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Abstract 
       The aim of this paper is to train feed forward neural network for solving some class of 

boundary value problems for ordinary differential equations. Using backpropagation training 

algorithm, where the Levenberg – Marquardt training algorithm is used to train the network .The 

existence of the proposed solution was proved. The suggested networks have been studied 

intensively for a few decades and have provided an option for modeling complex systems. 

Therefore this option was utilized to reduce the computation of solution, and finally the method is 

demonstrated through illustrative examples.  
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1-  Introduction 
         Artificial neural networks have been 

studied over the last decades and are an 

excellent option for modeling complex 

systems. The study of solving differential 

equations using artificial neural network 

(Ann) was initiated by Agatonovic-Kustrin 

and Beresford in [1]. Lagaris et al. in [8] 

employed two networks, a multilayer 

perceptron and a radial basis function 

network, to solve partial differential equations 

(PDE) with boundary conditions defined on 

boundaries with the case of complex 

boundary geometry. Tawfiq [15] proposed a 

radial basis function neural network 

(RBFNN) and Hopfield neural network 

(unsupervised training network). Neural 

networks have been employed before to solve 

boundary and initial value problems. Malek 

and Shekari Beidokhti [10] reported a novel 

hybrid method based on optimization 

techniques and neural networks methods for 

the solution of high order ODE which used 

three-layered perceptron network. Akca etal. 

[2] discussed different approaches of using 

wavelets in the solution of boundary value 

problems (BVP) for ODE, also introduced 

convenient wavelet representations for the 

derivatives for certain functions, and 

discussed wavelet network algorithm. Mc Fall 

[11] presented multilayer perceptron networks 

to solve BVP of PDE for arbitrary irregular 

domain where he used logsig. transfer 

function in hidden layer and pure line in 

output layer and used gradient decent training 

algorithm; also, he used RBFNN for solving 

this problem and compared between them. 

Junaid et al. [7] used Ann with genetic 

training algorithm and log sigmoid function 

for solving first-order ODE. Abdul Samath et 

al. [13]  suggested the solution of the matrix 

Riccati differential equation (MRDE) for 

nonlinear singular system using Ann. 

Ibraheem and Khalaf [5] proposed shooting 

neural networks algorithm for solving two-

point second-order BVP in ODEs which 

reduced the equation to the system of two 

equations of first order. Hoda and Nagla [4] 

described a numerical solution with neural 

networks for solving PDE, with mixed 

boundary conditions. Majidzadeh [9] 

suggested a new approach for reducing the 

inverse problem for a domain to an equivalent 

problem in a variational setting using radial 

basis functions neural network; also he used 

cascade feed forward to solve two-

dimensional Poisson equation with back 

propagation and Levenberg-Marquardt train 

algorithm with the architecture three layers 

and 12 input nodes, 18 tansig. Transfer 

functions in hidden layer, and 3 linear nodes 

in output layer. Oraibi [12] designed feed 

forward neural networks (FFNNs) for solving 

IVP of ODE. Ali [3] designed fast FFNN to 

solve two-point BVP. This paper proposed 
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FFNN to solve two point singular boundary 

value problem (TPSBVP) with back 

propagation (BP) training algorithm. 

      

       The direct problem under consideration 

consists of the following boundary value 

problem :-  

     y
(n)

=F(x,y,y',…,y
(n-1)

)  ………………...(1) 

Where  x[a,b]  with BC {y(a)=A ,  y(b)=B}, 

We wont to approximate y(x) in (1) by using 

FFNN.  

2- Artificial Neural Network [16] 

      An Artificial neural network (Ann) is a 

simplified mathematical model of the  human 

brain. It can be implemented by both electric 

elements and computer software. It is a 

parallel distributed processor with large 

numbers of connections, it is an information 

processing system that has certain 

performance characters in common with 

biological neural networks. Ann have been 

developed as generalizations of mathematical 

models of human cognition or neural biology, 

based on the assumptions that:  

i. Information processing occurs at many 

simple elements called neurons that is 

fundamental to the operation of Ann's.  

ii. Signals are passed between neurons 

over connection links.  

iii. Each connection link has an associated 

weight which, in a typical neural net, 

multiplies the signal transmitted.  

iv. Each neuron applies an action function 

(usually nonlinear) to its net input 

(sum of weighted input signals) to 

determine its output signal.  

         The units in a network are organized 

into a given topology by a set of connections, 

or weights, shown as lines in a diagram .  

