
1

Assessing Attributes to Software Resources for minimize the

Development Life Cycle

By

Rafid Nabil Jaffar, Al-Qadissiya University, College of Computer Science & IT,

Department of Computer Science

j7777@yahoo.comrafidnMail: -E

Abstract:

 The Component-Based Software Engineering (CBSE), approach emphasize on

acquisition and integration of components to accomplish complex and large-scale

software solutions. The benefits from using a CBSE approach include, system quality

improvement, shorter time-to-market, and improved management of complexity of

software. However, the focus of development move to issues like selection, integration,

evaluation and evolution of components in the system. Underestimating the technical

risks associated with selection, evaluation, and integration of software components can

result in long schedule delays and high development/maintenance cost.

This paper introduces basic concepts of CBSE and Commercial-Off-The-Shelf, COTS,

components. Driving factors for the use of COTS components are presented together

with potential benefits and key issues to consider in order to successfully adapt to a

CBSE approach. The intent is also to point out possible risks that are typically not present

when developing traditional, and not use CBSE for software systems. Specifically the

basic CBSE issues of system reliability, development process, and real-time system

development are presented.

Keywords: Reuse Software, COTs, Component Based Software Engineering, Reliability of Reuse,

Real-Time Systems

 1. Introduction:

 Software developers have long dreamed

about system development using pre-

prepared components in a package style.

The vision is that a new system should be

built by assembling components and that

the new system should be functional with

little effort since the components are

already developed, tested, and matured

mailto:rafidnj7777@yahoo.com

2

by long execution in many different

contexts. Over the last decades we have

seen the focus of software development

shift from individual systems to assembly

of large numbers of components into

systems or families of systems.

Traditional development is changed to

focusing on selection, evaluation,

integration, and evolution of reusable

software components. Today some

systems include such complex

components that developing them from

scratch would be impossible if a profit is

required.

However, the vision of package style

assembly of software systems is not

without problems. Underestimating the

technical risks associated with selection,

evaluation, and integration of software

components can result in long schedule

delays and high

development/maintenance cost [10]. This

paper presents a survey of relevant

papers to the field of CBSE and

development using COTS components.

The first part introduces basic concepts

to CBSE and COTS and general

advantages and disadvantages of

applying a CBSE approach to software

development. The second part introduces

various issues like reliability and

development process considerations

when using COTS and a CBSE approach.

The third part summarizes the paper and

present some recommendations presented

by [3].

1.1 Reuse Software

 Today the trend in Computer-Based

products, such as cars and mobile

phones, is shorter and shorter lifecycles.

As a consequence, time spent on

development of new products or new

versions of a product must be reduced.

One solution to this emerging problem is

to reuse software design and solutions in

new versions of systems and products.

Besides shortening development time,

properly handled reuse will also improve

the reliability since code is executed for

longer time and in different contexts

[16]. However, reuse is not trivial and

puts strong demands on development

methods in order to be successful. When

applying reuse in development of real-

time systems, methods gets even more

complex since both functional behavior

and temporal behavior must be

considered.

3

1.2 Why Reuse Software?

 A good software reuse process

facilitates the increase of productivity,

quality, and reliability, and the decrease

of costs and implementation time. An

initial investment is required to start a

software reuse process, but that

investment pays for itself in a few reuses.

In short, the development of a reuse

process and repository produces a base of

knowledge that improves in quality after

every reuse, minimizing the amount of

development work required for future

projects and ultimately reducing the risk

of new projects that are based on

repository knowledge.

1.3 Systematic software reuse:

 One way of approaching the issue of

reuse is to develop systems by a

Component-Based Software Engineering,

CBSE, paradigm: assembling software

systems from components by package

style. Mainly three improvements in

computer and software-based systems

can be expected by a CBSE approach to

system development.

Improvement of system quality

Achievement of shorter time-to-market

Improved management of increased

complexity of software

In order to achieve these improvements,

the software industry has been moving

very rapidly in defining standards and

developing component technologies.

