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Abstract: 
In this paper we introduced a new class of fuzzy closed sets called fuzzy    -closed sets and 

study their basic properties in fuzzy topological spaces. We also introduced fuzzy    -
continuous functions with some of its properties. Moreover, the investigation will include some 

of the properties of the fuzzy separation axioms such fuzzy    -  -space and fuzzy    -  -space 

(note that, the indexes   and   are natural numbers of the spaces   and   are from 0 to 1 and from 

0 to 2 respectively). 
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 الخلاصة: 
في هرا البحث قدمنب فئت جديدة مه المجمىعبث المغلقت الضبببيت تسمى ببلمجمىعبث المعممت ألفب المعممت المغلقت الضبببيت 

قدمنب أيضب الدوال المعممت ألفب المعممت المستمسة الضبببيت مع  .الضبببيتودزاست خصبئصهب الأسبسيت في الفضبءاث التبىلىجيت 

الضبببي و    -   بعض خصبئصهب. علاوة على ذلك، سيشمل تحقيق بعض خصبئص بديهيبث الفصل الضبببيت مثل فضبء 

 2إلى  0ومه  1إلى  0هي مه   و  هي اعداد طبيعيت مه الفضبءاث   و   الضبببي )لاحظ أن المؤشساث    -   فضبء 

 على التىالي(.
 

1. Introduction 
In 1965 Zadeh studied the fuzzy sets (briefly  -sets) (see [5]) which plays such a role in the 

field of fuzzy topological spaces (or simply    ). The fuzzy topological spaces investigated by 

Chang in 1968 (see [2]). A. S. Bin Shahna [1] defined fuzzy  -closed sets. In 1997, fuzzy 

generalized closed set (briefly   -  ) was introduced by G. Balasubramania and P. Sundaram [4]. 

S. Kalaiselvi and V. Seenivasan [12] introduced the concept of fuzzy    -closed sets in    . The 

purpose of this paper is to introduce the concept of fuzzy    -closed sets and study their basic 

properties in    . We also introduce fuzzy    -continuous functions by using fuzzy    -closed 

sets and study some of their fundamental properties. Furthermore, the investigation will include 

some of the properties of the fuzzy separation axioms such fuzzy    -  -space and fuzzy    -  -

space (here the indexes   and   are natural numbers of the spaces   and   are from 0 to 1 and from 0 

to 2 respectively).  
 

2. Preliminaries 
Throughout this paper, (   ) (   ) and (   ) (or simply     and  ) always mean     on 

which no separation axioms are assumed unless otherwise mentioned. A fuzzy point [3] with 

support     and value   (     ) at     will be denoted by   , and for  -set  ,      

iff    ( ). Two fuzzy points    and    are said to be distinct iff their supports are distinct. That 

is, by    and    we mean the constant  -sets taking the values   and   on  , respectively. For a  -
set   in a     (   ),   ( ),    ( ) and         denote the fuzzy closure of  , the 

fuzzy interior of   and the fuzzy complement of   respectively.  
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Definition 2.1:[11] A fuzzy point in a set   with support   and membership value   is called crisp 

point, denoted by   . For any  -set   in  , we have      iff  ( )   . 
 

Proposition 2.2:[10] Let       be  -sets in a     (   ). Then   (   ) iff     or     . 
 

Definition 2.3:[6] A fuzzy point      is called quasi-coincident (briefly  -coincident) with the 

 -set   is denoted by      iff     ( )   . A  -set   in a     (   ) is called  -coincident 

with a  -set   which is denoted by     iff there exists     such that  ( )   ( )   . If 
the  -sets   and   in a     (   ) are not  -coincident then we write   ̅ . Note that   
    ̅(    ). 
 

Definition 2.4:[6] A  -set   in a     (   ) is called  -neighbourhood(briefly  -nhd)of a fuzzy 

point    (resp.  -set  )if there is a  -     in a     (   ) such that        (resp.     
 ). 
 

Proposition 2.5:[4,7] Let     be two  -sets in a     (   ). Then the following properties hold:  

(i)   is a  -   iff      ( ). 
(ii)   is a  -   iff     ( ). 
(iii)    ( )        (   ( ))     ( ). 
(iv)    ( )     ( )  whenever    . 

(v)    (   )     ( )     ( )     (   )     ( )     ( ). 
(vi)     ( )    (  ( ))    ( ). 
(vii)   ( )    ( )  whenever    . 

(viii)   (   )    ( )    ( )    (   )    ( )    ( ). 
 

Lemma 2.6:[7] Let   be any  -set in a     (   ). Then the following properties hold:  

(i)   (    )        ( ). 
(ii)    (    )       ( ). 
 

Definition 2.7:[2] Let   and   be two non-empty sets, and   (   )  (   ) be a function. If   

is a  -set of   and   is a  -set of  , then: 

(i)  ( ) is a  -set of  , where  

 

 ( )  {
   
     ( )

 ( )           ( )     

                                  
 

 

for every    . 

(ii)    ( ) is a  -set of  , where    ( )( )   ( ( )) for each    . 

(iii)    (    )      
  ( ). 

 

Theorem 2.8:[2] Let   and   be two non-empty sets, and   (   )  (   ) be a function, then: 

(i)    (  )  (   ( )) , for any  -set   in  .  

(ii)  (   ( ))   , for any  -set   in  .  

(iii)      ( ( )), for any  -set   in  .  
 

Definition 2.9:[1] A  -set   of a     (   ) is said to be a fuzzy  -open set (briefly   -  ) if 
     (  (   ( ))) and a fuzzy  -closed set (briefly   -  ) if   (   (  ( )))   . The 

fuzzy  -closure of a  -set   of a     (   ) is the intersection of all   -   that contain   and is 

denoted by    ( ). 
 