Ann is characterized by:  

i. Architecture: its pattern of connections 

between the neurons.  

ii. Training algorithm : its method of 

determining the weights on the 

connections.  

iii. Activation function.  

Ann are often classified as single layer or 

multilayer. In determining the number of 

layers, the input units are not counted as a 

layer, because they perform no computation. 

Equivalently, the number of layers in the net 

can be defined to be the number of layers of 

weighted interconnects links between the 

slabs of neurons. This view is motivated by 

the fact that the weights in a net contain 

extremely important information. 

 

2.1- Multilayer Feed Forward Neural 

Network Architecture [16] 
      In a layered neural network the neurons 

are organized in the form of layers. We have 

at least two layers: an input and an 

outputlayer. The layers between the input and 

the output layer (if any) are called hidden 

layers, whose computation nodes are 

correspondingly called hidden neuronsor 

hidden units. Extra hidden neurons raise the 

network’s ability to extract higher-order 

statistics from (input) data.  

The Ann is said to be fullyconnectedin the 

sense that every node in each layer of the 

network is connected to every other node in 

the adjacent forward layer , otherwise the 

network is called partially connected. Each 

layer consists of a certain number of neurons; 

each neuron is connected to other neurons of 

the previous layer through adaptable synaptic 

weights w and biases b . 

 

2.2- Training Feed Forward Neural 

Network [16]  
       Training is the process of adjusting 

connection weights w and biases b. In the first 

step, the network outputs and the difference 

between the actual (obtained) output and the 

desired (target) output (i.e., the error) is 

calculated for the initialized weights and 

biases (arbitrary values). During the second 

stage, the initialized weights in all links and 

biases in all neurons are adjusted to minimize 

the error by propagating the error backwards 

(the back propagation algorithm). The 

network outputs and the error are calculated 

again with the adapted weights and biases, 

and the process (the training of the Ann) is 

repeated at each epoch until a satisfied output 

yk(corresponding to the values of the input 

variables x) is obtained and the error is 

acceptably small. In most of the training 

algorithms a learning rate is used to determine 

the length of the weight update (step size) . 
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3- Solving The Method 

         To illustrate the method we will write 

the approximate solution as[15] : 

𝑦𝑡(𝑥)
𝑥−𝑎

𝑏−𝑎
𝐵

𝑏−𝑥

𝑏−𝑎
𝐴(𝑥 − 𝑎)(𝑥 − 𝑏)𝑁(𝑥)            

                                           ………………..(2) 

Where N(x) is the output of a FFNN with one 

input units for x. 

         It's clear that y satisfy the BC of (1).  

The our goal in this paper is to design a 

FFNN N(x) such that yt Fit Informatics 

unknown function y(x) in any accuracy . 

Now rewrite (2) to be as following:- 

(𝑥) =
𝑦𝑡(𝑥) − 

𝑥−𝑎

𝑏−𝑎
𝐵 − 

𝑏−𝑥

𝑏−𝑎
𝐴

(𝑥−𝑎)(𝑥−𝑏)
   ,  x≠a,b  ……(3)                                     

         Then the right side of (3) is unknown 

function of one variable , denoted by G(x), 

and the needed FFNN in (2) is the same 

network required to approximate the function 

y(x), which means that problem (1) has been 

converted from differential equation problem 

to approximation function problem by FFNN, 

which will discuss in the next section. 

4- The Existence [6] 

        One of the earliest works on FFNN with 

ridge activation functions is in Hecht-Nielson. 

The author used an improved version of 

Kolmogorov’s theorem due to Sprecher which 

states that: 

         Every continuous function f:[0,1]
N
 → R 

can be written as: 

  f(x)=∑
12

1





N

h

h (∑
1

)(
N

k

hhxk

h



 )                                       

                                               ………….….(4) 

where the real λ and the continuous 

monotonically increasing function ψ are 

independent of  f, the constant    is a positive 

number and the continuous function             

h, 1 ≤ h ≤ 2N+1, depends on f. This equation 

can be interpreted as a three-layered neural 

network where the h
th

 hidden node computes 

the function  

                 ∑
1

)(
N

k

k

h

h hhxz


  , 

and the output nodes compute ∑
12

1

)(




N

h

hh z . 

However, this is not the network architecture 

commonly used in practice. 

