpha$ g- $cl(\{x_{\lambda}\}) \leq \mathcal{U}$. Thus (X, τ) is a Fg α g- R_{0} -space.

Conversely, let (X, τ) be a Fg α g- R_0 -space and \mathcal{M} be a Fg α g-CS and $x_{\lambda} \in \mathcal{M}$. Then for each $y_{\mu} \notin \mathcal{M}$ implies $y_{\mu} \in \mathcal{M}^c$ is a Fg α g-OS, then g α g- $cl(\{y_{\mu}\}) \leq \mathcal{M}^c$ [since (X, τ) is a Fg α g- R_0 -space], so g α g- $ker(\{x_{\lambda}\}) = g\alpha$ g- $cl(\{x_{\lambda}\})$. Thus g α g- $ker(\{x_{\lambda}\}) \leq \mathcal{M}$.

Corollary 5.9: A FTS (X, τ) is Fg α g- R_0 -space iff for each \mathcal{U} Fg α g-OS and $x_{\lambda} \in \mathcal{U}$, then g α g- $cl(g\alpha g-ker(\{x_{\lambda}\})) \leq \mathcal{U}$.

Proof: Clearly.

Theorem 5.10: Every $Fg\alpha g \cdot R_1$ -space is a $Fg\alpha g \cdot R_0$ -space.

Proof: Let (X, τ) be a Fg α g- R_1 -space and let \mathcal{U} be a Fg α g-OS, $x_{\lambda} \in \mathcal{U}$, then for each $y_{\mu} \notin \mathcal{U}$ implies $y_{\mu} \in \mathcal{U}^c$ is a Fg α g-CS and g α g- $cl(\{y_{\mu}\}) \leq \mathcal{U}^c$ implies g α g- $cl(\{x_{\lambda}\}) \neq$ g α g- $cl(\{y_{\mu}\})$. Hence by definition (5.6), g α g- $cl(\{x_{\lambda}\}) \leq \mathcal{U}$. Thus (X, τ) is a Fg α g- R_0 -space.

Theorem 5.11: A FTS (X, τ) is Fgag- R_1 -space iff for each $x \neq y \in X$ with gag- $ker(\{x_{\lambda}\}) \neq gag-ker(\{y_{\mu}\})$, then there exist Fgag-CS \mathcal{M}_1 , \mathcal{M}_2 such that gag- $ker(\{x_{\lambda}\}) \leq \mathcal{M}_1$, gag- $ker(\{x_{\lambda}\}) \wedge \mathcal{M}_2 = 0_X$ and gag- $ker(\{y_{\mu}\}) \leq \mathcal{M}_2$, gag- $ker(\{y_{\mu}\}) \wedge \mathcal{M}_1 = 0_X$ and $\mathcal{M}_1 \vee \mathcal{M}_2 = 1_X$.

Proof: Let (X, τ) be a Fg α g- R_1 -space. Then for each $x \neq y \in X$ with $g\alpha$ g- $ker(\{x_{\lambda}\}) \neq g\alpha$ g- $ker(\{y_{\mu}\})$. Since every Fg α g- R_1 -space is a Fg α g- R_0 -space [by theorem (5.10)], and by theorem (5.7), $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $cl(\{y_{\mu}\})$, then there exist Fg α g-OS $\mathcal{U}_1, \mathcal{U}_2$ such that $g\alpha$ g- $cl(\{x_{\lambda}\}) \leq \mathcal{U}_1$ and $g\alpha$ g- $cl(\{y_{\mu}\}) \leq \mathcal{U}_2$ and $\mathcal{U}_1 \wedge \mathcal{U}_2 = 0_X$ [since (X, τ) is a Fg α g- R_1 -space], then \mathcal{U}_1^c and \mathcal{U}_2^c are Fg α g-CS such that $\mathcal{U}_1^c \vee \mathcal{U}_2^c = 1_X$. Put $\mathcal{M}_1 = \mathcal{U}_1^c$ and $\mathcal{M}_2 = \mathcal{U}_2^c$. Thus $x_{\lambda} \in \mathcal{U}_1 \leq \mathcal{M}_2$ and $y_{\mu} \in \mathcal{U}_2 \leq \mathcal{M}_1$ so that $g\alpha$ g- $ker(\{x_{\lambda}\}) \leq \mathcal{U}_1 \leq \mathcal{M}_2$ and $g\alpha$ g- $ker(\{y_{\mu}\}) \leq \mathcal{U}_2 \leq \mathcal{M}_1$.