Definition 2.10:[4] A  -set   of a     (   ) is said to be a fuzzy  -closed set (briefly   -  ) if 
  ( )    whenever     and   is a  -   in  . The complement of a   -   in   is a   -   in 

 . 
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Definition 2.11:[9] A  -set   of a     (   ) is said to be a fuzzy   -closed set (briefly    -  ) if 
   ( )    whenever     and   is a   -   in  . The complement of a    -   in   is a 

   -   in  . 
 

Definition 2.12:[8] A  -set   of a     (   ) is said to be a fuzzy   -closed set (briefly    -  ) if 
   ( )    whenever     and   is a  -   in  . The complement of a    -   in   is a    -

   in  . 
 

Theorem 2.13:[1,4] In a     (   ), then the following statements hold and the converse of each 

statements are not true: 

(i) Every  -   (resp.  -  ) is a   -   (resp.   -  ). 
(ii) Every  -   (resp.  -  ) is a   -   (resp.   -  ). 
 

Theorem 2.14:[8,9] In a     (   ), then the following statements hold and the converse of each 

statements are not true: 

(i) Every  -   (resp.  -  ) is a    -   (resp.    -  ). 
(ii) Every   -   (resp.   -  ) is a    -   (resp.    -  ). 
(iii) Every   -   (resp.   -  ) is a    -   (resp.    -  ). 
(iv) Every    -   (resp.    -  ) is a    -   (resp.    -  ). 
 

Definition 2.15:[4] A     (   ) is said to be a fuzzy   
 
-space (briefly    

 
-space) if every   -   in 

it is a  -  . 
 

Definition 2.16: Let (   ) and (   ) be    . Then the function   (   )  (   ) is called: 

(i)  -continuous [2] if    ( ) is a  -   (resp.  -  ) set in  , for each  -   (resp.  -  )   in  . 

(ii)   -continuous [1] if    ( ) is a   -   (resp.   -  ) in  , for each  -   (resp.  -  )   in  . 

(iii)   -continuous [4] if    ( ) is a   -   (resp.   -  ) in  , for each  -   (resp.  -  )   in  . 

(iv)    -continuous [9] if    ( ) is a    -   (resp.    -  ) in  , for each  -   (resp.  -  )   in 

 . 

(v)    -continuous [8] if    ( ) is a    -   (resp.    -  ) in  , for each  -   (resp.  -  )   in 

 . 
 

Theorem 2.17:[1,4] Let   (   )  (   ) be a function. Then the following statements hold and 

the converse of each statements are not true: 

(i) Every  -continuous function is a   -continuous. 

(ii) Every  -continuous function is a   -continuous. 
 

Theorem 2.18:[8,9] Let   (   )  (   ) be a function. Then the following statements hold and 

the converse of each statements are not true: 

(i) Every   -continuous function is a    -continuous. 

(ii) Every   -continuous function is a    -continuous. 

(iii) Every    -continuous function is a    -continuous. 
 

3. Fuzzy    -Closed Sets 
Definition 3.1: A  -set   of a     (   ) is said to be a fuzzy generalized   -closed set (briefly 

    -  ) if   ( )    whenever     and   is a    -   in  . The family of all     -   of a 

    (   ) is denoted by     - ( ). 
 

Example 3.2: Let   *   + and the  -set   in   defined as follows:  ( )       ( )     .  
Let   *       + be a    . Then the  -sets      and    are     -   in  . 
  

Definition 3.3: The intersection of all     -   in a     (   ) containing   is called fuzzy    -
closure of   and is denoted by    -  ( ),    -  ( )    *     ,   is a     -  +. 
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Theorem 3.4: In a     (   ), then the following statements are true: 

(i) Every  -   is a     -  . 
(ii) Every     -   is a   -  . 
(iii) Every     -   is a    -  . 
(iv) Every     -   is a    -  . 
 

Proof: (i) Let   be a  -   in a     (   ) and let   be any    -   containing  . Then   ( )  
   . Hence   is a     -  . 
(ii) Let   be a     -   in a     (   ) and let   be any  -   containing  . By theorem (2.14) 

part (i),   is a    -   in  . Since   is a     -  , we have   ( )   . Hence   is a   -  . 
(iii) Let   be a     -   in a     (   ) and let   be any   -   containing  . By theorem (2.14) 

part (iii),   is a    -   in  . Since   is a     -  , we have    ( )    ( )   . Hence   is 

a    -  . 
(iv) Let   be a     -   in a     (   ) and let   be any  -   containing  . By theorem (2.14) 

part (i),   is a    -   in  . Since   is a     -  , we have    ( )    ( )   . Hence   is a 

   -  . 
 

The converse of the above theorem need not be true as shown in the following examples. 
 

Example 3.5: Let   *     + and the  -sets  ,   and   from   to ,   - be defined as: 

 ( )     ,  ( )     ,  ( )      ;  ( )     ,  ( )     ,  ( )      ;  ( )     , 
 ( )     ,  ( )     . Let   *             + be a    . Then the  -set   is a     -   
but not  -   in  . 
 

Example 3.6: Let   *     + and the  -sets  , ,  and   from   to ,   - be defined as: 

 ( )     ,  ( )     ,  ( )      ;  ( )     ,  ( )     ,  ( )      ;  ( )     , 
 ( )     ,  ( )      ;  ( )     ,  ( )     ,  ( )     . Let   *         + be a    . 
Then the  -set   is a   -   and hence    -  , but not     -   in  . And the  -set   is a    -   
but not     -   in  . 
 