Systematic software reuse and the reuse

of components influence almost the

whole software engineering process

(independent of what a component is)

[17]. Software process models were

developed to provide guidance in the

creation of high-quality software systems

by teams at predictable costs. The

original models were based on the

misconception that systems are built

from scratch according to stable

requirements. Software process models

have been adapted since based on

experience, and several changes and

improvements have been suggested since

the classic waterfall model like sketch

below (Figure-1), with increasing reuse

of software, new models for software

engineering are emerging.

4

New models are based on systematic

reuse of well-defined components that

have been developed in various projects

[17]. Developing software with reuse

requires planning for reuse, developing

for reuse and with reuse, and providing

documentation for reuse. The priority of

documentation in software projects has

traditionally been low [17]. However,

proper documentation is a necessity for

the systematic reuse of components. If

we continue to neglect documentation we

will not be able to increase productivity

through the reuse of components.

Detailed information about components

is indispensable. Although the track

record for systematic software reuse has

been rather spotty historically, several

key trends good technology for software

reuse in the future:

• Component- and framework-based

middleware technologies, such as

CORBA, J2EE,

 and .NET, have become main stream.

• An increasing number of developers of

projects over the past decade have

successfully adopted OO design

techniques, such as UML and patterns,

and OO programming languages, such

as C++, Java, and C#.

These trends are particularly evident in

markets, such as electronic commerce

Fig(1) reuse in waterfall model

5

and data networking, where reducing

development cycle time is crucial to

business success. Although there is no

magic methodology or process that's

guaranteed to foster systematic reuse, I

have personally seen the

recommendations below applied

successfully numerous times over the

past decade on many projects at many

companies around the world. I give the

example for the Component-Based

Development Model (CBD) like sketch

below (Figure-2) that incorporates many

of the characteristics of the spiral model.

It is evolutionary in nature [NIE92],

demanding an iterative approach to the

creation of software. However, the

Component-Based Development model

composes applications from prepackaged

software components (called classes).

The engineering activity begins with the

identification of candidate classes. This

is accomplished by examining the data to

be manipulated by the application and

the algorithms that will be applied to

accomplish the manipulation.

Corresponding data and algorithms are

packaged into a class.

 Fig (2) A reuse in CBD

6

1.4 Real-Time Components:

 Real-time systems are systems in

which the correctness of the system

depends not only on the result of the

computations it performs but also on

timing behavior [4]. Many real-time

systems are also embedded systems that

interact with external devices in a

product, which if malfunctioning, often

can cause more damage than a desktop

software system. Therefore, real-time

systems must usually meet stringent

specifications for safety, reliability,

limited hardware capacity etc. The

increased complexity of real-time

systems leads to increasing demands with

respect to high-level design, early error

detection, productivity, integration,

verification and maintenance. Applying

Component-Based Software Engineering

(CBSE) methodology in the development

of real-time systems, is more complex

and more expensive than designing non

real-time components [2,5]. This

complexity arises from several aspects of

real-time systems not relevant in non-

real-time systems. In real-time systems,

components must collaborate to meet

timing constraints. Furthermore, in order

to keep production costs down,

embedded systems resources are usually

scarce, but they must still perform within

tight deadlines. They must also often run

continuously for long periods of time

without maintenance. An interesting

observation about efficient reuse of real-

time components [15] is that, as a rule of

thumb, the overhead cost of developing a

reusable component, including design

plus documentation, is recovered after

the fifth reuse.

1.5 COTS (Commercial Off-The-Shelf)

 for Software reuse:

 Reusing components made for earlier

products as an approach to new system

development is a promising way of

achieving the mentioned development

and system improvements. There is also

the possibility to buy software

components from component vendors, so

called Commercial-Off-The-Shelf,

COTS, components that consider

horizontal reuse. The use of Commercial-

Off-The-Shelf or third-party application

within a larger system, such as an email

package or a word processing program.

