Trivial Extension of π -Regular Rings

Areej M. Abduldaim

Applied Sciences Department, University of Technology/ Baghdad. Email:Areej mussab@yahoo.com

> **Received on: 5/10/2015** & Accepted on:27/12/2015

ABSTRACT

In this paper we investigate if it is possible that the trivial extension ring T(R,R) inherit the properties of the ring R and present the relationship between the trivial extension T(R, M) of a ring R by an R-module M and the π -regularity of R by taking new concepts as π -coherent rings and C- π -regular rings which introduced as extensions of the concept of π -regularrings. Moreover we studied the possibility of being the trivial extension T(R, M) itself π -regular ring according to specific conditions. Thus we proved that if R is an Artinian ring, then the trivial extension T(R, R)is a π -regular ring. As well as if the trivial extension T(R, R) is a Noetherian π -regular ring, then R is a π -regular ring. On the other hand we showed that if F is a field and M is an F-vector space with infinite dimension, then the trivial extension ring T(F, M) of F by M is C- π -regular ring.

Keywords: Trivial extension ring, π -regular ring, Artinian ring, Noetherian ring, C- π -regular ring.

π التمديد التافه للحلقات المنتظمة من النمط

الخلاصة

في هذا البحث نتحقق فيما اذا كان من الممكن ان ترث حلقة التمديد التافه (T(R,R) صفات الحلقة R ونعرض العلاقة بين حلقة التمديد التافهT(R,M) للحلقة R بواسطة الموديول M والانتظامية من النمط π للحلقة R من خلال اتخاذ مفاهيم جديدة كالحلقات المتماسكة من النمط π والحلقات المنتظمة من النمط C- π التي قدمت لاول مرة كتوسيع لمفهوم الحلقات المنتظمة من النمط π بالأضافة الى ذلك درسنا امكانية كون حلقة التمديد التافه T(R,M) نفسها منتظمة من النمط π وفقا لشروط محددة. وهكذا اثبتنا انه اذا كانت R حلقة ارتينية فان حلقة التمديد التافه T(R,R) تكون منتظمة من النمط π . وكذلك اذا كانت حلقة التمديد التافه T(R,R) نويثيرية ومنتظمة من النمط π فان R حلقة منتظمة من النمط π . من ناحية اخرى فقد بينا انه اذا كان \overline{F} حقل و M هو فضاء متجهات لا نهائي على \overline{F} فان حلقة التمديد التافه T(F, M) للحقل F بو اسطة M تكون منتظمة من النمط T(F, M)

INTRODUCTION

hroughout this paper all rings are commutative and all modules are unitary, unless otherwise stated. Recall that a ring R is π -regular if for each $r \in R$ there exist a positive integer n and $s \in R$ such that $r^n s r^n = r^n$. It is known that a ring R is π -regular if and only if for every element r in R there exists a positive integer n such that Rr^n is a direct summand of R if and only if every prime ideal of R is maximal [1]. A ring R is said to be coherent if every finitely generated ideal of R is finitely presented [2]. We introduced the concept of π -coherent rings (C- π -regular ring) as a generalization of coherent ring (π -regular ring) such that every π -regular ring is π coherent (every π -regular ring is C- π -regular).

https://doi.org/10.30684/etj.34.1B.17

^{2412-0758/}University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

The main idea is to put M (may be M = R) inside a commutative ring $T = T(R, M) = R \oplus M$ (if R is commutative) so that the structure of M as an R-module is essentially the same as that of M as an T-module, that is, as an ideal of T [3,4,5]. The advantage of the trivial extension is:

- (a) Transfer results relating to modules to the ideal case including the *R*-module*R*.
- (b) Extending results from rings to modules.
- (c) It is easier to find counterexamples of rings especially those with zero divisors.