Definition 3.7: A  -set   of a     (   ) is said to be a fuzzy generalized   -open set (briefly 

    -open set) iff      is a     -  . The family of all     -open sets of a     (   ) is 

denoted by     - ( ). 
 

Example 3.8: By example (3.2). Then the  -sets      and    are     -   in  . 
 

Definition 3.9: The union of all     -   in a     (   ) contained in   is called fuzzy    -
interior of   and is denoted by    -   ( ),    -   ( )    *        is a     -  +.  
 

Proposition 3.10: Let   be any  -set in a     (   ). Then the following properties hold: 

(i)    -   ( )    iff   is a     -  . 
(ii)    -  ( )    iff   is a     -  . 
(iii)    -   ( ) is the largest     -   contained in  . 

(iv)    -  ( ) is the smallest     -   containing  . 
 

Proof: (i), (ii), (iii) and (iv) are obvious. 
 

Proposition 3.11: Let   be any  -set in a     (   ). Then the following properties hold:  

(i)    -   (    )     (   -  ( )), 
(ii)    -  (    )     (   -   ( )). 
 

Proof: (i) By definition,    -  ( )    *        is a     -  + 
    (   -  ( ))       *        is a     -  + 
                                   *           is a     -  + 
                                   *           is a     -  + 
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                                    -   (    ) 
(ii) The proof is similar to (i). 
 

Theorem 3.12: Let (   ) be a    . If   is a  -  , then it is a     -   in  . 
 

Proof: Let   be a  -   in a     (   ), then      is a  -   in  . By theorem (3.4) part (i), 

     is a     -  . Hence   is a     -   in  . 
 

Theorem 3.13: Let (   ) be a    . If   is a     -  , then it is a   -   in  . 
 

Proof: Let   be a     -   in a     (   ), then      is a     -   in  . By theorem (3.4) part 

(ii),      is a   -  . Hence   is a   -   in  . 
 

Lemma 3.14: Let (   ) be a    . If   is a     -  , then it is a    -   (resp.    -  ) in  . 
 

Proof: Similar to above theorem. 
 

Proposition 3.15: If   and   are     -   in a     (   ), then     is a     -  . 
 

Proof: Let   and   be     -   in a     (   ) and let   be any    -   containing   and  . 

Then      . Then     and    . Since   and   are     -  ,   ( )    and 

  ( )   . Now,   (   )    ( )    ( )    and so   (   )   . Hence     is 

a     -  . 
 

Proposition 3.16: If   and   are     -   in a     (   ), then     is a     -  . 
 

Proof: Let   and   be     -   in a     (   ). Then      and      are     -  . By 

proposition (3.15), (    )  (    ) is a     -  . Since (    )  (    )     
(   ). Hence     is a     -  . 
 

Proposition 3.17: If a  -set   is     -   in a     (   ), then   ( )    contains no non-

empty  -   in  . 
 

Proof: Let   be a     -   in a     (   ) and let   be any  -   in   such that     ( )   . 

Since   is a     -  , we have   ( )      . This implies        ( ). Then   
  ( )  (     ( ))    . Thus,     . Hence   ( )    contains no non-empty  -   in 

 . 
 

Proposition 3.18: If a  -set   is     -   in a     (   ), then   ( )    contains no non-

empty    -   in  . 
 

Proof: Let   be a     -   in a     (   ) and let   be any    -   in   such that     ( )  
 . Since   is a     -  , we have   ( )      . This implies        ( ). Then 

    ( )  (     ( ))    . Thus,     . Hence   ( )    contains no non-empty 

   -   in  . 
 

Theorem 3.19: If   is a    -   and a     -   in a     (   ), then   is a  -   in  . 
 

Proof: Suppose that   is a    -   and a     -   in a     (   ), then   ( )    and 

since     ( ). Thus,   ( )   . Hence   is a  -  . 
 

Theorem 3.20: If   is a     -   in a     (   ) and       ( ), then   is a     -   in 

 . 
 

Proof: Suppose that   is a     -   in a     (   ). Let   be a    -   in   such that    . 

Then    . Since   is a     -  , it follows that   ( )   . Now,     ( ) implies 

  ( )    (  ( ))    ( ). Thus,   ( )   . Hence   is a     -  . 
 

Theorem 3.21: If   is a     -   in a     (   ) and    ( )     , then   is a     -   in 

 . 
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Proof: Suppose that   is a     -   in a     (   ) and    ( )     . Then      is a 

    -   and             (    ). Then      is a     -   by theorem (3.20). 

Hence,   is a     -  . 
 

Theorem 3.22: A  -set   is     -   iff      ( ) where   is a     -   and    . 
 

Proof: Suppose that      ( ) where   is a     -   and    . Then           and 

     is a    -   by lemma (3.14). Now,   (    )        ( )      . Then      

is a     -  . Hence   is a     -  . 
Conversely, let   be a     -   and   be a     -   and    . Then          . Since 

     is a     -   and      is a    -  , we have   (    )      . Then   
   ( ). 
 

Definition 3.23: A  -set   in a     (   ) is said to be a fuzzy    -neighbourhood (briefly     -
nhd) of a fuzzy point    if there exists a     -     such that       . A     -nhd   is 

said to be a     -open-nhd (resp.     -closed-nhd) iff   is a     -   (resp.     -  ). A  -set 

  in a     (   ) is said to be a fuzzy    - -neighbourhood (briefly     - -nhd) of a fuzzy point 

   (resp.  -set  ) if there exists a     -     in a     (   ) such that        (resp.     
 ). 
 

Theorem 3.24: A  -set   of a     (   ) is     -   iff   ̅    ( ) ̅ , for every    -     

of  . 
 