7

The software components is increasing in

today’s development of new systems.

Shorter system life cycles and decreased

development budgets make it so. Using

COTS Components can be one way of

reducing development time and be

competitive by getting products to the

market fast and inexpensively. COTS

components can also provide an

increased reliability compared to custom-

made components since they are refined

by substantial field-testing. Certain types

of components are rarely developed only

for one intended system anymore.

Development of a database management

system or an operating system as a part

of a larger project is almost unthinkable

for many applications today. A summary

of the advantages that can be gained by

developing a system using COTS

components:

Functionality is instantly accessible to

the developer.

Components may be less costly than

those developed in-house.

The component vendor may be an

expert in the particular area of the

component functionality. Although,

using COTS Components can save

valuable development time, insight in the

COTS component functionality and

properties must be evaluated for its

intended use. In order to integrate a

COTS component in a system, the

developers must consider relevant

properties of the component like

operational limitations, temporal

behavior, preconditions, robustness and

many forms of underlying assumptions

on the intended environment. To

determine its properties, extensive testing

of the component may be necessary [12].

2- COTS (Commercial-Off-The-Shelf)

in System Development:

 The question whether to buy or

develop a component can require an

extensive examination in the case of each

component in order to determine buy or

build. In order to make decisions, several

aspects of COTS usage must be

understood and evaluated. Moreover, the

general benefits and challenges should be

understood.

8

2.1 COTS Driving Forces:

The Component-Based Software

Engineering approach emphasize on

acquisition and integration of

components to accomplish complex and

large-scale software solutions.

Components can be either developed in-

house or off-the-shelf. The main driving

factors for using COTS components

rather than developing the whole system

in-house are presented in [6] and

includes:

 1. Industrial competition for delivering

more reliable systems in shorter time

frames.

 2. A demand for larger and more

complex software solutions, which often

cannot be effectively implemented in a

timely manner by a single software

development organization.

 3. Increase in availability of reusable

COTS components.

 4. Increased degree of standard

compliance among COTS software

products that enables reduction of

product integration time.

 5. Increasing research in better software

component “packaging” techniques and

approaches.

 6. Increasing recognition that software

reuse is one of the most important means

to achieve better software solutions with

minimum development cost.

2.2 COTS Challenges:

 There are several challenges when

using COTS components instead of

developing in-house. Assessing

functionality, integration, operational

profile, quality for intended use,

performance and other properties may

require substantial effort. Developers

must have a good understanding of the

COTS component relevant properties.

General guidelines on which properties

are relevant are hard to present and

depend on the system to be developed. A

summary of disadvantages are presented

in [13] and includes:

Often, only a brief description of its

functionality is provided with a COTS

component.

A component, often, carries no

guarantee of adequate testing for the

intended environment.

9

There is no, or only a limited

description of the quality of the

component and the

 quality must be assessed in relation to

its intended use.

The developer, typically, does not have

access to the source code of the

component.

To make the decision to buy or to build is

not easy, knowing all the disadvantages.

COTS components are typically “black

boxes” without their source code or other

means of introspection available.

Developers must assess a number of

properties of the wanted COTS

component to integrate it properly with a

system under development. Examples of

relevant properties are functionality, fault

behavior, temporal behavior,

preconditions, robustness and

performance. To determine its properties,

extensive testing of the component may

be necessary. There are various

approaches to this kind of testing, e.g.

random, “black-box” and “white-box”

test generators.

2.3 Reliability Issues with COTS:

 The issue of system reliability differs

when using COTS components compared

to traditional development. The key in

integrating COTS components is to

understand the components properties

like its intended environment and the

assumptions under which it was

developed. Any discrepancies must be

handled in order to perform a successful

integration. There are several risks

involved when using COTS products.

General issues to consider when using

COTS are presented in many papers

[3,9,12] and a short summary is

presented here:

Assure COTS components are applied

within their intended profile.