Generally, we studied the relationship between π -regular rings and some related concepts with trivial extension ring T(R, R). Moreover we extended the property of π -regularity to the trivial extension T(R, R). We proved that if the trivial extension T(R, R) is Artinian ring, and then R is a π -regular ring. In addition if the trivial extension T(R, R) is a Noetherian π -regular ring, then R is a π -regular ring. Also we showed that if M is a finitely generated module over a ring R and the trivial extension T(R, M) of R by M is a C- π -regular ring, then R is C- π -regular. On the other hand we found that the trivial extension ring T(D, F) of the domain D by F is not π -regular ring in case that D is not a field and F is the quotient field of D. However we showed that if F is a field and M is an F-vector space with infinite dimension, then the trivial extension ring T(F, M) of F by M is C- π -regular ring.

The structure of this paper is as follows. Section 2 is devoted to recall previous known definitions and information about the trivial extension. In section 3 we present our main work, we study the relationship between the trivial extension rings and π -regular rings and showed that a homomorphic image of a C- π -regular ring is C- π -regular. Several examples are given to clarify the ideas used within the section. Section 4 involves the study of the trivial extension ring T(R, N) of a ring R by an R-module N in case R is a local domain. So we have the following: If M is a maximal ideal of a local domain R and N is an R-module with MN = 0, then the trivial extension ring T(R, N) of R by N has no any proper projective ideal. Finally, in section 5 we give an inspiration for future works depending on the related existing results.

It is worth to mention that there are many generalizations of the concept of π -regular rings to modules such as *GF*-regular modules [6,7] and *GZ*-regular modules [8] and there is an equivalent concept of π -regular rings studied in [8] named *P*-semiregular rings. And certainly there are many related concepts to π -regular rings most notably π -McCoy rings [9] and other related concepts as in [10].

Preliminaries

In this section we survey known results concerning $T = T(R, M) = R \oplus M$. The theme throughout is how properties of $T = T(R, M) = R \oplus M$ are related to those of R and M [3,4,5].

Let *R* be a ring and *M* be an (R, R)-bimodule. Recall that the trivial extension of *R* by *M* (also called the idealization of *M* over *R*) is defined to be the set T = T(R, M) of all pairs (r, m) where $r \in R$ and $m \in M$, that is:

 $T = T(R, M) = R \oplus M = \{(r, m) | r \in R, m \in M\}$

With addition defined componentwise as

 $(r_1, m_1) + (r_2, m_2) = (r_1 + r_2, m_1 + m_2)$

And multiplication defined according to the rule

 $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2)$

For all $r_1, r_2 \in R$ and $m_1, m_2 \in M$. Clearly T = T(R, M) forms a ring (even an *R*-algebra) and it is commutative if and only if *R* is commutative.

Note that *R* naturally embeds into T(R, M) via $r \to (r, 0)$, that is $T(R, 0) \cong R$ and that the module *M* identified with $T(0, M) = \{(0, m) | m \in M\}$ becomes a nonzero nilpotent ideal of T(R, M) of index 2, which explains the term idealization. If *N* is a submodule of *M*, then T(0, N) is an ideal of

T(R, M), and that $(T(R, M)/T(0, M)) \cong R$. The ring T = T(R, M) has identity element (1,0) and any idempotent element of the trivial extension ring T(R, R) is of the form (e, 0) where $e^2 = e \in R$.

In fact there is another realization of the trivial extension. Let $T = T(R, M) \cong \{ \begin{pmatrix} r & m \\ 0 & r \end{pmatrix} | r \in R, m \in M \}$, then T is a subring of the ring of 2×2 matrices over R with the usual matrix operations and T is a commutative ring with identity. If M = R, then $T = T(R, R) \cong R[x]/\langle x^2 \rangle$ where R[x] denote the ring of all polynomials over R and $\langle x^2 \rangle$ is the ideal generated by x^2 . For convenience, let

$$T(I,N) = \{(s,n) | s \in I, n \in N\}$$

Where

I is a subset of R and N is a subset of M. Moreover, if R be a commutative ring and M an R-module, then

(1) The prime ideals of T(R, M) have the form $T(P, M) = P \oplus M$ where P is a prime ideal of R.

(2) The maximal ideals of T(R, M) have the form $T(W, M) = W \oplus M$ where W is a maximal ideal of R. The Jacobson radical of T(R, M) is $J(T(R, M)) = T(J(R), M) = T(J(R) \oplus M)$.