Conversely, let for each $x \neq y \in X$ with $g\alpha g$ - $ker(\{x_{\lambda}\}) \neq g\alpha g$ - $ker(\{y_{\mu}\})$, there exist $Fg\alpha g$ - $CS \mathcal{M}_1$, \mathcal{M}_2 such that $g\alpha g$ - $ker(\{x_{\lambda}\}) \leq \mathcal{M}_1$, $g\alpha g$ - $ker(\{x_{\lambda}\}) \wedge \mathcal{M}_2 = 0_X$ and $g\alpha g$ - $ker(\{y_{\mu}\}) \leq \mathcal{M}_2$, $g\alpha g$ - $ker(\{y_{\mu}\}) \wedge \mathcal{M}_1 = 0_X$ and $\mathcal{M}_1 \vee \mathcal{M}_2 = 1_X$, then \mathcal{M}_1^c and \mathcal{M}_2^c are $Fg\alpha g$ -OS such that $\mathcal{M}_1^c \wedge \mathcal{M}_2^c = 0_X$. Put $\mathcal{M}_1^c = \mathcal{U}_2$ and $\mathcal{M}_2^c = \mathcal{U}_1$. Thus, $g\alpha g$ - $ker(\{x_{\lambda}\}) \leq \mathcal{U}_1$ and $g\alpha g$ - $ker(\{y_{\mu}\}) \leq \mathcal{U}_2$ and $\mathcal{U}_1 \wedge \mathcal{U}_2 = 0_X$, so that $x_{\lambda} \in \mathcal{U}_1$ and $y_{\mu} \in \mathcal{U}_2$ implies $x_{\lambda} \notin g\alpha g$ - $cl(\{y_{\mu}\})$ and $y_{\mu} \notin g\alpha g$ - $cl(\{x_{\lambda}\})$, then $g\alpha g$ - $cl(\{x_{\lambda}\}) \leq \mathcal{U}_1$ and $g\alpha g$ - $cl(\{y_{\mu}\}) \leq \mathcal{U}_2$. Thus, (X, τ) is a $Fg\alpha g$ - R_1 -space.

Corollary 5.12: A FTS (X, τ) is Fg α g- R_1 -space iff for each $x \neq y \in X$ with g α g- $cl(\{x_{\lambda}\}) \neq$ g α g- $cl(\{y_{\mu}\})$ there exist disjoint Fg α g-OS \mathcal{U}, \mathcal{V} such that g α g- $cl(g\alpha$ g- $ker(\{x_{\lambda}\})) \leq \mathcal{U}$ and g α g- $cl(g\alpha$ g- $ker(\{y_{\mu}\})) \leq \mathcal{V}$.

Proof: Let (X, τ) be a Fg α g- R_1 -space and let $x \neq y \in X$ with $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $cl(\{y_{\mu}\})$, then there exist disjoint Fg α g-OS \mathcal{U}, \mathcal{V} such that $g\alpha$ g- $cl(\{x_{\lambda}\}) \leq \mathcal{U}$ and $g\alpha$ g- $cl(\{y_{\mu}\}) \leq \mathcal{V}$. Also (X, τ) is a Fg α g- R_0 -space [by theorem (5.10)] implies for each $x \in X$, then $g\alpha$ g- $cl(\{x_{\lambda}\}) = g\alpha$ g- $ker(\{x_{\lambda}\})$ [by theorem (5.7)], but $g\alpha$ g- $cl(\{x_{\lambda}\}) = g\alpha$ g- $cl(g\alpha$ g- $cl(\{x_{\lambda}\})) = g\alpha$ g- $cl(g\alpha$ g- $ker(\{x_{\lambda}\}))$. Thus $g\alpha$ g- $cl(g\alpha$ g- $ker(\{x_{\lambda}\})) \leq \mathcal{U}$ and $g\alpha$ g- $cl(g\alpha$ g- $ker(\{x_{\lambda}\})) \leq \mathcal{V}$.

