

1

On training Neural Network To Solve Some Class of

Boundary Value Problems
Alaa Kamel Jaber

Email: alaa77_math@yahoo.co.uk

AL-Qadisiyah University- College of Education - Mathematics Department

Abstract
 The aim of this paper is to train feed forward neural network for solving some class of

boundary value problems for ordinary differential equations. Using backpropagation training

algorithm, where the Levenberg – Marquardt training algorithm is used to train the network .The

existence of the proposed solution was proved. The suggested networks have been studied

intensively for a few decades and have provided an option for modeling complex systems.

Therefore this option was utilized to reduce the computation of solution, and finally the method is

demonstrated through illustrative examples.

Keywords : Differential equations, Boundary value problems, Feed Forward Neural Network.

Math. Sub. Classification 2010 : 34B45, 65L10, 92B20.

1- Introduction
 Artificial neural networks have been

studied over the last decades and are an

excellent option for modeling complex

systems. The study of solving differential

equations using artificial neural network

(Ann) was initiated by Agatonovic-Kustrin

and Beresford in [1]. Lagaris et al. in [8]

employed two networks, a multilayer

perceptron and a radial basis function

network, to solve partial differential equations

(PDE) with boundary conditions defined on

boundaries with the case of complex

boundary geometry. Tawfiq [15] proposed a

radial basis function neural network

(RBFNN) and Hopfield neural network

(unsupervised training network). Neural

networks have been employed before to solve

boundary and initial value problems. Malek

and Shekari Beidokhti [10] reported a novel

hybrid method based on optimization

techniques and neural networks methods for

the solution of high order ODE which used

three-layered perceptron network. Akca etal.

[2] discussed different approaches of using

wavelets in the solution of boundary value

problems (BVP) for ODE, also introduced

convenient wavelet representations for the

derivatives for certain functions, and

discussed wavelet network algorithm. Mc Fall

[11] presented multilayer perceptron networks

to solve BVP of PDE for arbitrary irregular

domain where he used logsig. transfer

function in hidden layer and pure line in

output layer and used gradient decent training

algorithm; also, he used RBFNN for solving

this problem and compared between them.

Junaid et al. [7] used Ann with genetic

training algorithm and log sigmoid function

for solving first-order ODE. Abdul Samath et

al. [13] suggested the solution of the matrix

Riccati differential equation (MRDE) for

nonlinear singular system using Ann.

Ibraheem and Khalaf [5] proposed shooting

neural networks algorithm for solving two-

point second-order BVP in ODEs which

reduced the equation to the system of two

equations of first order. Hoda and Nagla [4]

described a numerical solution with neural

networks for solving PDE, with mixed

boundary conditions. Majidzadeh [9]

suggested a new approach for reducing the

inverse problem for a domain to an equivalent

problem in a variational setting using radial

basis functions neural network; also he used

cascade feed forward to solve two-

dimensional Poisson equation with back

propagation and Levenberg-Marquardt train

algorithm with the architecture three layers

and 12 input nodes, 18 tansig. Transfer

functions in hidden layer, and 3 linear nodes

in output layer. Oraibi [12] designed feed

forward neural networks (FFNNs) for solving

IVP of ODE. Ali [3] designed fast FFNN to

solve two-point BVP. This paper proposed

2

FFNN to solve two point singular boundary

value problem (TPSBVP) with back

propagation (BP) training algorithm.

 The direct problem under consideration

consists of the following boundary value

problem :-

 y
(n)

=F(x,y,y',…,y
(n-1)

) ………………...(1)

Where x[a,b] with BC {y(a)=A , y(b)=B},

We wont to approximate y(x) in (1) by using

FFNN.

2- Artificial Neural Network [16]

 An Artificial neural network (Ann) is a

simplified mathematical model of the human

brain. It can be implemented by both electric

elements and computer software. It is a

parallel distributed processor with large

numbers of connections, it is an information

processing system that has certain

performance characters in common with

biological neural networks. Ann have been

developed as generalizations of mathematical

models of human cognition or neural biology,

based on the assumptions that:

i. Information processing occurs at many

simple elements called neurons that is

fundamental to the operation of Ann's.

ii. Signals are passed between neurons

over connection links.

iii. Each connection link has an associated

weight which, in a typical neural net,

multiplies the signal transmitted.

iv. Each neuron applies an action function

(usually nonlinear) to its net input

(sum of weighted input signals) to

determine its output signal.