Let *M* be an *R*-module, and let $\{m_{\alpha}\} \subseteq M$. It is obvious that *M* is generated by $\{m_{\alpha}\}$ if and only if T(0, M) is generated by $\{(0, m_{\alpha})\}$. Thus, *M* is finitely generated as an *R*-module if and only if T(0, M) is finitely generated as an ideal. If *I* is an ideal of *R*, $IT(R, M) = I \oplus IM$. Thus, if *I* is finitely generated, so is $I \oplus IM$. However, $I \oplus IM$ can be finitely generated without *IM* being finitely generated.

We next determine when T(R, M) is Noetherian or Artinian. Let R be a commutative ring and M be an R-module. Then T(R, M) is Noetherian, respectively Artinian, if and only if R is Noetherian, respectively Artinian, and M is finitely generated.

Finally, for an endomorphism α of a ring R and the trivial extension ring T(R,R) of R, α can be extended to an endomorphism of the ring T(R,R) as $\overline{\alpha}: T(R,R) \to T(R,R)$ defined by $\overline{\alpha}((a_{ij})) = (a_{ij})$

 $(\alpha(a_{ij}))$, that is:

$$\bar{\alpha} \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \alpha(a) & \alpha(b) \\ 0 & \alpha(a) \end{pmatrix}$$

Since T(R, 0) is isomorphic to R, we can identify the restriction of $\overline{\alpha}$ on T(R, 0) to α .

The Trivial Extension and π -Regular Rings

In this section we explore the relationship between the trivial extension rings and π -regular rings.

It is well known that a ring *R* Artinian if and only if *R* is Noetherian π -regular [1]. On the other hand, according to [5, Theorem 4.8], it's easy to find finitely generated *R*-modules that have submodules that are not finitely generated. For example, *R* considered as a module for itself, every ring with identity is generated as an *R*-module by 1_R , hence is a finitely generated *R*-module. However, if *R* is not left Noetherian, *R* will have non-finitely generated left ideals, hence nonfinitely generated submodules. Therefore according to the information stated in Section 2 above we have that T(R, R) is Noetherian, respectively Artinian, if and only if *R* is Noetherian, respectively Artinian.

Proposition 3.1: If R is an Artinian ring, then the trivial extension T(R, R) is a π -regular ring.

Proof: Let *R* be an Artinian ring, then T(R, R) is an Artinian ring [5, Theorem 4.8], hence T(R, R) is a π -regular ring [1, Corollary 1.1.23].

The following is immediately by [1, Corollary 1.1.23].

Corollary 3.2: If *R* is a Noetherian π -regular ring, then the trivial extension T(R, R) is a π -regular ring.

Proposition 3.3: If the trivial extension T(R, R) is Artinian ring, then R is a π -regular ring.

Proof: Since if T(R, R) is Artinian then R is Artinian [5, Theorem 4.8], therefore by [1, Corollary 1.1.23] R is π -regular ring.

The following is also immediately by [1, Corollary 1.1.23].

Corollary 3.4: If the trivial extension T(R, R) is a Noetherian π -regular ring, then R is a π -regular ring.

Now we introduce the concept of π -coherent ring as a generalization of coherent rings and π -regular rings simultaneously.

Definition 3.5: A ring *R* is said to be π -coherent if for every $x \in R$, there exists a positive integer *n* such that Rx^n is a non-trivial finitely presented ideal.

It is clear that every coherent ring is π -coherent.

Remark 3.6: Every π -regular ring is π -coherent.

Proof: Since R is a π -regular ring, then for each $x \in R$ there exists a positive integer n such that Rx^n is direct summand [1]. So Rx^n is projective R-module, hence we have that Rx^n is finitely presented [2]. Therefore R is π -coherent ring.

Examples 3.7:

(1) Let $R = \mathbb{Z}_4$, the trivial extension ring $T(R, R) = T(\mathbb{Z}_4, \mathbb{Z}_4) = \mathbb{Z}_4 \oplus \mathbb{Z}_4$ is π -regular by [1].