Understand and document how the

COTS components behave in a fault

situation.

Use guidelines and tools to deal with

supplier changes and upgrades of the

COTS component.

Determine if future releases of the

COTS component are backward

compatible.

Investigate what development

procedure has been used and if it

complies with any reliability standards.

The model was presents for determining

the reliability of components for the

11

software[8]. To acquire confidence in a

component it must be supplied with a

contract and be tested with a certain

input. A contract specifies the

functionality and the run-time conditions

for which the component has been

designed, i.e. assumptions about inputs,

outputs and environment. If the

component supplier provides such a

contract, it can be used to calculate the

probabilities of the occurrence of errors.

Evidence based on the component

contracts and the experience accumulated

must be obtained. The environment must

be considered when components are

integrated in new systems; the input

domain may differ considerably from the

input domain for which it was tested.

Confidence in a component’s reliability

is only warranted when the component is

used in the environment for which it is

intended.

2.4 Development Process Issues:

 The principal danger of using COTS

components in safety critical applications

lies in the discontinuity it creates in the

understanding of the system as a whole

[7].

The designer of the component may not

have full knowledge of the application or

systems where their component is to be

used. Moreover, the application

developer may not fully understand the

component’s intended use and

underlying assumptions. When

developing an application and including

COTS components, it may be beneficial

to set up teams consisting of both

application developers and the COTS

developers to get a common

understanding of the COTS behavior and

intended use. Such teams facilitate better

relationships between the user and the

supplier, which makes investigation of

the supplier’s development process

easier. Any COTS components intended

to be used in safety-critical applications

should be thoroughly tested in its

intended environment. If unreliable or

unnecessary parts are found, it can be

possible to wrap those parts with

protective code. One way of performing

tests of COTS components is to use fault

injection [3] that can reveal the

consequences of failures in COTS

components on the rest of the system.

When the component vendor wants to

11

express certain capabilities of the

component, it is important to set the

context in which each reliability

argument is described. For instance, if a

vendor claims that his component

provides on average 410 hours

continuous fault free operation then it all

sounds fine, but what is the claim based

on? By using Goal Structuring Notation

(GSN) [14], it is possible to structure and

present the required context information.

GSN uses a graphical notation and the

example above would reveal that the

argument is based on certain assumptions

and operational data from only 50% of

the tests covered. Using this notation, it

is easier for the safe designer to evaluate

the component with less chance of

misunderstanding.

2.5 Real-Time Systems and

 Components:

 The analyze of the possibility to apply

CBSE to the development of hard real-

time systems[2]. Developing real-time

systems present a different setting

compared to many large-scale business

systems. Many real-time systems are also

embedded systems that will be delivered

together with a product in which they are

embedded. This often causes hardware

resources to be very sparse to keep the

product cost low. Hence, real-time

system developers must often ensure that

they are using the target hardware

resources very efficiently. Common

component technologies, such as

JavaBeans, CORBA and COM, are rarely

used, due to their requirements on

expensive hardware and their

unpredictable timing characteristics.

However, a model for hard real-time

systems cannot support flexibility to the

same extent as these common component

technologies. Compared to a regular

component, a real-time component must

include the specification of timing

requirements. Timing behavior is

dependent on the target architecture and

the memory organization. This leads to

that a component’s WCET can vary.

3- Conclusions:

12

 System development with a CBSE

approach can be complex process, as

several issues must be considered before

deciding to buy or to develop a wanted

component. Generally, it is often better

to buy general-purpose components, e.g.

operating systems, databases and user

interface components and to develop

domain specific components. Many

different aspects must be considered

before choosing an existing component

over an internal. The development of

proprietary components takes resources,

requires maintenance and support, but

gives better freedom as to the exact

specification. Buying a component on the

other hand, saves development time, but

may require substantial effort in

integration and perhaps negotiation of the

requirements. Before making decisions

on buy/build issues for CBSE

development, the following questions

and thoughts should be considered:

The functionality provided by a COTS

component may not remain the same

with newer versions of the component.