 The units in a network are organized

into a given topology by a set of connections,

or weights, shown as lines in a diagram .

Ann is characterized by:

i. Architecture: its pattern of connections

between the neurons.

ii. Training algorithm : its method of

determining the weights on the

connections.

iii. Activation function.

Ann are often classified as single layer or

multilayer. In determining the number of

layers, the input units are not counted as a

layer, because they perform no computation.

Equivalently, the number of layers in the net

can be defined to be the number of layers of

weighted interconnects links between the

slabs of neurons. This view is motivated by

the fact that the weights in a net contain

extremely important information.

2.1- Multilayer Feed Forward Neural

Network Architecture [16]
 In a layered neural network the neurons

are organized in the form of layers. We have

at least two layers: an input and an

outputlayer. The layers between the input and

the output layer (if any) are called hidden

layers, whose computation nodes are

correspondingly called hidden neuronsor

hidden units. Extra hidden neurons raise the

network’s ability to extract higher-order

statistics from (input) data.

The Ann is said to be fullyconnectedin the

sense that every node in each layer of the

network is connected to every other node in

the adjacent forward layer , otherwise the

network is called partially connected. Each

layer consists of a certain number of neurons;

each neuron is connected to other neurons of

the previous layer through adaptable synaptic

weights w and biases b .

2.2- Training Feed Forward Neural

Network [16]
 Training is the process of adjusting

connection weights w and biases b. In the first

step, the network outputs and the difference

between the actual (obtained) output and the

desired (target) output (i.e., the error) is

calculated for the initialized weights and

biases (arbitrary values). During the second

stage, the initialized weights in all links and

biases in all neurons are adjusted to minimize

the error by propagating the error backwards

(the back propagation algorithm). The

network outputs and the error are calculated

again with the adapted weights and biases,

and the process (the training of the Ann) is

repeated at each epoch until a satisfied output

yk(corresponding to the values of the input

variables x) is obtained and the error is

acceptably small. In most of the training

algorithms a learning rate is used to determine

the length of the weight update (step size) .

3

3- Solving The Method

 To illustrate the method we will write

the approximate solution as[15] :

𝑦𝑡(𝑥)
𝑥−𝑎

𝑏−𝑎
𝐵

𝑏−𝑥

𝑏−𝑎
𝐴(𝑥 − 𝑎)(𝑥 − 𝑏)𝑁(𝑥)

 ………………..(2)

Where N(x) is the output of a FFNN with one

input units for x.

 It's clear that y satisfy the BC of (1).

The our goal in this paper is to design a

FFNN N(x) such that yt Fit Informatics

unknown function y(x) in any accuracy .

Now rewrite (2) to be as following:-

(𝑥) =
𝑦𝑡(𝑥) −

𝑥−𝑎

𝑏−𝑎
𝐵 −

𝑏−𝑥

𝑏−𝑎
𝐴

(𝑥−𝑎)(𝑥−𝑏)
 , x≠a,b ……(3)

 Then the right side of (3) is unknown

function of one variable , denoted by G(x),

and the needed FFNN in (2) is the same

network required to approximate the function

y(x), which means that problem (1) has been

converted from differential equation problem

to approximation function problem by FFNN,

which will discuss in the next section.

4- The Existence [6]

 One of the earliest works on FFNN with

ridge activation functions is in Hecht-Nielson.

The author used an improved version of

Kolmogorov’s theorem due to Sprecher which

states that:

 Every continuous function f:[0,1]
N
 → R

can be written as:

 f(x)=∑
12

1

N

h

h (∑
1

)(
N

k

hhxk

h

)

 ………….….(4)

where the real λ and the continuous

monotonically increasing function ψ are

independent of f, the constant is a positive

number and the continuous function

h, 1 ≤ h ≤ 2N+1, depends on f. This equation

can be interpreted as a three-layered neural

network where the h
th

 hidden node computes

the function

 ∑
1

)(
N

k

k

h

h hhxz

 ,

and the output nodes compute ∑
12

1

)(

N

h

hh z .