           One of the most elegant approaches to 

prove universal approximation is proposed by 

Cybenko. By using the Hahn-Banach 

Theorem and the Riesz Representation 

Theorem, he showed that if the ridge 

activation function, σ, is a continuous 

sigmoid, then the set of ∑
N

1=i
iσc ( T

iθ x+bi) is 

dense in C(K), where K is a compact set of 

R
N
, with respect to uniform norm. 

 Later, his approach was adopted by many 

authors to prove their results. 

       Chui and Li adopted another approach to 

prove universal approximation. They showed 

that if the ridge activation function σ, is 

continuous sigmoid and the direction vector θ 

satisfies some interpolation conditions, then 

the set of∑
1

N

i

ic


 ( T

iθ x+bi) is dense in C(K) 

with respect to uniform norm. They 

constructed their proof by showing that it is 

possible to realize polynomials as a sum of 

ridge activation functions. 

      Since polynomials are dense in C(R
N
), it 

follows that the three-layered neural networks 

are dense in C(R
N
) with respect to uniform 

norm. 

      In Chen et. al., showed that the continuity 

assumption usually imposed on the sigmoid 

functions is unnecessary. Instead, they proved 

that if the ridge activation function σ, is a 

bounded sigmoid, then the set of ∑
N

1=i
iσc ( T

iθ

x+bi) is dense in C(K) with respect to uniform 

norm. They also pointed out that in order to 

prove the neural network in the n-dimensional 



 

4 

case, all one needs to do is to prove the case 

for one dimension . 

      In Hornik, the author adopted Cybenko’s 

approach to prove universal approximation. 

He showed the sigmoid assumption usually 

imposed on the ridge function is unnecessary. 

Instead, he proved that if the ridge activation 

function σ, is continuous, bounded and non-

constant, then the set of ∑
N

1=i

iσc ( T

iθ x+bi) is 

dense in C(K) with respect to uniform norm. 

At the same time, he proved that if the ridge 

activation function σ, is bounded and non-

constant, then the set of ∑
N

1=i

iσc ( T

iθ x+bi) is 

dense in Lp(μ) with respect to Lp norm for 1 ≤ 

p < ∞ and a finite measure μ. 

       Leshno et. Al. provides one of the most 

general results. They showed that if the ridge 

activation function σ, is continuous almost 

everywhere, locally essentially bounded, and 

not a polynomial, then the set of ∑
N

1=i
iσc ( T

iθ

x+bi) is dense in C(K) with respect to uniform 

norm.  

4.1- Theorem [6] 

       Standard Feed Forward Networks with 

only a single hidden layer can approximate 

any continuous function uniformly on any 

compact set and any measurable function to 

any desired degree of accuracy. 

Therefore from the above theorem we have 

the following:- 

1- To approximate any function on R
N
 we 

want to determine the number of the hidden 

nodes , activation functions to hidden layer 

and training functions. 

2- The parameters to this approximation are 

the weights and biases of nodes in the layers 

which can calculate by training the FFNN. 

3- Any lack of success in applications must 

arise from inadequate training, insufficient 

number of hidden units, or the lack of a 

deterministic relationship between the input 

and the target. 

5 Examples 

         Now in this section we give some 

example which illustrate the suggested 

network.  

5.1 Example 1  

Let us have the following differential 

equations      

y''-4(y-x)=0  ,   x[0,1]    ………………  ( 5 ) 

with  BC:    y(0)=0     and     y(1)=2   

And the exact solution to ( 5 ) is         

y(x)=e
2
(e

4
-1)

-1
(e

2x
-e

-2x
)+x      …………….( 6 ) 

Our solution to equation (5) by using (2)  is         

yt(x)=2x+(x
2
-x)N(x)              ………………(7) 

Then the FFNN N(x) in (7) is the same as to 

approximate the following function :- 

𝐺(𝑥) =
𝑦𝑡(𝑥)−2𝑥

𝑥2−𝑥
       x≠0,1     ……………. (8) 

To design FFNN which approximate G(x) by 

Theorem 4.1, we choose 3 nodes to hidden 

layer and the activation function is 'tansig', 

then to training the FFNN we use the function 

'trainlm'.  