(2) Let $\widehat{\mathbb{Z}}_{(p)}$ be the completion of the localization $\mathbb{Z}_{(p)}$ where \mathbb{Z} is the integers and p is a prime number. That is, $\widehat{\mathbb{Z}}_{(p)}$ is the ring of p-adic integers. Put $\mathbb{Z}_{p^{\infty}}$ to be the *Prüferp*-group and set S be the trivial extension of $\widehat{\mathbb{Z}}_{(p)}$. The trivial extension ring $T(S,S) = S \oplus S$ is not π -regular [11]. Now we consider the following properties:

Property A: For each finitely generated prime ideal *P* of *R* there exists a positive integer *n* such that $r^n \in P$ and Rr^n is direct summand for all $r \in R$.

We denote each ideal satisfies Property (A) by the Container.

Property B: Every Container ideal *P* of *R* is a direct summand of *R*.

Definition 3.8: A ring *R* is said to be C- π -regular if it satisfies Property B.

It is clear that every π -regular ring is *C*- π -regular. Note that the Container ideal is generated by an idempotent.

Theorem 3.9: Let D be a domain which is not a field and let F be the quotient field of D. The following are equivalent:

(1) The trivial extension ring T(D, F) of D by F is a C- π -regular ring

(2) *D* has no any nonzero Container ideal.

Proof:

(1) implies (2) Suppose that $T = T(D, F) = D \oplus F$ is a C- π -regular ring and D has a proper nonzero Container ideal. Put $I \coloneqq \sum_{i=1}^{k} Db_i$ be a nonzero Container ideal of D where $b_i \in D$ for each i = 1, ..., k. Let $P \coloneqq T(I, F)$, then $P \in Spec(R)$ by [4] and $P = \sum_{i=1}^{k} T(b_i, 0)$ because bF = F for each $b \in D\{0\}$. Therefore P = T(t, e) where (t, e) is an idempotent element of D because that D is a C- π -regular ring, that is $(t, e) = (t, e)(t, e) = (t^2, 2te)$. So $t^2 = t$ and hence t = 0 or t = 1 because D is a domain which is a contradiction since $P(\coloneqq Dt)$ is a proper ideal of D. Consequently, D has no any nonzero Container ideal.

(2) implies (1) Suppose that *D* has no any nonzero Container ideal and let *P* be a Container ideal of T(D, F). So P = T(I, F) where *I* is a nonzero Container ideal of *D* (because T(0, F) is not a finitely generated ideal of T(D, F)). Therefore *I* is a nonzero prime ideal which implies that *I* is not a

Container ideal of D which is a contradiction. Hence T(D, F) has no any nonzero Container ideal which means that T(D, F) is a C- π -regular ring.

Theorem 3.10: Let *D* be a domain which is not a field and let *F* be the quotient field of *D*, then the trivial extension ring T(D, F) of *D* by *F* is not π -regular ring. In fact *R* is not π -coherent.

Proof: To prove that T = T(D, F) is not π -regular, it is enough to show that T = T(D, F) is not π coherent using Remark 3.6. Actually, there exists a nonzero element $(0,1) \in T = T(D,F)$ such that
for each positive integer n the ideal $T(0,1)^n = T(o,1)$ in case n = 1 and $T(0,1)^n = (0)$ in case n > 1 (which is not in our concerned). The ideal $T(0,1)^n = T(0,1)$ is not finitely presented by the
exact sequence of T-modules:

$$0 \rightarrow T(0, F) \rightarrow T \xrightarrow{\sim} T(0, 1) \rightarrow 0$$

where u(d, e) = (d, e)(0, 1) = (0, d) this is because T(0, F) is not a finitely generated ideal of T(d, F). Therefore T(D, F) is not π -coherent and so is not π -regular.

The following example shows that *C*- π -regular may not be π -regular.