Conversely, let for each $x \neq y \in X$ with $g\alpha g-cl(\{x_{\lambda}\}) \neq g\alpha g-cl(\{y_{\mu}\})$ there exist disjoint Fg αg -OS \mathcal{U}, \mathcal{V} such that $g\alpha g-cl(g\alpha g-ker(\{x_{\lambda}\})) \leq \mathcal{U}$ and $g\alpha g-cl(g\alpha g-ker(\{y_{\mu}\})) \leq \mathcal{V}$. Since $\{x_{\lambda}\} \leq g\alpha g-ker(\{x_{\lambda}\})$, then $g\alpha g-cl(\{x_{\lambda}\}) \leq g\alpha g-cl(g\alpha g-ker(\{x_{\lambda}\}))$ for each $x \in X$. So we get $g\alpha g-cl(\{x_{\lambda}\}) \leq \mathcal{U}$ and $g\alpha g-cl(\{y_{\mu}\}) \leq \mathcal{V}$. Thus, (X, τ) is a Fg $\alpha g-R_1$ -space.

6. Fuzzy $g\alpha g T_i$ -Spaces, j = 0, 1, 2

Definition 6.1: Let (X, τ) be a FTS. Then X is said to be:

(i) fuzzy $g\alpha g - T_0$ -space (Fg $\alpha g - T_0$ -space, for short) iff for each pair of distinct fuzzy points in *X*, there exists a Fg αg -OS in *X* containing one and not the other.

(ii) fuzzy $g\alpha g \cdot T_1$ -space (Fg $\alpha g \cdot T_1$ -space, for short) iff for each pair of distinct fuzzy points x_{λ} and y_{μ} of X, there exist Fg αg -OS \mathcal{M}, \mathcal{N} containing x_{λ} and y_{μ} respectively such that $y_{\mu} \notin \mathcal{M}$ and $x_{\lambda} \notin \mathcal{N}$.

(iii) fuzzy $g\alpha g - T_2$ -space (Fg $\alpha g - T_2$ -space, for short) iff for each pair of distinct fuzzy points x_{λ} and y_{μ} of *X*, there exist disjoint Fg αg -OS \mathcal{M}, \mathcal{N} in *X* such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$.

Example 6.2: Let $X = \{x, y\}$ and $\tau = \{0_X, x_1, 1_X\}$ be a FTS on X. Then x_1 is a crisp point in X and (X, τ) is a Fg α g- T_0 -space.

Example 6.3: Let $X = \{a, b\}$ and $\tau = \{0_X, a_1, b_1, 1_X\}$ be a FTS on X. Then a_1, b_1 are crisp points in X and (X, τ) is a Fg α g- T_1 -space and Fg α g- T_2 -space.

Remark 6.4: Every $Fg\alpha g T_k$ -space is a $Fg\alpha g T_{k-1}$ -space, k = 1,2.

Proof: Clearly.

Theorem 6.5: A FTS (X, τ) is Fg α g- T_0 -space iff either $y_{\mu} \notin g\alpha$ g- $ker(\{x_{\lambda}\})$ or $x_{\lambda} \notin g\alpha$ g- $ker(\{y_{\mu}\})$, for each $x \neq y \in X$.

Proof: Let (X, τ) be a Fg α g- T_0 -space then for each $x \neq y \in X$, there exists a Fg α g-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Thus either $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ implies $y_{\mu} \notin g\alpha$ g- $ker(\{x_{\lambda}\})$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$ implies $x_{\lambda} \notin g\alpha$ g- $ker(\{y_{\mu}\})$.

Conversely, let either $y_{\mu} \notin g\alpha g$ -ker($\{x_{\lambda}\}$) or $x_{\lambda} \notin g\alpha g$ -ker($\{y_{\mu}\}$), for each $x \neq y \in X$. Then there exists a Fg α g-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Thus (X, τ) is a Fg α g- T_0 -space.

Theorem 6.6: A FTS (X, τ) is Fg α g- T_0 -space iff either g α g- $ker(\{x_{\lambda}\})$ is weakly ultra fuzzy g α g-separated from $\{y_{\mu}\}$ or g α g- $ker(\{y_{\mu}\})$ is weakly ultra fuzzy g α g-separated from $\{x_{\lambda}\}$ for each $x \neq y \in X$.

Proof: Let (X, τ) be a Fg α g- T_0 -space then for each $x \neq y \in X$, there exists a Fg α g-OS \mathcal{M} such that $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$. Now if $x_{\lambda} \in \mathcal{M}, y_{\mu} \notin \mathcal{M}$ implies g α g-ker($\{x_{\lambda}\}$) is weakly ultra fuzzy g α g-separated from $\{y_{\mu}\}$. Or if $x_{\lambda} \notin \mathcal{M}, y_{\mu} \in \mathcal{M}$ implies g α g-ker($\{y_{\mu}\}$) is weakly ultra fuzzy g α g-separated from $\{x_{\lambda}\}$.

