On Generalized Left Derivation on Semiprime Rings

Dr. A. H. Majeed Science College, University of Baghdad/ of Baghdad Email:ahmajeed6@yahoo.com Shaima'a B. Yass Science College, University of Baghdad/ of Baghdad

Received on: 29/12/2014 & Accepted on: 12/11/2015

ABSTRACT

Let *R* be a 2-torsion free semiprime ring. If *R* admits a generalized left derivation *F* associated with Jordan left derivation *d*, then *R* is commutative, if any one of the following conditions hold: (1) $[d(x), F(y)] = \pm [x, y]$, (2) $[d(x), F(y)] = \pm xoy$, (3) $d(x)oF(y) = \pm xoy$, (4) $d(x)oF(y) = \pm [x, y]$, for all $x, y \in R$.

Keywords: semiprime rings, prime rings, generalized left derivation, generalized Jordan left derivation.

حول الاشتقاق المعمّم الايسر على الحلقات شبه الأولية

الخلاصة:

لتكن R حلقة شبه أولية طليقة الالتواء من النمط ٢، إذا احتوت R على الاشتقاق الأيسر المعمّم F المرتبط بالشتقاق جور دان الأيسر
$$b$$
 ، فأن R حلقة تبادلية، إذا تحقق احد الشروط التالية: (١) $[d(x), F(y)] = \pm [x, y]$ ، الشتقاق جور دان الأيسر b ، فأن R حلقة تبادلية، إذا تحقق احد الشروط (٢) المرتبط $d(x)$ م المرتبط $d(x)$ م المرتبط $f(y) = \pm [x, y]$ ، (٤) م المرتبط $d(x)$ م المرتبط $f(y) = \pm xoy$ (٢) الحل $f(y) = \pm xoy$ (٢)

INTRODUCTION

hroughout, *R* will denote an associative ring with Z(R). As usual, for any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx and the symbol xoy denotes for anticommutator xy + yx. A ring *R* is n-torsion free, if nx = 0, $x \in R$ implies x = 0, where *n* is a positive integer. Recall that a ring *R* is prime if aRb = (0) implies a = 0 or b = 0 and semiprime if aRa = (0) implies a = 0. A prime ring is semiprime, but the converse is not true in general. An additive mapping $d: R \longrightarrow R$ is called a derivation (resp. Jordan derivation) if d(xy) = d(x)y + xd(y) (resp. $d(x^2) = d(x)x + xd(x)$) holds for all $x, y \in R$. Following [6] An additive mapping d : $R \longrightarrow R$ is said to be left derivation (resp. Jordan left derivation) if d(xy) = xd(y) + yd(x) (resp. $d(x^2) = 2xd(x)$) holds for all $x, y \in R$, Clearly, every left derivation on a ring *R* is a Jordan left derivation, but the converse need not to be true in general. A classical result of Ashraf and Rehman in [1] asserts that any Jordan left derivation on 2-torsion free prime ring is a left derivation.

In 1991, Brešar [5] defined the following concept. An additive mapping $F : R \longrightarrow R$ is called a generalized derivation if there exists a derivation $d : R \longrightarrow R$, such that:

F(xy) = F(x)y + xd(y), for all $x, y \in R$.

And in [8] Jing and Lu, initiated the concept of generalized Jordan derivation as, an additive mapping $F: R \longrightarrow R$ is called a generalized Jordan derivation if there exists a Jordan derivation $d: R \longrightarrow R$, such that:

https://doi.org/10.30684/etj.34.1B.10

۸۷

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0</u> $F(x^2) = F(x)x + xd(x)$, for all $x \in R$.

Every generalized derivation is a generalized Jordan derivation, but the converse is not true in general. Jing and Lu in [8] proved that the converse is true when R is 2-torsion free prime ring.

Ashraf and Ali in [3] introduced the notion of generalized left derivation as follows: an additive mapping $F : R \longrightarrow R$ is called a generalized left derivation (resp. a generalized Jordan left derivation) associated with Jordan left derivation, if there exists a Jordan left derivation $d : R \longrightarrow R$, such that: F(xy) = xF(y) + yd(x) (resp. $F(x^2) = xF(x) + xd(x)$) holds for all $x, y \in R$.