     After we training the FFNN we obtain the 

parameters illustrated in Table1, the result is 

giving in Table 2 and we display the analytic 

and neural solutions in the Figure 1. 
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Table1: Training parameter of the suggested network for example 1 

Input Weight Hidden Bias Hidden Weight Output Bias 

0.025118602453792 0.171440917519520 0.797663289393945 1.153586732255470 

0.596614946259474 -1.333818433845600 0.791987233939725  

0.187536230762526 0.117995335006529 0.885756736525519  

 

Table 2: The results of the example1 using suggested network 

 

 

 

 

 

 

 

X Y-exact Y-approximate (Y-Yt)
2 

0 0 0 0 

0.1 0.155512476 0.1555155 0.00000000000914490185 

0.2 0.313252863 0.31325665 0.00000000001434217580 

0.3 0.475538485 0.475536608 0.00000000000352482217 

0.4 0.644869083 0.644866155 0.00000000000857073793 

0.5 0.824027137 0.824030907 0.00000000001421507743 

0.6 1.016189537 1.016199017 0.00000000008986681044 

0.7 1.225055085 1.225060292 0.00000000002710271818 

0.8 1.454992938 1.454990613 0.00000000000540431067 

0.9 1.711217956 1.711224143 0.00000000003827465872 

1 2 2 0 

  MSE 
0.00000000001721832653 
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Figure 1:Analytic and neural solutions of Example 1 

 

 

5.2 Example 2 

Let us have the following differential 

equations   

 y''-4y=8cos2x , x[0, 2π]     ………...…. ( 9 ) 

              BC: y(0)=1   ,   y(2π)=1  

And the exact solution to ( 9 ) is      

y(x)=cos2x+sin2x+2xsin2x……………. ( 10 ) 

Our solution to equation (9) by using (2)  is      

yt(x)=1+(x
2
-2πx)N(x) …………………….(11) 

Then the FFNN  N(x) in (11) is the same as to 

approximate the following function :- 

  𝐺(𝑥) =
𝑦𝑡(𝑥)−1

𝑥2−2𝜋𝑥
   ,       x≠0,2π   …………(12) 

To design FFNN which approximate G(x) by 

Theorem 4.1, we choose 3 nodes to hidden 

layer and the activation function is 'tansig', 

then to training the FFNN we use the function 

'trainlm'.  

     After we training the FFNN we obtain the 

parameters illustrated in Table 3, the result is 

giving in Table 4 and we display the analytic 

and neural solutions in the Figure 2. 

 

Table3: Training parameter of the suggested network for example 2 

 

Input Weight Hidden Bias Hidden Weight Output Bias 

-0.96288232488637 0.652840912117375 6.23664109302719 -0.537041239957662 

1.89750554327429 0.762014152249968 0.944806411478224  

-1.597958760677 1.091948365944060 -4.375547392315350  
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Table 4: The results of the example2 using suggested network 

 

Figure 2:Analytic and neural solutions of Example 2 

 

 

 

X Y-exact Y-approximate (Y-Yt)
2 

0 1 1 0 

0.65 2.483137499 2.483682655 0.00000029719461491706 

1.3 1.006661952 0.998916185 0.00005999690605684330 

1.95 -4.091058127 -4.095986484 0.00002428870080022000 

2.6 -5.013702487 -5.008902194 0.00002304280965994200 

3.25 2.597896663 2.589987536 0.00006255428884933510 

3.9 8.815226652 8.84113686 0.00067133884744063800 

4.55 2.289918648 2.275171858 0.00021746783892625600 

5.2 -10.00609845 -9.998206005 0.00006229072184669800 

5.85 -9.025219534 -9.029595177 0.00001914624890970020 

2π 1 1 0 

  MSE 
0.00009330738194491770 
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5.3 Example 3  

Let us have the following differential 

equations   

y''= y
3
-yy' , x[0,1]            ……………..( 13 ) 

with  BC: y(0)=1 and y(1)= 
1

2
  

And the exact solution to ( 13 ) is 

y(x)=
1

𝑥+1
         ………………………….( 14 ) 

Our solution to equation (13) by using (2)  is : 

yt(x)= 
2−𝑥

2
+(x

2
-x)N(x)    …………………(15) 

Then the FFNN N(x) in (15) is the same as to 

approximate the following function :- 

  𝐺(𝑥) =
2𝑦𝑡(𝑥)−2−𝑥

2(𝑥2−𝑥)
     , x≠0,1                                                        

……………………….……(16) 

To design FFNN which approximate G(x) by 

Theorem 4.1, we choose 3 nodes to hidden 

layer and the activation function is 'tansig', 

then to training the FFNN we use the function 

'trainlm'.  

     After we training the FFNN we obtain the 

parameters illustrated in Table5, the result is 

giving in Table 6 and we display the analytic 

and neural solutions in the Figure 3

. 