Conversely, let either $g\alpha g$ - $ker(\{x_{\lambda}\})$ be weakly ultra fuzzy $g\alpha g$ -separated from $\{y_{\mu}\}$ or $g\alpha g$ - $ker(\{y_{\mu}\})$ be weakly ultra fuzzy $g\alpha g$ -separated from $\{x_{\lambda}\}$. Then there exists a Fg αg -OS \mathcal{M} such that $g\alpha g$ - $ker(\{x_{\lambda}\}) \leq \mathcal{M}$ and $y_{\mu} \notin \mathcal{M}$ or $g\alpha g$ - $ker(\{y_{\mu}\}) \leq \mathcal{M}$, $x_{\lambda} \notin \mathcal{M}$ implies $x_{\lambda} \in \mathcal{M}$, $y_{\mu} \notin \mathcal{M}$ or $x_{\lambda} \notin \mathcal{M}$, $y_{\mu} \in \mathcal{M}$. Thus, (X, τ) is a Fg αg - T_0 -space.

Theorem 6.7: A FTS (X, τ) is Fg α g- T_1 -space iff for each $x \neq y \in X$, g α g-ker($\{x_{\lambda}\}$) is weakly ultra fuzzy g α g-separated from $\{y_{\mu}\}$ and g α g-ker($\{y_{\mu}\}$) is weakly ultra fuzzy g α g-separated from $\{x_{\lambda}\}$.

Proof: Let (X, τ) be a Fg α g- T_1 -space, then for each $x \neq y \in X$, there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}, y_{\mu} \in \mathcal{V}$. Implies $g\alpha$ g- $ker(\{x_{\lambda}\})$ is weakly ultra fuzzy $g\alpha$ g-separated from $\{y_{\mu}\}$ and $g\alpha$ g- $ker(\{y_{\mu}\})$ is weakly ultra fuzzy $g\alpha$ g-separated from $\{x_{\lambda}\}$.

Conversely, let $g\alpha g$ - $ker(\{x_{\lambda}\})$ be weakly ultra fuzzy $g\alpha g$ -separated from $\{y_{\mu}\}$ and $g\alpha g$ - $ker(\{y_{\mu}\})$ be weakly ultra fuzzy $g\alpha g$ -separated from $\{x_{\lambda}\}$. Then there exist Fg αg -OS \mathcal{U}, \mathcal{V} such that $g\alpha g$ - $ker(\{x_{\lambda}\}) \leq \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $g\alpha g$ - $ker(\{y_{\mu}\}) \leq \mathcal{V}, x_{\lambda} \notin \mathcal{V}$ implies $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $x_{\lambda} \notin \mathcal{V}, y_{\mu} \in \mathcal{V}$. Thus, (X, τ) is a Fg αg - T_1 -space.

Theorem 6.8: A FTS (X, τ) is Fg α g- T_1 -space iff for each $x \in X$, g α g-ker $(\{x_{\lambda}\}) = \{x_{\lambda}\}$.

Proof: Let (X, τ) be a Fg α g- T_1 -space and let g α g-ker $(\{x_{\lambda}\}) \neq \{x_{\lambda}\}$. Then g α g-ker $(\{x_{\lambda}\})$ contains another fuzzy point distinct from x_{λ} say y_{μ} . So $y_{\mu} \in g\alpha$ g-ker $(\{x_{\lambda}\})$ implies g α g-ker $(\{x_{\lambda}\})$ is not weakly ultra fuzzy g α g-separated from $\{y_{\mu}\}$. Hence by theorem (6.7), (X, τ) is not a Fg α g- T_1 -space this is contradiction. Thus g α g-ker $(\{x_{\lambda}\}) = \{x_{\lambda}\}$.

Conversely, let $g\alpha g$ - $ker(\{x_{\lambda}\}) = \{x_{\lambda}\}$, for each $x \in X$ and let (X, τ) be not a Fg αg - T_1 -space. Then by theorem (6.7), $g\alpha g$ - $ker(\{x_{\lambda}\})$ is not weakly ultra fuzzy $g\alpha g$ -separated from $\{y_{\mu}\}$ for some $x \neq y \in X$, this means that for every Fg αg -OS \mathcal{M} contains $g\alpha g$ - $ker(\{x_{\lambda}\})$ then $y_{\mu} \in \mathcal{M}$ implies

 $y_{\mu} \in \land \{\mathcal{M} \in \operatorname{Fgag-O}(X): x_{\lambda} \in \mathcal{M}\}$ implies $y_{\mu} \in \operatorname{gag-ker}(\{x_{\lambda}\})$, this is contradiction. Thus, (X, τ) is a $\operatorname{Fgag-}T_1$ -space.