Posner [9], initiated the study of the commutativity of prime rings with derivation. Following, many authors proved the commutativity of prime rings with generalized derivation, for more details (see [2, 4, 10, and 11]). And in [3] Ashraf and Ali proved that, if R is a 2-torsion free prime ring, and R admits a generalized left derivation F associated with Jordan left derivation d, then either d = 0 or R is commutative.

In this paper we prove the commutativity of semiprime rings with generalized left derivation associated with Jordan left derivation, under certain conditions.

The Results

Theorem 1, [12]

Let R be a 2-torsion free semiprime ring with unity. Then every generalized Jordan left derivation F associated with Jordan left derivation d, is a generalized left derivation

The following theorem plays the key role in the proofs of the main results:

Theorem 2:

Let R be a 2-torsion free semiprime ring. If R admits a generalized left derivation F associated with Jordan left derivation d, then $d(x) \in Z(R)$, for all $x \in R$.

For the proof of the theorem, we will need the lemma below:

Lemma 3:

Suppose that *R* is semiprime ring and $a \in R$, such that a[a, x] = 0, or [a, x]a = 0 for all $x \in R$, then $a \in Z(R)$. **Proof:** If a[a, x] = 0, for all $x \in R$, for the proof see [7].

Now, suppose:

ron, suppose.	
$[a, x]a = 0$, for all $x \in R$	(1)
Replace x by xr in (1) and using (1), we get:	
$[a, x]ra = 0$, for all $x, r \in R$	(2)
Replace r by rx in (2), to get:	
$[a, x]rxa = 0$, for all $x, r \in R$	(3)
Again, right multiplication of (2) by x , to get:	
$[a, x]rax = 0$, for all $x, r \in R$	(4)
Subtracting (3) from (4), we get:	
$[a, x]r[a, x] = 0$, for all $x, r \in R$	(5)
By semiprimeness of <i>R</i> , we get:	
$[a, x] = 0$, for all $x \in R$	(6)
And thus, $a \in Z(R)$.	

Proof of Theorem 2:

We have:	
$F(x^2y) = x^2F(y) + yd(x^2)$, for all $x, y \in R$	(1)
That is:	
$F(x^2y) = x^2F(y) + 2yxd(x)$, for all $x, y \in R$	(2)
On the other hand, we find that:	
$F(x.xy) = xF(xy) + xyd(x)$, for all $x, y \in R$	(3)

That is:

$F(x^2y) = x^2F(y) + 2xyd(x)$, for all $x, y \in R$	(4)
Comparing (2) and (4), we obtain:	
$2[x, y]d(x) = 0$, for all $x, y \in R$	(5)
Since <i>R</i> is 2-torsion free, we have:	
$[x, y]d(x) = 0$, for all $x, y \in R$	(6)
Linearizing (6) on <i>x</i> , we find that:	
$[x, y]d(w) + [w, y]d(x) = 0$, for all $x, y, w \in R$	(7)
Replacing y by yz in (6) and using (6), we have:	
$[x, y]zd(x) = 0$, for all $x, y, z \in R$	(8)
Replacing z by $d(w)z[w, y]$ in (8), we have:	
$[x, y]d(w)z[w, y]d(x) = 0, \text{ for all } x, y, z, w \in R$	(9)
Comparing (7) and (9), we obtain:	
$[x, y]d(w)z[x, y]d(w) = 0$, for all $x, y, z, w \in R$	(10)
Since <i>R</i> is semiprime, we obtain:	
$[x, y]d(w) = 0$, for all $x, y, w \in R$	(11)
By Lemma 3, we get $d(w) \in Z(R)$, for all $w \in R$.	

As an easy consequence of Theorem 2, we have:

Corollary 4:

Let R be a 2-torsion free semiprime ring, and d: $R \longrightarrow R$, then d is left derivation if and only if it is central derivation.