Table5: Training parameter of the suggested network for example 3 

Input Weight Hidden Bias Hidden Weight Output Bias 

-0.20011524470189 0.747097442730006 0.374611207364815 -0.226032037045629 

-1.1102786850145 -2.10935734110926 1.02228340776327  

0.427525944912668 0.663165049634819 -1.18051725183527  

Table 6: The results of the example3 using suggested network 

X Y-exact Y-approximate (Y-Yt)
2 

0 1 1 0 

0.1 0.909088244 0.909090909 0.00000000000710520078 

0.2 0.833333307 0.833333333 0.00000000000000070811 

0.3 0.769233234 0.769230769 0.00000000000607552435 

0.4 0.71428537 0.714285714 0.00000000000011866059 

0.5 0.666664177 0.666666667 0.00000000000619845573 

0.6 0.624999089 0.625 0.00000000000083049139 

0.7 0.588236461 0.588235294 0.00000000000136085788 

0.8 0.555555102 0.555555556 0.00000000000020588373 

0.9 0.526311433 0.526315789 0.00000000001897858118 

1 0.5 0.5 0 

  MSE 
0.00000000000334426612 
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Figure 3:Analytic and neural solutions of Example 3 

 

 

5.4 Example 4  

Let us have the following differential 

equations   

2x
2
 y''-y

3
+2y

2
=0 ,  x[0,1]    …………...( 17 ) 

with  BC: y(0)=0     and    y(1)=1   

And the exact solution to ( 17 ) is 

y(x)=
2𝑥

𝑥+1
                            ……………..( 18 ) 

Our solution to equation (17) by using (2)  is : 

yt(x)=x+(x
2
-x)N(x)              ………………(19) 

Then the FFNN N(x) in (19) is the same as to 

approximate the following function :- 

𝐺(𝑥) =
𝑦𝑡(𝑥)−𝑥

𝑥2−𝑥
          x≠0,1    ………….(20) 

To design FFNN which approximate G(x) by 

Theorem 4.1, we choose 3 nodes to hidden 

layer and the activation function is 'tansig', 

then to training the FFNN we use the function 

'trainlm'.  

     After we training the FFNN we obtain the 

parameters illustrated in Table7, the result is 

giving in Table 8 and we display the analytic 

and neural solutions in the Figure 4. 

 

Table7: Training parameter of the suggested network for example 4 

Input Weight Hidden Bias Hidden Weight Output Bias 

0.528120570989692 -0.137703111821045 0.445604498360927 -2.230706087313750 

0.895588508943409 1.388813866032050 1.065113059207930  

-0.00562960643696 1.002926456060790 -1.28734987876764  
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Table 8: The results of the example4 using suggested network 

 

Figure 4:Analytic and neural solutions of Example 4 

 

 

 

X Y-exact Y-approximate (Y-Yt)
2 

0 0 0 0 

0.1 0.181758368 0.181818182 0.00000000357773814096 

0.2 0.333386397 0.333333333 0.00000000281577701670 

0.3 0.461580499 0.461538462 0.00000000176714350830 

0.4 0.571432543 0.571428571 0.00000000001577714927 

0.5 0.666662563 0.666666667 0.00000000001683997884 

0.6 0.750002519 0.75 0.00000000000634739672 

0.7 0.823530716 0.823529412 0.00000000000170181536 

0.8 0.888886141 0.888888889 0.00000000000755137177 

0.9 0.947373363 0.947368421 0.00000000002442290931 

1 1 1 0 

  MSE 
0.00000000067363357805 
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 ل تدريب الشبكات العصبية لحل صنف من مسائل القيم الحدوديةحو

 علاء كامل جابرم. 

Email: alaa77_math@yahoo.co.uk 
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 الخلاصة

مسائل القيم الحدودية للمعادلات التفاضلية الاعتيادية  صنف من شبكة عصبية ذات تغذية تقدمية لحل  تدريبالهدف من البحث هو 

للشبكة (. تم اثبات وجود الحل trainlmوتم استخدام خوارزمية التدريب ) ذات التغذية الخلفية خوارزمية التدريب.تم استخدام 

. تم دراستها بشكل مكثف منذ بضعة عقود حيث قدمت خيارا لنمذجة الانظمة الصعبة. لذلك هذا الخيار استخدم لتقليل ةالمقترح

 التوضيحية.    الأمثلةمن خلال الشبكة المقترحة  الحسابات في اثناء الحل ، واخيرا تم توضيح
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