Proof: Necessity. Let   be a    -   and   ̅ . Then        and      is a    -   in   

which implies that   ( )       as   is a     -  . Hence,   ( ) ̅ . 

Sufficiency. Let   be a    -   of a     (   ) such that    . Then   ̅(    ) and       

is a    -   in  . By hypothesis,   ( ) ̅(    ) implies   ( )   . Hence,   is a     -   in 

 . 
 

Theorem 3.25: Let    and   be a fuzzy point and a  -set respectively in a     (   ). Then 

      -  ( ) iff every     - -nhd of    is  -coincident with  . 
 

Proof: We prove by contradiction. Let       -  ( ). Suppose there exists a     - -nhd   of 

   such that   ̅ . Since   is a     - -nhd of   , there exists a     -     in   such that 

       whish gives that   ̅  and hence       . Then    -  ( )      , as 

     is a     -  . Since        , we have       -  ( ), a contradiction. Thus every 

    - -nhd of    is  -coincident with  . 

Conversely, suppose       -  ( ). Then there exists a     -     such that     and 

    . Then we have    (    ) and   ̅(    ), a contradiction. Hence       -  ( ). 
 

Proposition 3.26: Let   and   be two  -sets in a     (   ). Then the following properties hold: 

(i)    -  (  )    ,    -  (  )    . 

(ii)    -  ( ) is a     -   in  . 

(iii)    -  ( )     -  ( ) when    . 

(iv)     iff      -  ( ), when   is a     -   in  . 

(v)    -  ( )     -  (   -  ( )). 
(vi)    -  (   )     -  ( )     -  ( ). 
(vii)    -  (   )     -  ( )     -  ( ). 
 

Proof: (i) and (ii) are obvious. 

(iii) Suppose that       -  ( ). By theorem (3.25), there is a     - -nhd   of a fuzzy point    
such that   ̅ , so there is a     -     such that        and   ̅ . Since    , then 

  ̅ . Hence       -  ( ) by theorem (3.25). This shows that    -  ( )     -  ( ). 
(iv) Let   be a     -   in  . Suppose that   ̅ , then       . Since      is a     -   
and by a part (iii),    -  ( )     -  (    )      . Hence,   ̅   -  ( ).  
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Conversely, suppose that   ̅   -  ( ). Then    -  ( )      . Since      -  ( ), 
we have       . Hence   ̅ . Thus     if and only if      -  ( ). 
(v) Since    -  ( )     -  (   -  ( )). We prove that    -  (   -  ( ))     -  ( ). 
Suppose that       -  ( ). Then by theorem (3.25), there exists a     - -nhd   of a fuzzy 

point     such that    ̅  and so there is a     -     in   such that        and   ̅ . By a 

part (iv),   ̅   -  ( ). Then by theorem (3.25),       -  (   -  ( )). Thus    -  (   -
  ( ))     -  ( ). Hence    -  ( )     -  (   -  ( )). 
(vi) Since       and      . Then    -  (   )     -  ( ) and    -
  (   )     -  ( ) by a part (iii). Hence,    -  (   )     -  ( )     -  ( ). 
(vii) Since       and      . By a part (iii), we have    -  ( )     -  (  
 ) and    -  ( )     -  (   ). Then    -  ( )     -  ( )     -  (   ). 
Conversely, let       -  (   ). Then by theorem (3.25), there exists a     - -nhd   of a 

fuzzy point    such that   (   ). By proposition (2.2), either     or    . Then by 

theorem (3.25),       -  ( ) or       -  ( ). That is       -  ( )     -  ( ). Then 

   -  (   )     -  ( )     -  ( ). Hence,    -  (   )     -  ( )     -
  ( ). 
 

Proposition 3.27: Let   and   be two  -sets in a     (   ). Then the following properties hold: 

(i)    -   (  )    ,    -   (  )    . 

(ii)    -   ( ) is a     -   in  . 

(iii)    -   ( )     -   ( ) when    . 

(iv)    -   ( )     -   (   -   ( )). 
(v)    -   (   )     -   ( )     -   ( ). 
(vi)    -   (   )     -   ( )     -   ( ). 
 

Proof: Obvious. 
 

Remark 3.28: The following diagram shows the relations among the different types of weakly  -   
that were studied in this section: 

 

 

 

 

 

 

 

 

 

4. Fuzzy    -Continuous Functions  
Definition 4.1: A function   (   )  (   ) is said to be a fuzzy    -continuous (briefly     -
continuous) if    ( ) is a     -   in   for every  -     in  . 
 

Proposition 4.2: Let (   ) and (   ) be    , and   (   )  (   ) be a function. Then   is a 

    -continuous function iff    ( ) is a     -   in  , for every  -     in  . 
 

Proof: Let   be a  -   in  . Then      is a  -   in  , so     (    )      
  ( ) is a 

    -   in  . Thus,    ( ) is a     -   in  . The proof of the converse is obvious. 
 

 

 

 -       -   

   -   

  -   

   -   

+ 

   -   
 

  -   



Journal University of Kerbala , Vol. 14 No.3 Scientific . 2016 
 

119 

 

Theorem 4.3: Every     -continuous function is a    -continuous. 
 

Proof: Let   (   )  (   ) be a     -continuous function and let   be a  -   in  . Since   is a 

    -continuous,    ( ) is a     -   in  . By theorem (3.4) part (iii),    ( ) is a    -   in  . 

Thus,   is a    -continuous. 
 

Theorem 4.4: Every     -continuous function is a    -continuous. 
 

Proof: Let   (   )  (   ) be a     -continuous function and let   be a  -   in  . Since   is a 

    -continuous,    ( ) is a     -   in  . By theorem (3.4) part (iv),    ( ) is a    -   in  . 