Theorem 6.9: A FTS (X, τ) is Fg α g- T_1 -space iff for each $x \neq y \in X$, $y_\mu \notin g\alpha$ g- $ker(\{x_\lambda\})$ and $x_\lambda \notin g\alpha$ g- $ker(\{y_\mu\})$.

Proof: Let (X, τ) be a Fg α g- T_1 -space then for each $x \neq y \in X$, there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Implies $y_{\mu} \notin g\alpha g$ - $ker(\{x_{\lambda}\})$ and $x_{\lambda} \notin g\alpha g$ - $ker(\{y_{\mu}\})$. Conversely, let $y_{\mu} \notin g\alpha g$ - $ker(\{x_{\lambda}\})$ and $x_{\lambda} \notin g\alpha g$ - $ker(\{y_{\mu}\})$, for each $x \neq y \in X$. Then there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a Fg αg - T_1 -space.

Theorem 6.10: A FTS (X, τ) is Fg α g- T_1 -space iff for each $x \neq y \in X$ implies $g\alpha$ g- $ker(\{x_{\lambda}\}) \land g\alpha$ g- $ker(\{y_{\mu}\}) = 0_X$.

Proof: Let (X, τ) be a Fg α g- T_1 -space. Then g α g-ker $(\{x_{\lambda}\}) = \{x_{\lambda}\}$ and g α g-ker $(\{y_{\mu}\}) = \{y_{\mu}\}$ [by theorem (6.8)]. Thus, g α g-ker $(\{x_{\lambda}\}) \wedge g\alpha$ g-ker $(\{y_{\mu}\}) = 0_X$.

Conversely, let for each $x \neq y \in X$ implies $g\alpha g \cdot ker(\{x_{\lambda}\}) \wedge g\alpha g \cdot ker(\{y_{\mu}\}) = 0_X$ and let (X, τ) be not Fg $\alpha g \cdot T_1$ -space, then for each $x \neq y \in X$ implies $y_{\mu} \in g\alpha g \cdot ker(\{x_{\lambda}\})$ or $x_{\lambda} \in g\alpha g \cdot ker(\{y_{\mu}\})$ [by theorem (6.9)], then $g\alpha g \cdot ker(\{x_{\lambda}\}) \wedge g\alpha g \cdot ker(\{y_{\mu}\}) \neq 0_X$ this is contradiction. Thus, (X, τ) is a Fg $\alpha g \cdot T_1$ -space.

Theorem 6.11: A FTS (X, τ) is Fg α g- T_1 -space iff (X, τ) is Fg α g- T_0 -space and Fg α g- R_0 -space.

Proof: Let (X, τ) be a Fg α g- T_1 -space and let $x_{\lambda} \in \mathcal{U}$ be a Fg α g-OS, then for each $x \neq y \in X$, g α gker($\{x_{\lambda}\}$) \land g α g-ker($\{y_{\mu}\}$) = 0_x [by theorem (6.10)] implies $x_{\lambda} \notin$ g α g-ker($\{y_{\mu}\}$) and $y_{\mu} \notin$ g α gker($\{x_{\lambda}\}$), this means g α g-cl($\{x_{\lambda}\}$) = $\{x_{\lambda}\}$, hence g α g-cl($\{x_{\lambda}\}$) $\leq \mathcal{U}$. Thus, (X, τ) is a Fg α g- R_0 space.

Conversely, let (X, τ) be a Fg α g- T_0 -space and Fg α g- R_0 -space, then for each $x \neq y \in X$ there exists a Fg α g-OS \mathcal{U} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ or $x_{\lambda} \notin \mathcal{U}, y_{\mu} \in \mathcal{U}$. Say $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ since (X, τ) is a Fg α g- R_0 -space, then g α g- $cl(\{x_{\lambda}\}) \leq \mathcal{U}$, this means there exists a Fg α g-OS \mathcal{V} such that $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$. Thus, (X, τ) is a Fg α g- T_1 -space.