However, this is not the network architecture

commonly used in practice.

 One of the most elegant approaches to

prove universal approximation is proposed by

Cybenko. By using the Hahn-Banach

Theorem and the Riesz Representation

Theorem, he showed that if the ridge

activation function, σ, is a continuous

sigmoid, then the set of ∑
N

1=i
iσc (T

iθ x+bi) is

dense in C(K), where K is a compact set of

R
N
, with respect to uniform norm.

 Later, his approach was adopted by many

authors to prove their results.

 Chui and Li adopted another approach to

prove universal approximation. They showed

that if the ridge activation function σ, is

continuous sigmoid and the direction vector θ

satisfies some interpolation conditions, then

the set of∑
1

N

i

ic

 (T

iθ x+bi) is dense in C(K)

with respect to uniform norm. They

constructed their proof by showing that it is

possible to realize polynomials as a sum of

ridge activation functions.

 Since polynomials are dense in C(R
N
), it

follows that the three-layered neural networks

are dense in C(R
N
) with respect to uniform

norm.

 In Chen et. al., showed that the continuity

assumption usually imposed on the sigmoid

functions is unnecessary. Instead, they proved

that if the ridge activation function σ, is a

bounded sigmoid, then the set of ∑
N

1=i
iσc (T

iθ

x+bi) is dense in C(K) with respect to uniform

norm. They also pointed out that in order to

prove the neural network in the n-dimensional

4

case, all one needs to do is to prove the case

for one dimension .

 In Hornik, the author adopted Cybenko’s

approach to prove universal approximation.

He showed the sigmoid assumption usually

imposed on the ridge function is unnecessary.

Instead, he proved that if the ridge activation

function σ, is continuous, bounded and non-

constant, then the set of ∑
N

1=i

iσc (T

iθ x+bi) is

dense in C(K) with respect to uniform norm.

At the same time, he proved that if the ridge

activation function σ, is bounded and non-

constant, then the set of ∑
N

1=i

iσc (T

iθ x+bi) is

dense in Lp(μ) with respect to Lp norm for 1 ≤

p < ∞ and a finite measure μ.

 Leshno et. Al. provides one of the most

general results. They showed that if the ridge

activation function σ, is continuous almost

everywhere, locally essentially bounded, and

not a polynomial, then the set of ∑
N

1=i
iσc (T

iθ

x+bi) is dense in C(K) with respect to uniform

norm.

4.1- Theorem [6]

 Standard Feed Forward Networks with

only a single hidden layer can approximate

any continuous function uniformly on any

compact set and any measurable function to

any desired degree of accuracy.

Therefore from the above theorem we have

the following:-

1- To approximate any function on R
N
 we

want to determine the number of the hidden

nodes , activation functions to hidden layer

and training functions.

2- The parameters to this approximation are

the weights and biases of nodes in the layers

which can calculate by training the FFNN.

3- Any lack of success in applications must

arise from inadequate training, insufficient

number of hidden units, or the lack of a

deterministic relationship between the input

and the target.

5 Examples

 Now in this section we give some

example which illustrate the suggested

network.

5.1 Example 1

Let us have the following differential

equations

y''-4(y-x)=0 , x[0,1] ……………… (5)

with BC: y(0)=0 and y(1)=2

And the exact solution to (5) is

y(x)=e
2
(e

4
-1)

-1
(e

2x
-e

-2x
)+x …………….(6)

Our solution to equation (5) by using (2) is

yt(x)=2x+(x
2
-x)N(x) ………………(7)

Then the FFNN N(x) in (7) is the same as to

approximate the following function :-

𝐺(𝑥) =
𝑦𝑡(𝑥)−2𝑥

𝑥2−𝑥
 x≠0,1 ……………. (8)

To design FFNN which approximate G(x) by

Theorem 4.1, we choose 3 nodes to hidden

layer and the activation function is 'tansig',

then to training the FFNN we use the function

'trainlm'.