This may force creation of encapsulate

for the component, which provide or

prevent functionality. If the support from

the component vendor is inadequate, this

could be a serious issue. If unwanted

functionality is removed, the price may

be paid unnecessarily.

Even if the source code is available

from the component vendor, can our

organization maintain it if something

goes wrong?

If an external component is customized

for a product, it makes the product

strongly dependent on the component

vendor. The vendor can then set his own

price for continued support of the

component. There are many issues

surrounding CBSE to be addressed

before making decisions on how to

design a system with components. The

following recommendations to the

component integrator [3,11]:

Make a thorough evaluation of the

component suppliers. Are they suitable

as suppliers? Do they have good quality

products and support? Check their

financial position for economic stability.

Ensure that the legal agreement with

the supplier is comprehensive. This may

save time and efforts if the supplier goes

13

out of business or if they refuse support

of their component.

Create good and long term relations

with the supplier for better cooperation.

Limit the number of partners and

suppliers. Too many will increase the

costs and the dependencies.

Buy “big” components where the

profit is greatest. The management of too

many small components can consume the

profit.

Adjust the development process to a

Component-Based process.

Have key persons assigned to

supervise the component market,

monitoring new components and trends.

Try to gain access to the source code.

Through special agreements with the

vendors.

Test the components in the target

environment.

Assure COTS components are applied

within their intended profile.

Understand and document how the

COTS components behave in a faulty

situation.

Use guidelines and tools to deal with

supplier changes and upgrades of the

COTS component.

Determine if future releases of the

COTS component are backward

compatible.

Investigate what development

procedure has been used and if it

complies with any reliability standards.

These recommendations do not provide a

complete solution to all the problems that

may occur, but they indicate that

developing for and with components

must be performed carefully.

14

4- References:

[1] Vigder, M., Dean, J., Building

Maintainable COTS Based Systems,

Proceedings, International Conference on

Software Maintenance, 1998.

[2] Isovic, D., Lindgren, M., Crnkovic, I.,

System Development with Real-Time

Components, In Proc. of ECOOP2000

Workshop 22 - Pervasive Component-

based systems, June 2000.

[3] Besnard, J. F., Keene, S. J., and Voas,

J., Assuring COTS Products for

Reliability and Safety Critical Systems,

Reliability and Maintainability

Symposium, Proceedings IEEE

Computer Society, 1999.

[4] Stankovic, J. and Ramamritham, K.,

Tutorial on Hard Real-Time Systems,

IEEE Computer Society Press, 1998

[5] Douglas, B.P., Real-Time UML -

Developing efficient objects for

embedded systems,Addison Wesley

Longman, Inc, 1998.

[6] Tran, V., Liu, D., Component-based

Systems Development: Challenges and

Lessons Learned, Software Technology

and Engineering Practice, Proceedings.,

Eighth IEEE International Workshop on,

1997.

[7] Dawkins S. and Kelly T., Supporting

the Use of COTS in Safety Critical

Applications, In Proceedings of IEEE

Colloquium on COTS and Safety Critical

Systems, 1997.

[8] Thane H. Monitoring, Testing and

Debugging of Distributed Real-Time

Systems, Doctoral Thesis Royal Institute

of Technology, KTH, Mechatronics

Laboratory, TRITA-MMK 2000:16,

Sweden 2000.

[9] Profeta, J.,Andrianos, N., Yu, B.,

Safety-Critical Systems Built with COTS,

IEEE Computer, Volume: 29 Issue: 11 ,

Nov. 1996

[10] Ning, J., Component-Based

Software Engineering (CBSE),

Assessment of Software Tools and

Technologies, Proceedings Fifth

International Symposium on, IEEE,1997

[11] Josefsson, M., Program varu

komponenter i praktiken -att köpa tid och

presteramer, paper V040078, Sveriges

Verkstads industrier, 1-1-1999.