Example 3.11: Let $I \subseteq J$ be an extension of fields such that $[J:I] = \infty$, S = J[[X]] = J + M where X is an indeterminate over J and M = XS is the maximal ideal of S. Put R:=I + M and the trivial extension ring of R by F is $T(R,F) = R \oplus F$ where F is a quotient field of A. Then R is C- π -regular ring because the only nonzero prime ideal of R is M which is not finitely generated of R [12]. Moreover T(R,F) is a C- π -regular ring by Theorem 3.9 and [12] and also T(R,F) is not a π -regular ring by Theorem 3.10 and because the only nonzero Container ideal of R is M which is not a finitely generated ideal of R.

It is known that every π -regular domain is a field [1]. The above example shows that this is not true for *C*- π -regular rings because *R* is a *C*- π -regular domain but not a field.

Example 3.12: Let F be a field and let n be a positive integer. The trivial extension ring $T(F, F^n) = F \oplus F^n$ of F by F^n is not a C- π -regular ring.

Proof: Put $P := T(0, F^n)$ to be a container ideal of $T(F, F^n)$. *P* is the only prime ideal of $T(F, F^n)$ because any prime ideal of *R* has always the form $T(I, F^n)$ where *I* is prime ideal of *F* [4]. And since *F* is a field, then the zero ideal is the only prime ideal of *F*. Hence $P = T(0, F^n)$ is unique prime ideal of $T(F, F^n)$. But $T(F, F^n)$ is local [12, Example 2.4], so $T(F, F^n)$ is also local ring and has unique prime ideal. Therefore $T(F, F^n)$ is π -regular ring [1, Corollary 1.1.16].

Remark 3.13: The above example gives the following information of the trivial extension ring $T(F, F^n)$:

(1) $T(F, F^n)$ is π -regular ring.

(2) $T(F, F^n)$ is *C*- π -regular ring.

 $(3)T(F, F^n)$ is not *P*-von Neumann regular ring.

 $(4)T(F, F^n)$ is not von Neumann regular ring.

Now it is appropriate to ask : when we can consider *D* in Theorem 3.9 to be a field?

Proposition 3.14: If *F* is a field and *M* is an *F*-vector space with infinite dimension, then the trivial extension ring T(F, M) of *F* by *M* is C- π -regular ring.

Proof: The ideal T(0, M) of T(F, M) is the only proper prime ideal and it is not finitely generated of T(F, M) because M is an F-vector space with infinite dimension. Thus for each $r \in R$ and for each positive integer n there is no Container ideal of T(F, M). Hence T(F, M) is C- π -regular ring.

It is known that a homomorphic image of a π -regular ring is also π -regular [1]. The following is an analogous result for *C*- π -regular rings.

Proposition 3.15: A homomorphic image of a C- π -regular ring is C- π -regular.

Proof: Suppose that *R* is a C- π -regular ring and *I* is a Container ideal of *R* such that *G* is a Container ideal of *R/I*. Thus G = P/I for some container ideal *P* of *R*. Hence *P* is generated by an idempotent element *e* of *R*, so *G* is generated by e + I which is an idempotent element of *R/I*. This means that the Container ideal *G* of *R/I* is direct summand. Therefore *R/I* is a *C*- π -regular ring.

Corollary 3.16: Let *M* be a finitely generated module over a ring *R*. If the trivial extension T(R, M) of *R* by *M* is a *C*- π -regular ring, then *R* is *C*- π -regular.

Proof: The trivial extension ring of *R* by *M* is T = T(R, M), so $R \cong T/T(0, M)$. Since *M* is finitely generated *R*-module, then $M \cong T(0, M)$ is finitely generated ideal of *R*. Therefore *R* is *C*- π -regular ring by Proposition 3.15.

Trivial Extension Ring via Local Domain

In this section we study the trivial extension ring of a local domain R with its unique maximal ideal M.

Lemma 4.1: [12, Lemma 2.7]

If *M* is a maximal ideal of a local domain *R* and *N* is an *R*-module with MN = 0, then the trivial extension ring T(R, N) of *R* by *N* has no any proper projective ideal.