 After we training the FFNN we obtain the

parameters illustrated in Table1, the result is

giving in Table 2 and we display the analytic

and neural solutions in the Figure 1.

5

Table1: Training parameter of the suggested network for example 1

Input Weight Hidden Bias Hidden Weight Output Bias

0.025118602453792 0.171440917519520 0.797663289393945 1.153586732255470

0.596614946259474 -1.333818433845600 0.791987233939725

0.187536230762526 0.117995335006529 0.885756736525519

Table 2: The results of the example1 using suggested network

X Y-exact Y-approximate (Y-Yt)
2

0 0 0 0

0.1 0.155512476 0.1555155 0.00000000000914490185

0.2 0.313252863 0.31325665 0.00000000001434217580

0.3 0.475538485 0.475536608 0.00000000000352482217

0.4 0.644869083 0.644866155 0.00000000000857073793

0.5 0.824027137 0.824030907 0.00000000001421507743

0.6 1.016189537 1.016199017 0.00000000008986681044

0.7 1.225055085 1.225060292 0.00000000002710271818

0.8 1.454992938 1.454990613 0.00000000000540431067

0.9 1.711217956 1.711224143 0.00000000003827465872

1 2 2 0

 MSE
0.00000000001721832653

2

Figure 1:Analytic and neural solutions of Example 1

5.2 Example 2

Let us have the following differential

equations

 y''-4y=8cos2x , x[0, 2π] ………...…. (9)

 BC: y(0)=1 , y(2π)=1

And the exact solution to (9) is

y(x)=cos2x+sin2x+2xsin2x……………. (10)

Our solution to equation (9) by using (2) is

yt(x)=1+(x
2
-2πx)N(x) …………………….(11)

Then the FFNN N(x) in (11) is the same as to

approximate the following function :-

 𝐺(𝑥) =
𝑦𝑡(𝑥)−1

𝑥2−2𝜋𝑥
 , x≠0,2π …………(12)

To design FFNN which approximate G(x) by

Theorem 4.1, we choose 3 nodes to hidden

layer and the activation function is 'tansig',

then to training the FFNN we use the function

'trainlm'.

 After we training the FFNN we obtain the

parameters illustrated in Table 3, the result is

giving in Table 4 and we display the analytic

and neural solutions in the Figure 2.

Table3: Training parameter of the suggested network for example 2

Input Weight Hidden Bias Hidden Weight Output Bias

-0.96288232488637 0.652840912117375 6.23664109302719 -0.537041239957662

1.89750554327429 0.762014152249968 0.944806411478224

-1.597958760677 1.091948365944060 -4.375547392315350

2

Table 4: The results of the example2 using suggested network

Figure 2:Analytic and neural solutions of Example 2

X Y-exact Y-approximate (Y-Yt)
2

0 1 1 0

0.65 2.483137499 2.483682655 0.00000029719461491706

1.3 1.006661952 0.998916185 0.00005999690605684330

1.95 -4.091058127 -4.095986484 0.00002428870080022000

2.6 -5.013702487 -5.008902194 0.00002304280965994200

3.25 2.597896663 2.589987536 0.00006255428884933510

3.9 8.815226652 8.84113686 0.00067133884744063800

4.55 2.289918648 2.275171858 0.00021746783892625600

5.2 -10.00609845 -9.998206005 0.00006229072184669800

5.85 -9.025219534 -9.029595177 0.00001914624890970020

2π 1 1 0

 MSE
0.00009330738194491770

1

5.3 Example 3

Let us have the following differential

equations

y''= y
3
-yy' , x[0,1] ……………..(13)

with BC: y(0)=1 and y(1)=
1

2

And the exact solution to (13) is

y(x)=
1

𝑥+1
 ………………………….(14)

Our solution to equation (13) by using (2) is :

yt(x)=
2−𝑥

2
+(x

2
-x)N(x) …………………(15)

Then the FFNN N(x) in (15) is the same as to

approximate the following function :-

 𝐺(𝑥) =
2𝑦𝑡(𝑥)−2−𝑥

2(𝑥2−𝑥)
 , x≠0,1

……………………….……(16)

To design FFNN which approximate G(x) by

Theorem 4.1, we choose 3 nodes to hidden

layer and the activation function is 'tansig',

then to training the FFNN we use the function

'trainlm'.