Thus,   is a    -continuous. 
 

The converse of the above theorems need not be true as shown in the following example. 
 

Example 4.5: Let   *   +,   *   +.  -set   is defined as:  ( )     ,  ( )     .  
Let   *       + and   *     + be    . Then the function   (   )  (   ) defined by 

 ( )   ,  ( )    is a    -continuous and hence    -continuous but not     -continuous. 
 

Theorem 4.6: If   (   )  (   ) is a     -continuous function then for each fuzzy point    of 

  and     such that  (  )   , there exists a     -     of   such that      and  ( )  
 . 
 

Proof: Let    be a fuzzy point of   and     such that  (  )   . Take      ( ). Since 

     is a  -   in   and   is a     -continuous function, we have    (    )     
   ( ) is a     -   in  . This gives      ( ) is a     -   in   and      and  ( )  
 (   ( ))   . 
 

Theorem 4.7: If   (   )  (   ) is a     -continuous function then for each fuzzy point    of 

  and     such that  (  )  , there exists a     -     of   such that      and  ( )  
 . 
 

Proof: Let    be a fuzzy point of   and     such that  (  )  . Take      ( ). By above 

theorem (4.6),   is a     -   in   and      and  ( )   (   ( ))   . 
 

Definition 4.8: A function   (   )  (   ) is said to be a fuzzy    -irresolute (briefly     -
irresolute) if    ( ) is a     -   in   for every     -     in  . 
 

Proposition 4.9: Let (   ) and (   ) be    , and   (   )  (   ) be a function. Then   is 

a     -irresolute function iff    ( ) is a     -   in  , for every     -     in  . 
 

Proof: Let   be a     -   in  . Then      is a     -   in  , so     (    )      
  ( ) 

is a     -   in  . Thus,    ( ) is a     -   in  . The proof of the converse is obvious.  
 

Theorem 4.10: Every     -irresolute function is a     -continuous. 
 

Proof: Let   (   )  (   ) be a     -irresolute function and let   be a  -   in  , by theorem 

(3.4) part (i), then   is a     -   in  . Since   is a     -irresolute, then    ( ) is a     -   in 

 . Thus,   is a     -continuous. 
  

The following example shows that the converse of the above theorem not be true. 
 

Example 4.11: Let   *     +,   *     +.  -sets   and   are defined as follows: 

 ( )     ,  ( )     ,  ( )      ;  ( )      ,  ( )     ,  ( )     .  
Let   *       + and   *       + be    . Then the function   (   )  (   ) defined by 

 ( )   ,  ( )   ,  ( )    is a     -continuous and it is not a     -irresolute. 
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Definition 4.12: A     (   ) is said to be a fuzzy     -space (briefly      -space) if every     -

   in it is a  -  . 
  

Proposition 4.13: Every    
 
-space is a      -space. 

 

Proof: Let (   ) be a    
 
-space and let   be a     -   in  . Then   is a   -  , by theorem 

(3.4) part (ii). Since (   ) is a    
 
-space, then   is a  -   in  . Hence (   ) is a      -space. 

 

The following example shows that the converse of the above proposition not be true. 
 

Example 4.14: Let   *     + and the  -sets   and   from   to ,   - be defined as: 

 ( )      ,  ( )      ,  ( )      ;  ( )     ,  ( )      ,  ( )     .  
Let   *         + be a    . Then (   ) is a      -space but not    

 
-space. 

 

Theorem 4.15: If    (   )  (   ) is a     -continuous function and    (   )  (   ) is a 

  -continuous function and (   ) is a    
 
-space. Then       (   )  (   ) is a     -

continuous function. 
 

Proof: Let   be a  -   in  . Since    is a   -continuous function and (   ) is a    
 
-space, 

  
  ( ) is a  -   in  . Since    is a     -continuous function,   

  (  
  ( )) is a     -   in  . 

Thus,       is a     -continuous. 
 

Theorem 4.16: Let (   ) and (   ) be    , and   (   )  (   ) be a function: 

(i) If (   ) is a    
 
-space then   is a   -continuous iff it is a     -continuous. 

(ii) If (   ) is a      -space then   is a  -continuous iff it is a     -continuous. 
 

Proof: (i) Let   be any  -   in  . Since   is a   -continuous,    ( ) is a   -   in  . By (   ) is 

a    
 
-space, which implies,    ( ) is a  -  . By theorem (3.4) part (i),    ( ) is a     -   in  . 

Hence   is a     -continuous. 

Conversely, suppose that   is a     -continuous. Let   be any  -   in  . Then    ( ) is a     -
   in  . By theorem (3.4) part (ii),    ( ) is a   -   in  . Hence   is a   -continuous. 

(ii) Let   be any  -   in  . Since   is a  -continuous,    ( ) is a  -   in  . By theorem (3.4) part 

(i),    ( ) is a     -   in  . Hence   is a     -continuous. 

Conversely, suppose that   is a     -continuous. Let   be any  -   in  . Then    ( ) is a     -
   in  . By (   ) is a      -space, which implies    ( ) is a  -   in  . Hence   is a  -

continuous.  
 

Remark 4.17: The following diagram shows the relations among the different types of weakly  -
continuous functions that were studied in this section: 
 

 

 

 

 

 

 

 

 

 

 

 

    -continuous 
 

   -continuous 

  -continuous 
 

   -continuous 

+ 

          -space 

  -continuous 

 -continuous 
 

+ 

        
 
-space 
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5. Fuzzy    -  -Spaces,       
Definition 5.1: The intersection of all     -open subset of a     (   ) containing   is called the 

fuzzy    -kernel of   (briefly    -   ( )), this means    -   ( )    *        - ( ) 
and    +. 
 