Theorem 4.2: Let *M* be the unique maximal ideal of the local domain *R* and let *N* be an *R*-module such that MN = 0. If *N* is an *R*/*M*-vector space of infinite dimension, then the trivial extension T(R, N) of *R* by *N* is a *C*- π -regular ring.

Proof: Suppose that *N* is an *R*/*M*-vector space of infinite dimension. By Lemma 4.1 it is obvious that any ring *R* is *C*- π -regular ring if and only if there is no proper Container ideal of *R*. So it is enough to prove that T = T(R, N) has no proper Container ideal. If not, let $P := T(I, N) = \sum_{i=1}^{k} T(s_i, a_i)$ be a proper Container ideal of T = T(R, N) where *I* is a Container ideal of *R* and $s_i \in I$, $a_i \in N$ for each i = 1, ..., k. Since $s_i N = 0$ for each i = 1, ..., k hence $N \subseteq \sum_{i=1}^{k} (R/M)a_i$ which implies that *N* is an *R*/*M*-vector space of finite dimension which is a contradiction. Thus, there is no proper Container ideal of T = T(R, N) and therefore T = T(R, N) is a *C*- π -regular ring. Recall that a discrete valuation ring is a principle ideal domain that has exactly one nonzero prime ideal.

Example 4.3: Let *D* be a discrete valuation domain which is not a field with its unique maximal ideal *M* and let *N* be a *D/M*-vector space with infinite dimension. Then the trivial extension ring T = T(D, N) of *D* by *N* is a *C*- π -regular ring by Theorem 4.2 and D = T/T(0, N) is not a *C*- π -regular ring because *M* is a Container ideal which is not generated by an idempotent and because *D* is a domain.

Future Suggestions:

It is convenient to ask about the possibility to transmit the concepts of *GF*-regular and *GZ*-regular modules to the concept of the trivial extension. We have a conjecture that there is a relationship between the trivial extension T(R, R) of a π -regular rings R and the trivial extension T(R, M) of a ring R and a *GF*-reguar module (*GZ*-regular module) M. Moreover we claim that we can get promising results when we relocate the concept of *P*-semiregular rings, the unique maximal *GF*-regular submodule of a moduleand related concepts to π -regular rings like π -McCoy rings to the concept of the trivial extension.

REFERENCES

[1]Abduldaim A. M., π -regularity and Full π -stability on Commutative Rings, M. Sc. Thesis, Al-Mustansiriyah University, 1999.

[2] Goodearl K. R., Ring Theory. Non- Singular Rings and Modules, Marcel-Dekker, New York and Basel, 1976.

[3]GlazS., Commutative Coherent Rings, Lecture Notes in Mathematics, 1371. Springer Verlag, Berlin, 1989.

[4]Huckaba J. A., Commutative Rings with Zero Divisors, Marcel, Inc., New York-Basel, 1988.

[5] Anderson D. D., Winders M., "Idealization of a Module", J. Commut. Algebra, 1, 1, 3-56, 2009.

[6]Abduldaim A. M., "Chen, *GF*-Regular Modules", Journal of Applied Mathematics, Volume 2013, Article ID 630285, 7 pages, 2013.

[7]Abduldaim A. M., Chen S., "The Unique Maximal *GF*-Regular Submodule of a Module", The Scientific World Journal, Volume 2013, Article ID 750808, 3 pages, 2013.

[8] Abduldaim A. M., Generalizations of Regular Modules and π -Regular Rings, Ph.D. Thesis, Harbin Institute of Technology, 2014.

[9]Abduldaim A. M., Chen S., " α -Skew π -McCoy Rings", Journal of Applied Mathematics, Volume 2013, Article ID 309392, 7 pages, 2013.

[10] Abduldaim A. M., "Fully π -P-Stable Rings", Eng. and Tech. Journal, Vol.28, No.3 ,608-611, 2010.

[11] Huh C., KimN. K., LeeY., "Examples of Strongly π -regular rings", Journal of Pure and Applied Algebra, 189,195-210, 2004.

[12] Bakkari C., "On P-von Neumann Regular Rings", International Mathematical Forum, 4, no. 21, 1045-1050, 2009.