[12] Voas J., COTS Software: the

Economical Choice?, IEEE Software,

volume 15, issue 2,1998.

[13] Korel B., Black-Box Understanding

of COTS Components, In Proceedings of

15

7
th

 international workshop on program

comprehension, 1999.

[14] Wilson S. P., Kelly T. P., and

McDermid J. A., Safety Case

Development: Current Practice, Future

Prospects, In Proceedings of 12th

Annual CSR Wokshop, Springer-Verlag,

1995.

[15] Mrva, M. Reuse Factors in

Embedded Systems Design. High-Level

Design Techniques Dept. at Siemens AG,

Munich, Germany, 1997.

[16] N. E. Fenton, S. L. Pfleeger,

Software Metrics: A rigorous & practical

approach, International Thomson

Computer Press, ISBN 0-534-95600-9,

1996.

[17] Sametinger, Software Engineering

with Reusable Components, Springer-

Verlag, ISBN 3-540-62695-6, 1997.

 تقيين خصـائـص هوارد البرامجيــاث لتقليـص دورة حياة بنـــاء النظـــام

 رافد نبيل جعفر ،جاهعت القادسيت، كليت علوم الحاسوب وتكنولوجيا المعلوهاث،

 rafidnj7777@yahoo.com: قسن علوم الحاسوب، البريد الالكتروني

 :الملخــص

ًكىَاث لإَجاص ان(، َهج ٌشكض عهى اكخساب وحكايم بٍٍ CBSE)اث فً هُذست انبشيجٍاث انًسخُذة إنى انًكىَ

عٍت ححسٍٍ َى انى انًكىَاث انًبٍُت يسبقا وحشًم انفىائذ يٍ اسخخذاو ،انحهىل انبشيجٍت انًعقذة وعهى َطاق واسع

 بُاء، وححسٍٍ إداسة حعقٍذ انبشيجٍاث. ويع رنك، فئٌ انخشكٍض عهى انحقهٍص وقج بُاء انًُخج وأطلاقه نلأسىاقانُظاو،

وانخكايم وانخقٍٍى وحطىس انًكىَاث فً انُظاو. ًٌكٍ انخقهٍم يٍ انًخاطش)الاَخقائٍت(خخٍاس لاُخقم إنى قضاٌا يثم اٌ

إنى انخأخٍش فً انجذول وانزي ٌقىد ٍاث، وانخقٍٍى، وانخكايم بٍٍ يكىَاث انبشايجقائٍت()الاَخ الاخخٍاسبانخقٍُت انًشحبطت

 .انكهفت انعانٍت نهبُاء والادايتو نهبُاءانضيًُ

انبشايجٍاث انخجاسٌت و (CBSE)اث هُذست انبشيجٍاث انًسخُذة إنى انًكىَـ انًفاهٍى الأساسٍت نه بحثان اقذو هزٌو

انفىائذ انى بالإضافت (COTSانبشايجٍاث انخجاسٌت انجاهضة)لاسخخذاو خً حذفعانعىايم اناٌ . (COTSانجاهضة)

أَجاح عًهٍت انخعذٌم عهى انًكىَاث انخً حى بُائها الاعخباس يٍ أجم انخً حؤخز بُظشالأساسٍت يىسوالا خىقعتانً

 عُذ انبُاء بانطشقيا حكىٌ غٍش يىجىدة إنى انًخاطش انًحخًهت انخً عادة الاشاسة. وانقصذ يٍ رنك هى أٌضا يسبقا

اث يىثىقٍت انُظاو، وعًهٍيفهىو اث(هُذست انبشيجٍاث انًسخُذة إنى انًكىَنـ)حٍث ويٍ انقضاٌا الاساسٍت انخقهٍذٌت،

 .انحقٍقً انضيٍ وبُاء أَظًت، وحطىٌش انبُاء

mailto:rafidnj7777@yahoo.com