Definition 5.2: Let    be a fuzzy point of a     (   ). The fuzzy    -kernel of   , denoted by 

   -   (*  +) is defined to be the  -set    -   (*  +)    *        - ( ) and     +. 
  

Definition 5.3: In a     (   ), a  -set   is said to be weakly ultra fuzzy    -separated from   if 

there exists a     -     such that        or       -  ( )    .   
            

By definition (5.3), we have the following: For every two distinct fuzzy points    and    of a     

(   ), 
(i)    -  (*  +)  *   *  + is not weakly ultra fuzzy    -separated from *  ++. 

(ii)    -   (*  +)  *   *  + is not weakly ultra fuzzy    -separated from *  ++. 
 

Lemma 5.4: Let (   ) be a    , then       -   (*  +) iff       -  (*  +) for each     

 . 
 

Proof: Suppose that       -   (*  +). Then there exists a     -     containing    such 

that     . Therefore, we have       -  (*  +). The converse part can be proved in a similar 

way. 
 

Definition 5.5: A     (   ) is said to be fuzzy    -  -space (    -  -space, for short) if for each 

    -     and     , then    -  (*  +)   . 
 

Definition 5.6: A     (   ) is said to be fuzzy    -  -space (    -  -space, for short) if for each 

two distinct fuzzy points    and    of   with    -  (*  +)     -  (*  +), there exist disjoint 

    -       such that    -  (*  +)    and    -  (*  +)   . 
 

Theorem 5.7: Let (   ) be a    . Then (   ) is a     -  -space iff    -  (*  +)     -
   (*  +), for each    . 
 

Proof: Let (   ) be a     -  -space. If    -  (*  +)     -   (*  +), for each    , then there 

exist another fuzzy point     such that       -  (*  +) and       -   (*  +) this means 

there exist an         -  ,        implies    -  (*  +)      this contradiction. Thus    -

  (*  +)     -   (*  +). 
Conversely, let    -  (*  +)     -   (*  +), for each     -         , then    -
   (*  +)     -  (*  +)    [by definition (5.1)]. Hence by definition (5.5), (   ) is a F   -
  -space.  
 

Theorem 5.8: A     (   ) is an     -  -space iff for each       -   and     , then    -
   (*  +)   . 
 

Proof: Let for each       -   and     , then    -   (*  +)    and let   be a     -  , 
     then for each      implies     

  is a     -   implies    -   (*  +)   
 [by 

assumption]. Therefore       -   (*  +) implies       -  (*  +) [by lemma (5.4)]. So    -

  (*  +)   . Thus (   ) is a     -  -space. 

Conversely, let (   ) be a     -  -space and   be a     -   and     . Then for each 

     implies     
  is a     -  , then    -  (*  +)   

 [since (   ) is a     -  -space], 

so    -   (*  +)     -  (*  +). Thus    -   (*  +)   . 
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Corollary 5.9: A     (   ) is     -  -space iff for each       -   and     , then    -
  (   -   (*  +))   .  
 

Proof: Clearly. 
 

Theorem 5.10: Every     -  -space is a     -  -space. 
 

Proof: Let (   ) be a     -  -space and let   be a     -  ,     , then for each       

implies     
  is a     -   and    -  (*  +)   

  implies    -  (*  +)     -  (*  +). Hence 

by definition (5.6),    -  (*  +)   . Thus (   ) is a     -  -space. 
 

Theorem 5.11: A     (   ) is     -  -space iff for each       with    -   (*  +)     -
   (*  +), then there exist     -     ,    such that    -   (*  +)    ,    -   (*  +)  

      and    -   (*  +)    ,    -   (*  +)        and          . 
 

Proof: Let (   ) be a     -  -space. Then for each       with    -   (*  +)     -
   (*  +). Since every     -  -space is a     -  -space [by theorem (5.10)], and by theorem 

(5.7),    -  (*  +)     -  (*  +), then there exist     -     ,   such that    -  (*  +)     

and    -  (*  +)     and          [since (   ) is a     -  -space], then   
  and   

  are 

    -   such that   
    

    . Put      
  and      

 . Thus          and    

      so that    -   (*  +)        and    -   (*  +)       . 

Conversely, let for each       with    -   (*  +)     -   (*  +), there exist     -     , 

   such that    -   (*  +)    ,    -   (*  +)        and    -   (*  +)    ,    -

   (*  +)        and         , then    
  and   

  are     -   such that   
     

  

  . Put   
     and   

    . Thus,    -   (*  +)     and    -   (*  +)     and 

        , so that       and       implies       -  (*  +) and       -  (*  +), 

then    -  (*  +)     and    -  (*  +)    . Thus, (   ) is a     -  -space. 
 

Corollary 5.12: A     (   ) is     -  -space iff for each       with    -  (*  +)     -
  (*  +) there exist disjoint     -       such that    -  (   -   (*  +))    and    -  (   -

   (*  +))   . 
 

Proof: Let (   ) be a     -  -space and let       with    -  (*  +)     -  (*  +), then 

there exist disjoint     -       such that    -  (*  +)    and    -  (*  +)   . Also (   ) is 

a     -  -space [by theorem (5.10)] implies for each    , then    -  (*  +)     -   (*  +) 
[by theorem (5.7)], but    -  (*  +)     -  (   -  (*  }))     -  (   -   (*  +)). Thus 

   -  (   -   ({  +))    and    -  (   -   (*  +))   . 