 After we training the FFNN we obtain the

parameters illustrated in Table5, the result is

giving in Table 6 and we display the analytic

and neural solutions in the Figure 3

.

Table5: Training parameter of the suggested network for example 3

Input Weight Hidden Bias Hidden Weight Output Bias

-0.20011524470189 0.747097442730006 0.374611207364815 -0.226032037045629

-1.1102786850145 -2.10935734110926 1.02228340776327

0.427525944912668 0.663165049634819 -1.18051725183527

Table 6: The results of the example3 using suggested network

X Y-exact Y-approximate (Y-Yt)
2

0 1 1 0

0.1 0.909088244 0.909090909 0.00000000000710520078

0.2 0.833333307 0.833333333 0.00000000000000070811

0.3 0.769233234 0.769230769 0.00000000000607552435

0.4 0.71428537 0.714285714 0.00000000000011866059

0.5 0.666664177 0.666666667 0.00000000000619845573

0.6 0.624999089 0.625 0.00000000000083049139

0.7 0.588236461 0.588235294 0.00000000000136085788

0.8 0.555555102 0.555555556 0.00000000000020588373

0.9 0.526311433 0.526315789 0.00000000001897858118

1 0.5 0.5 0

 MSE
0.00000000000334426612

2

Figure 3:Analytic and neural solutions of Example 3

5.4 Example 4

Let us have the following differential

equations

2x
2
 y''-y

3
+2y

2
=0 , x[0,1] …………...(17)

with BC: y(0)=0 and y(1)=1

And the exact solution to (17) is

y(x)=
2𝑥

𝑥+1
 ……………..(18)

Our solution to equation (17) by using (2) is :

yt(x)=x+(x
2
-x)N(x) ………………(19)

Then the FFNN N(x) in (19) is the same as to

approximate the following function :-

𝐺(𝑥) =
𝑦𝑡(𝑥)−𝑥

𝑥2−𝑥
 x≠0,1 ………….(20)

To design FFNN which approximate G(x) by

Theorem 4.1, we choose 3 nodes to hidden

layer and the activation function is 'tansig',

then to training the FFNN we use the function

'trainlm'.

 After we training the FFNN we obtain the

parameters illustrated in Table7, the result is

giving in Table 8 and we display the analytic

and neural solutions in the Figure 4.

Table7: Training parameter of the suggested network for example 4

Input Weight Hidden Bias Hidden Weight Output Bias

0.528120570989692 -0.137703111821045 0.445604498360927 -2.230706087313750

0.895588508943409 1.388813866032050 1.065113059207930

-0.00562960643696 1.002926456060790 -1.28734987876764

2

Table 8: The results of the example4 using suggested network

Figure 4:Analytic and neural solutions of Example 4

X Y-exact Y-approximate (Y-Yt)
2

0 0 0 0

0.1 0.181758368 0.181818182 0.00000000357773814096

0.2 0.333386397 0.333333333 0.00000000281577701670

0.3 0.461580499 0.461538462 0.00000000176714350830

0.4 0.571432543 0.571428571 0.00000000001577714927

0.5 0.666662563 0.666666667 0.00000000001683997884

0.6 0.750002519 0.75 0.00000000000634739672

0.7 0.823530716 0.823529412 0.00000000000170181536

0.8 0.888886141 0.888888889 0.00000000000755137177

0.9 0.947373363 0.947368421 0.00000000002442290931

1 1 1 0

 MSE
0.00000000067363357805

3

6- References

[1] Agatonovic-Kustrin and R. Beresford,

(2000), "Basic concepts of artificial

neural network (ANN) modeling and

its application in pharmaceutical

research", Journal of Pharmaceutical

and Biomedical Analysis, vol. 22, no.

5, pp. 717–727.

[2] Akca H., M. H. Al-Lail, and V.

Covachev, (2006), "Survey on wavelet

transform and application in ODE and

wavelet networks", Advances in

Dynamical Systems and Applications,

vol. 1, no. 2,pp. 129–162.