Theorem 6.12: A FTS (X, τ) is Fg α g- T_2 -space iff (i) (X, τ) is a Fg α g- T_0 -space and Fg α g- R_1 -space. (ii) (X, τ) is a Fg α g- T_1 -space and Fg α g- R_1 -space.

Proof: (i) Let (X, τ) be a Fg α g- T_2 -space, then it is a Fg α g- T_0 -space. Now since (X, τ) is a Fg α g- T_2 -space, then for each $x \neq y \in X$, there exist disjoint Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}$ and $y_{\mu} \in \mathcal{V}$ implies $x_{\lambda} \notin g\alpha$ g- $cl(\{y_{\mu}\})$ and $y_{\mu} \notin g\alpha$ g- $cl(\{x_{\lambda}\})$, therefore $g\alpha$ g- $cl(\{x_{\lambda}\}) = \{x_{\lambda}\} \leq \mathcal{U}$ and $g\alpha$ g- $cl(\{y_{\mu}\}) = \{y_{\mu}\} \leq \mathcal{V}$. Thus, (X, τ) is a Fg α g- R_1 -space.

Conversely, let (X, τ) be a Fg α g- T_0 -space and Fg α g- R_1 -space, then for each $x \neq y \in X$, there exists a Fg α g-OS \mathcal{U} such that $x_{\lambda} \in \mathcal{U}$, $y_{\mu} \notin \mathcal{U}$ or $y_{\mu} \in \mathcal{U}$, $x_{\lambda} \notin \mathcal{U}$, implies $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $cl(\{y_{\mu}\})$, since (X, τ) is a Fg α g- R_1 -space [by assumption], then there exist disjoint Fg α g-OS \mathcal{M}, \mathcal{N} such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$. Thus, (X, τ) is a Fg α g- T_2 -space.

(ii) By the same way of part (i) a Fg α g- T_2 -space is Fg α g- T_1 -space and Fg α g- R_1 -space.

Conversely, let (X, τ) be a Fg α g- T_1 -space and Fg α g- R_1 -space, then for each $x \neq y \in X$, there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that $x_{\lambda} \in \mathcal{U}, y_{\mu} \notin \mathcal{U}$ and $y_{\mu} \in \mathcal{V}, x_{\lambda} \notin \mathcal{V}$ implies $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $cl(\{y_{\mu}\})$, since (X, τ) is a Fg α g- R_1 -space, then there exist disjoint Fg α g-OS \mathcal{M}, \mathcal{N} such that $x_{\lambda} \in \mathcal{M}$ and $y_{\mu} \in \mathcal{N}$. Thus, (X, τ) is a Fg α g- T_2 -space.

Corollary 6.13: A Fg α g- T_0 -space is Fg α g- T_2 -space iff for each $x \neq y \in X$ with $g\alpha$ g- $ker(\{x_{\lambda}\}) \neq$ $g\alpha$ g- $ker(\{y_{\mu}\})$, then there exist Fg α g-CS $\mathcal{M}_1, \mathcal{M}_2$ such that $g\alpha$ g- $ker(\{x_{\lambda}\}) \leq \mathcal{M}_1, g\alpha$ g- $ker(\{x_{\lambda}\}) \wedge \mathcal{M}_2 = 0_X$ and $g\alpha$ g- $ker(\{y_{\mu}\}) \leq \mathcal{M}_2, g\alpha$ g- $ker(\{y_{\mu}\}) \wedge \mathcal{M}_1 = 0_X$ and $\mathcal{M}_1 \vee \mathcal{M}_2 = 1_X$.

Proof: By theorem (5.11) and theorem (6.12).

Corollary 6.14: A Fg α g- T_1 -space is Fg α g- T_2 -space iff one of the following conditions holds: (i) for each $x \neq y \in X$ with $g\alpha$ g- $cl(\{x_{\lambda}\}) \neq g\alpha$ g- $cl(\{y_{\mu}\})$, then there exist Fg α g-OS \mathcal{U}, \mathcal{V} such that

 $g\alpha g\text{-}cl(g\alpha g\text{-}ker(\{x_{\lambda}\})) \leq \mathcal{U} \text{ and } g\alpha g\text{-}cl(g\alpha g\text{-}ker(\{y_{\mu}\})) \leq \mathcal{V}.$