Conversely, let for each       with    -  (*  +)     -  (*  +) there exist disjoint     -   

    such that    -  (   -   (*  +))    and    -  (   -   (*  +))   . Since *  +     -

   (*  +), then    -  (*  +)     -  (   -   (*  +)) for each    . So we get    -  (*  +)  
  and    -  (*  +)   . Thus, (   ) is a     -  -space. 
 

6. Fuzzy    -  -Spaces,         
Definition 6.1: Let (   ) be a    . Then   is said to be: 

(i) fuzzy    -  -space (    -  -space, for short) iff for each pair of distinct fuzzy points in  , 

there exists a     -   in   containing one and not the other.  

(ii) fuzzy    -  -space (    -  -space, for short) iff for each pair of distinct fuzzy points     
and    of  , there exist     -       containing    and    respectively such that      

and     . 

(iii) fuzzy    -  -space (    -  -space, for short) iff for each pair of distinct fuzzy points     
and    of  , there exist disjoint     -       in   such that      and     .  

 



Journal University of Kerbala , Vol. 14 No.3 Scientific . 2016 
 

123 

Example 6.2: Let   *   + and   *        + be a     on  . Then    is a crisp point in   and 
(   ) is a     -  -space. 
 

Example 6.3: Let   *   + and   *           + be a     on  . Then       are crisp points in 

  and (   ) is a     -  -space and     -  -space. 
 

Remark 6.4: Every     -  -space is a     -    -space,      . 
 

Proof: Clearly. 
 

Theorem 6.5: A     (   ) is     -  -space iff either       -   (*  +) or       -

   (*  +), for each      . 
 

Proof: Let (   ) be a     -  -space then for each      , there exists a     -     such that 

    ,      or     ,     . Thus either     ,      implies       -   (*  +) 

or     ,      implies       -   ({  }). 

Conversely, let either       -   (*  +) or       -   (*  +), for each      . Then there 

exists a     -     such that     ,      or     ,     . Thus (   ) is a     -  -
space. 
 

Theorem 6.6: A     (   ) is     -  -space iff either    -   (*  +) is weakly ultra fuzzy    -
separated from *  + or    -   (*  +) is weakly ultra fuzzy    -separated from *  + for each 

     . 
 

Proof: Let (   ) be a     -  -space then for each      , there exists a     -     such 

that     ,      or     ,     . Now if     ,      implies    -   (*  +) is 

weakly ultra fuzzy    -separated from *  +. Or if     ,      implies    -   (*  +) is 

weakly ultra fuzzy    -separated from *  +. 
Conversely, let either    -   (*  +) be weakly ultra fuzzy    -separated from *  + or    -

   (*  +) be weakly ultra fuzzy    -separated from *  +. Then there exists a     -     such 

that    -   (*  +)    and      or    -   (*  +)          implies     ,      

or     ,     . Thus, (   ) is a     -  -space.  
 

Theorem 6.7: A     (   ) is     -  -space iff for each      ,    -   (*  +) is weakly ultra 

fuzzy    -separated from *  + and    -   (*  +) is weakly ultra fuzzy    -separated from *  +  
 

Proof: Let (   ) be a     -  -space, then for each      , there exist     -       such that 

    ,      and     ,     . Implies    -   (*  +) is weakly ultra fuzzy    -separated 

from *  + and    -   (*  +) is weakly ultra fuzzy    -separated from *  +. 

Conversely, let    -   (*  +) be weakly ultra fuzzy    -separated from *  + and    -   (*  +) 

be weakly ultra fuzzy    -separated from *  +. Then there exist     -       such that    -
   (*  +)         and    -   (*  +)         implies     ,      and     , 

    . Thus, (   ) is a     -  -space. 
 

Theorem 6.8: A     (   ) is     -  -space iff for each    ,    -   (*  +)  *  +.  
 

Proof: Let (   ) be a     -  -space and let    -   (*  +)  *  +. Then    -   (*  +) contains 

another fuzzy point distinct from    say   . So       -   (*  +) implies    -   (*  +) is not 

weakly ultra fuzzy    -separated from *  +. Hence by theorem (6.7), (   ) is not a     -  -space 

this is contradiction. Thus    -   (*  +)  *  +.  
Conversely, let    -   (*  +)  *  +, for each     and let (   ) be not a     -  -space. Then 

by theorem (6.7),    -   (*  +) is not weakly ultra fuzzy    -separated from *  + for some 

     , this means that for every     -     contains    -   (*  +) then      implies 
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     *      - ( )       + implies       -   (*  +), this is contradiction. Thus, 

(   ) is a     -  -space.  
 

Theorem 6.9: A     (   ) is     -  -space iff for each      ,       -   (*  +) and 

      -   (*  +). 
 

Proof: Let (   ) be a     -  -space then for each      , there exist     -       such that 

    ,      and     ,     . Implies       -   (*  +) and       -   (*  +). 

Conversely, let       -   (*  +) and       -   (*  +), for each      . Then there exist 

    -       such that     ,      and     ,     . Thus, (   ) is a     -  -space. 
 

Theorem 6.10: A     (   ) is     -  -space iff for each       implies    -   (*  +)  
   -   (*  +)     . 
 

Proof: Let (   ) be a     -  -space. Then    -   (*  +)  *  + and    -   (*  +)  *  + [by 

theorem (6.8)]. Thus,    -   (*  +)     -   (*  +)    .  

Conversely, let for each       implies    -   (*  +)     -   (*  +)     and let (   ) be 

not     -  -space, then for each       implies       -   (*  +) or       -   (*  +) 

[by theorem (6.9)], then    -   (*  +)     -   (*  +)     this is contradiction. Thus, (   ) is 

a     -  -space. 
 

Theorem 6.11: A     (   ) is     -  -space iff (   ) is     -  -space and     -  -space. 
 