[3] Ali M. H., (2012), "Design fast feed

forward neural networks to solve two

point boundary value problems",

[M.S. thesis], University of Baghdad,

College of Education Ibn Al-Haitham.

[4] Hoda S. A. I. and H. A. Nagla, (2011),

"On neural network methods for

mixed boundary value problems",

International Journal of Nonlinear

Science, vol. 11, no. 3, pp. 312–316.

[5] Ibraheem K. I. and B. M. Khalaf,

(2011), "Shooting neural networks

algorithm for solving boundary value

problems in ODEs", Applications and

Applied Mathematics, vol. 6, no. 11,

pp. 1927–1941.

[6] Jabber , A. K., (2009), "On Training

Feed Forward Neural Networks for

Approximation Problem", MSc

Thesis, Baghdad University, College

of Education (Ibn Al-Haitham).

[7] Junaid A., M. A. Z. Raja, and I. M.

Qureshi, (2009), "Evolutionary

computing approach for the solution

of initial value problems in ordinary

differential equations", World

Academy of Science, Engineering and

Technology, vol. 55, pp. 578–5581.

[8] Lagaris I. E., A. C. Likas, and D. G.

Papageorgiou, (2004), "Neural

network methods for boundary value

problems with irregular boundaries",

IEEE Transactions on Neural

Networks, vol. 11, no.5, pp. 1041–

1049, 2000.

[9] Majidzadeh K., (2011), "Inverse

problem with respect to domain and

artificial neural network algorithm for

the solution", Mathematical Problems

in Engineering, vol. 2011, Article ID

145608, 16 pages.

[10] Malek A. and R. Shekari Beidokhti,

(2006), "Numerical solution for high

order differential equations using a

hybrid neural network—optimization

method", Applied Mathematics and

Computation, vol. 183, no. 1, pp.

260–271.

[11] Mc Fall K. S., (2006), "An artificial

neural network method for solving

boundary value problems with

arbitrary irregular boundaries",

[Ph.D. thesis], Georgia Institute of

Technology.

[12] Oraibi Y. A., (2011), "Design feed

forward neural networks for solving

ordinary initial value problem",

[M.S. thesis], University of Baghdad,

College of Education Ibn Al-

Haitham.

[13] Samath J. Abdul, P. S. Kumar, and

A. Begum, (2010), "Solution of

linear electrical circuit problem using

neural networks", International

Journal of Computer Applications,

vol. 2, no. 1, pp. 6–13.

[14] Tawfiq Luma N. M., Hussein Ashraf

A. T., (2013), " Design Feed

Forward Neural Network to Solve

Singular Boundary Value Problems",

ISRN Applied Mathematics, Volume

2013, Article ID 650467, 7 pages.

[15] Tawfiq Luma N. M., Design and

training artificial neural networks for

solving differential equations [Ph.D.

thesis], University of Baghdad,

College of Education Ibn-Al-

Haitham.

[16] Tawfiq Luma N. M., Oraibi Yaseen

A., (2013), "Fast Training

Algorithms for Feed Forward Neural

Networks", Ibn Al-Haitham Journal

for Pure and Applied Science , NO.

1, Vol. 26:275-280.

2

 ل تدريب الشبكات العصبية لحل صنف من مسائل القيم الحدوديةحو

 علاء كامل جابرم.

Email: alaa77_math@yahoo.co.uk

 قسم الرياضيات –كلية التربية –جامعة القادسية

 الخلاصة

مسائل القيم الحدودية للمعادلات التفاضلية الاعتيادية صنف من شبكة عصبية ذات تغذية تقدمية لحل تدريبالهدف من البحث هو

للشبكة (. تم اثبات وجود الحل trainlmوتم استخدام خوارزمية التدريب) ذات التغذية الخلفية خوارزمية التدريب.تم استخدام

. تم دراستها بشكل مكثف منذ بضعة عقود حيث قدمت خيارا لنمذجة الانظمة الصعبة. لذلك هذا الخيار استخدم لتقليل ةالمقترح

 التوضيحية. الأمثلةمن خلال الشبكة المقترحة الحسابات في اثناء الحل ، واخيرا تم توضيح

mailto:alaa77_math@yahoo.co.uk