(ii) for each $x \neq y \in X$ with $g\alpha g\text{-}ker(\{x_{\lambda}\}) \neq g\alpha g\text{-}ker(\{y_{\mu}\})$, then there exist $Fg\alpha g\text{-}CS \ \mathcal{M}_{1}, \mathcal{M}_{2}$ such that $g\alpha g\text{-}ker(\{x_{\lambda}\}) \leq \mathcal{M}_{1}$, $g\alpha g\text{-}ker(\{x_{\lambda}\}) \wedge \mathcal{M}_{2} = 0_{X}$ and $g\alpha g\text{-}ker(\{y_{\mu}\}) \leq \mathcal{M}_{2}$, $g\alpha g\text{-}ker(\{y_{\mu}\}) \wedge \mathcal{M}_{1} = 0_{X}$ and $\mathcal{M}_{1} \vee \mathcal{M}_{2} = 1_{X}$.

Proof: (i) By corollary (5.12) and theorem (6.12). (ii) By theorem (5.11) and theorem (6.12).

Theorem 6.15: A Fg α g- R_1 -space is Fg α g- T_2 -space iff one of the following conditions holds: (i) for each $x \in X$, $g\alpha$ g- $ker(\{x_{\lambda}\}) = \{x_{\lambda}\}$.

(ii) for each $x \neq y \in X$, $g\alpha g \cdot ker(\{x_{\lambda}\}) \neq g\alpha g \cdot ker(\{y_{\mu}\})$ implies $g\alpha g \cdot ker(\{x_{\lambda}\}) \wedge g\alpha g \cdot ker(\{y_{\mu}\}) = 0_X$.

(iii) for each $x \neq y \in X$, either $x_{\lambda} \notin g\alpha g\text{-}ker(\{y_u\})$ or $y_u \notin g\alpha g\text{-}ker(\{x_{\lambda}\})$.

(iv) for each $x \neq y \in X$ then $x_{\lambda} \notin g\alpha g \cdot ker(\{y_{\mu}\})$ and $y_{\mu} \notin g\alpha g \cdot ker(\{x_{\lambda}\})$.

Proof: (i) Let (X, τ) be a Fg α g- T_2 -space. Then (X, τ) is a Fg α g- T_1 -space and Fg α g- R_1 -space [by theorem (6.12)]. Hence by theorem (6.8), g α g-ker($\{x_{\lambda}\}$) = $\{x_{\lambda}\}$ for each $x \in X$.

Conversely, let for each $x \in X$, $g\alpha g$ - $ker(\{x_{\lambda}\}) = \{x_{\lambda}\}$, then by theorem (6.8), (X, τ) is a Fg α g- T_1 -space. Also (X, τ) is a Fg α g- R_1 -space by assumption. Hence by theorem (6.12), (X, τ) is a Fg α g- T_2 -space.

(ii) Let (X, τ) be a Fg α g- T_2 -space. Then (X, τ) is a Fg α g- T_1 -space [by remark (6.4)]. Hence by theorem (6.10), g α g-ker($\{x_{\lambda}\}$) \land g α g-ker($\{y_{\mu}\}$) = 0_X for each $x \neq y \in X$.

Conversely, assume that for each $x \neq y \in X$, $g\alpha g \cdot ker(\{x_{\lambda}\}) \neq g\alpha g \cdot ker(\{y_{\mu}\})$ implies $g\alpha g \cdot ker(\{x_{\lambda}\}) \wedge g\alpha g \cdot ker(\{y_{\mu}\}) = 0_X$. So by theorem (6.10), (X, τ) is a Fg $\alpha g \cdot T_1$ -space, also (X, τ) is a Fg $\alpha g \cdot R_1$ -space by assumption. Hence by theorem (6.12), (X, τ) is a Fg $\alpha g \cdot T_2$ -space.

(iii) Let (X, τ) be a Fg α g- T_2 -space. Then (X, τ) is a Fg α g- T_0 -space [by remark (6.4)]. Hence by theorem (6.5), either $x_\lambda \notin g\alpha g$ -ker($\{y_\mu\}$) or $y_\mu \notin g\alpha g$ -ker($\{x_\lambda\}$) for each $x \neq y \in X$.

Conversely, assume that for each $x \neq y \in X$, either $x_{\lambda} \notin g\alpha g$ - $ker(\{y_{\mu}\})$ or $y_{\mu} \notin g\alpha g$ - $ker(\{x_{\lambda}\})$ for each $x \neq y \in X$. So by theorem (6.5), (X, τ) is a Fg αg - T_0 -space, also (X, τ) is a Fg αg - R_1 -space by assumption. Thus (X, τ) is a Fg αg - T_2 -space [by theorem (6.12)].