Proof: Let (   ) be a     -  -space and let      be a     -  , then for each      ,    -
   (*  +)     -   (*  +)     [by theorem (6.10)] implies       -   (*  +) and       -

   (*  +), this means    -  (*  +)  *  +, hence    -  (*  +)   . Thus, (   ) is a     -  -
space. 

Conversely, let (   ) be a     -  -space and     -  -space, then for each       there exists 

a     -     such that     ,      or     ,     . Say     ,      since (   ) is a 

    -  -space, then    -  (*  +)   , this means there exists a     -     such that     , 

    . Thus, (   ) is a     -  -space. 
 

Theorem 6.12: A     (   ) is     -  -space iff 

(i) (   ) is a     -  -space and     -  -space. 

(ii) (   ) is a     -  -space and     -  -space. 
 

Proof: (i) Let (   ) be a     -  -space, then it is a     -  -space. Now since (   ) is a     -  -
space, then for each      , there exist disjoint     -       such that      and      

implies       -  (*  +) and       -  (*  +), therefore    -  (*  +)  *  +    and    -

  (*  +)  *  +   . Thus, (   ) is a     -  -space.  

Conversely, let (   ) be a     -  -space and     -  -space, then for each      , there exists 

a     -     such that     ,      or     ,     , implies    -  (*  +)     -  (*  +), 

since (   ) is a     -  -space [by assumption], then there exist disjoint     -       such that 

     and     . Thus, (   ) is a     -  -space. 

(ii) By the same way of part (i) a     -  -space is     -  -space and     -  -space. 

Conversely, let (   ) be a     -  -space and     -  -space, then for each      , there exist 

    -       such that     ,      and     ,      implies    -  (*  +)     -  (*  +), 

since (   ) is a     -  -space, then there exist disjoint     -       such that      

and     . Thus, (   ) is a     -  -space. 
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Corollary 6.13: A     -  -space is     -  -space iff for each       with    -   (*  +)  
   -   (*  +), then there exist     -     ,   such that    -   (*  +)    ,    -   (*  +)  

      and    -   (*  +)    ,    -   (*  +)        and          . 
 

Proof: By theorem (5.11) and theorem (6.12). 
 

Corollary 6.14: A     -  -space is     -  -space iff one of the following conditions holds: 

(i) for each       with    -  (*  +)     -  (*  +), then there exist     -       such that 

   -  (   -   (*  +))    and    -  (   -   (*  +))   . 

(ii) for each       with    -   (*  +)      -   (*  +), then there exist     -     ,   

such that    -   (*  +)    ,    -   (*  +)        and    -   (*  +)    ,    -

   (*  +)        and          . 
 

Proof: (i) By corollary (5.12) and theorem (6.12).  

(ii) By theorem (5.11) and theorem (6.12). 
 

Theorem 6.15: A     -  -space is     -  -space iff one of the following conditions holds: 

(i) for each    ,    -   (*  +)  *  +. 
(ii) for each      ,    -   (*  +)      -   (*  +) implies    -   (*  +)     -

   (*  +)    . 

(iii) for each      , either       -   (*  +) or       -   (*  +). 

(iv) for each       then       -   (*  +) and       -   (*  +). 
 

Proof: (i) Let (   ) be a     -  -space. Then (   ) is a     -  -space and     -  -space [by 

theorem (6.12)]. Hence by theorem (6.8),    -   (*  +)  *  + for each    . 

Conversely, let for each    ,    -   (*  +)  *  +, then by theorem (6.8), (   ) is a     -  -
space. Also (   ) is a     -  -space by assumption. Hence by theorem (6.12), (   ) is a     -  -
space. 

(ii) Let (   ) be a     -  -space. Then (   ) is a     -  -space [by remark (6.4)]. Hence by 

theorem (6.10),    -   (*  +)     -   (*  +)     for each      . 

Conversely, assume that for each      ,    -   (*  +)     -   (*  +) implies    -

   (*  +)     -   (*  +)    . So by theorem (6.10), (   ) is a     -  -space, also (   ) is a 

    -  -space by assumption. Hence by theorem (6.12), (   ) is a     -  -space. 

(iii) Let (   ) be a     -  -space. Then (   ) is a     -  -space [by remark (6.4)]. Hence by 

theorem (6.5), either       -   (*  +) or       -   (*  +) for each      . 

Conversely, assume that for each      , either       -   (*  +) or       -   (*  +) for 

each      . So by theorem (6.5), (   ) is a     -  -space, also (   ) is a     -  -space by 

assumption. Thus (   ) is a     -  -space [by theorem (6.12)]. 

(iv) Let (   ) be a     -  -space. Then (   ) is a     -  -space and     -  -space [by theorem 

(6.12)]. Hence by theorem (6.9),       -   (*  +) and       -   (*  +). 

Conversely, let for each       then       -   (*  +) and       -   (*  +). Then by 

theorem (6.9), (   ) is a     -  -space. Also (   ) is a     -  -space by assumption. Hence by 

theorem (6.12), (   ) is a     -  -space. 
 

Remark 6.16: Each fuzzy    -separation axiom is defined as the conjunction of two weaker fuzzy 

axioms:     -  -space =     -    -space and     -    -space =     -    -space and     -
  -space,        
 

Remark 6.17: The relation between fuzzy    -separation axioms can be representing as a matrix. 

Therefore, the element     refers to this relation. As the following matrix representation shows:  
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and     -       -       -       -       -   

    -       -       -       -       -       -   

    -       -       -       -       -       -   

    -       -       -       -       -       -   

    -       -       -       -       -       -   

    -       -       -       -       -       -   
 

Matrix Representation 

The relation between fuzzy    -separation axioms 
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