(iv) Let (X, τ) be a Fg α g- T_2 -space. Then (X, τ) is a Fg α g- T_1 -space and Fg α g- R_1 -space [by theorem (6.12)]. Hence by theorem (6.9), $x_{\lambda} \notin g\alpha$ g- $ker(\{y_{\mu}\})$ and $y_{\mu} \notin g\alpha$ g- $ker(\{x_{\lambda}\})$.

Conversely, let for each $x \neq y \in X$ then $x_{\lambda} \notin g\alpha g\text{-}ker(\{y_{\mu}\})$ and $y_{\mu} \notin g\alpha g\text{-}ker(\{x_{\lambda}\})$. Then by theorem (6.9), (X, τ) is a Fg α g- T_1 -space. Also (X, τ) is a Fg α g- R_1 -space by assumption. Hence by theorem (6.12), (X, τ) is a Fg α g- T_2 -space.

Remark 6.16: Each fuzzy g α g-separation axiom is defined as the conjunction of two weaker fuzzy axioms: Fg α g- T_k -space = Fg α g- R_{k-1} -space and Fg α g- T_{k-1} -space = Fg α g- R_{k-1} -space and Fg α g- T_0 -space, k = 1,2.

Remark 6.17: The relation between fuzzy $g\alpha g$ -separation axioms can be representing as a matrix. Therefore, the element a_{ij} refers to this relation. As the following matrix representation shows:

and	$Fg\alpha g - T_0$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$	$Fg\alpha g - R_0$	$Fg\alpha g - R_1$
$Fg\alpha g - T_0$	$Fg\alpha g - T_0$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$
$Fg\alpha g - T_1$	$Fg\alpha g - T_1$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$
$Fg\alpha g - T_2$	$Fg\alpha g - T_2$	$Fg\alpha g - T_2$	$Fg\alpha g - T_2$	$Fg\alpha g - T_2$	$Fg\alpha g - T_2$
$Fg\alpha g - R_0$	$Fg\alpha g - T_1$	$Fg\alpha g - T_1$	$Fg\alpha g - T_2$	$Fg\alpha g - R_0$	$Fg\alpha g - R_1$
Fgαg-R ₁	$Fg\alpha g - T_2$	Fg α g- T_2	$Fg\alpha g - T_2$	Fgαg-R ₁	$Fg\alpha g - R_1$

Matrix Representation

The relation between fuzzy $g\alpha g$ -separation axioms

References

- [1] A. S. Bin Shahna, "On fuzzy strong semi continuity and fuzzy pre continuity", *Fuzzy sets and system*, 44(2), (1991), 303-308.
- [2] C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., 24(1968), 182-190.
- [3] C. K. Wong, "Fuzzy points and local properties of fuzzy topology", J. Math. Anal. Appl., 46(1974), 316-328.
- [4] G. Balasubramania and P. Sundaram, "On some generalizations of fuzzy continuous functions", *Fuzzy sets and Systems*, 86(1), (1997), 93-100.
- [5] L. A. Zadeh, "Fuzzy sets", Information and control, 8(1965), 338-353.
- [6] P. M. Pu and Y. M. Liu, "Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence", J. Math. Anal. Appl., 76(1980), 571-599.
- [7] R. H. Warren, "Neighborhoods, bases and continuity in fuzzy topological spaces", *The Rocky Mountain Journal of Mathematics*, 8(3), (1978), 459-470.
- [8] R. K. Saraf and S. Mishra, "Fgα-closed sets", J. Tripura Math. Soc., 2(2000), 27-32.
- [9] R. K. Saraf, G. Navalagi and M. Khanna, "On fuzzy semi pre generalized closed sets", *Bull. Malaysian Math. Sci. Soc.*, 28(1), (2005), 19-30.
- [10] S. S. Thakur and S. Singh, "On fuzzy semi pre open sets and fuzzy semi pre continuity", *Fuzzy Sets and systems*, 98(3), (1998), 383-391.
- [11] S. Ganguly and S. Saha, "A note on δ -continuity and δ -connected sets in fuzzy set theory", *Simon Stevin*, 62(1988).
- [12] S. Kalaiselvi and V. Seenivasan, "Fuzzy generalized semi generalized closed sets", *International Journal of Pure and Applied Mathematics*, 95(3), (2014), 323-338.