Corollary 5:

Let R be a 2-torsion free semiprime ring with unity. If R admits a generalized Jordan left derivation F associated with Jordan left derivation d, then $d(x) \in Z(R)$, for all $x \in R$. Proof:

Using Theorem 1, we get R admits a generalized left derivation, and by **Theorem 2**, we get $d(x) \in Z(R)$, for all $x \in R$

Another immediate consequence of Theorem 2, is:

Corollary 6:

Let R be a 2-torsion free semiprime ring. If R admits a generalized left derivation F associated with Jordan left derivation d, such that $[d(x), F(y)] = \pm [x, y]$, for all x, $y \in R$. Then R is commutative.

Corollary 7:

Let R be a 2-torsion free semiprime ring with unity. If R admits a generalized Jordan left derivation F associated with Jordan left derivation d, such that $[d(x), F(y)] = \pm [x, y]$, for all x, y $\in R$. Then R is commutative

Corollary 8:

Let *R* be a 2-torsion free semiprime ring. If *R* admits a generalized left derivation *F* associated with Jordan left derivation *d*, such that $[d(x), F(y)] = \pm xoy$, for all $x, y \in R$. Then *R* is commutative.

Proof:

We assume:	
$[d(x), F(y)] = xoy$, for all $x, y \in R$	(1)
By Theorem (2), (1) gives:	
$xoy = 0$, for all $x, y \in R$	(2)
Replace y by yr in (2), to get:	
$xo(yr) = 0$, for all $x, y, r \in R$	(3)
This can be rewritten as:	

$(xoy)r - y[x, r] = 0$, for all $x, y, r \in R$	(4)
Using (2), (4) gives:	
$y[x, r] = 0$, for all $x, y, r \in R$	(5)
Left multiplication of (5) by $[x, r]$, and since R is semiprime, we get:	
$[x, r] = 0$, for all $x, r \in R$	(6)
Thereby, we get <i>R</i> is commutative.	
Similarly, if $[d(x),F(y)] = -xoy$, for all $x, y \in R$, then R is commutative.	
The last <i>Corollary</i> , led to:	

Corollary 9:

Let R be a 2-torsion free semiprime ring with unity. If R admits a generalized Jordan left derivation F associated with Jordan left derivation d, such that $[d(x), F(y)] = \pm xoy$, for all x, $y \in$ R. Then R is commutative.

Now, we will prove the main results:

Theorem 10:

Let R be a 2-torsion free semiprime ring. If R admits a generalized left derivation F associated with Jordan left derivation d, such that $d(x)oF(y) = \pm xoy$, for all $x, y \in R$. Then R is commutative.

Proof:

Proof:	
We are given that:	
$d(x)$ o $F(y) = xoy$, for all $x, y \in R$	(1)
By Theorem (2), (1) gives:	
$2d(x)F(y) = xoy$, for all $x, y \in R$	(2)
Replacing y by yz in (2), we obtain:	
$2d(x)yF(z) + 2d(x)zd(y) = xo(yz)$, for all $x, y, z \in R$	(3)
Again, by Theorem (2), (3) gives:	
$2yd(x)F(z) + 2d(x)zd(y) = xo(yz)$, for all $x, y, z \in R$	(4)
Since $xo(yz) = y(xoz) + [x, y]z$, then from (2) and (4), we obtain:	
$2d(x)zd(y) = [x, y]z$, for all $x, y, z \in R$	(5)
In particular, for $z = x$, (5) gives:	
$2d(x)xd(y) = [x, y]x$, for all $x, y \in R$	(6)
Replacing y by ry in (6), we obtain:	
$2d(x)xrd(y) + 2d(x)xyd(r) = [x, ry]x$, for all $x, y, r \in R$	(7)
Again, using Theorem (2), (7) reduces to:	
$2d(x)xd(y)r + 2d(x)xd(r)y = [x, ry]x, \text{ for all } x, y, r \in R$	(8)
From (6) and (8), we obtain:	
$[x, y]xr + [x, r]xy = [x, ry]x, \text{ for all } x, y, r \in R$	(9)
This implies that:	
$[[x, y]x, r] + [x, r][x, y] = 0$, for all $x, y, r \in R$	(10)
Replacing r by sr in (10), we obtain:	
s[[x, y]x, r] + [[x, y]x, s]r + s[x, r][x, y] + [x, s]r[x, y] = 0,	
for all $x, y, r, s \in R$	(11)
From (10) and (11) , we obtain:	
$[[x, y]x, s]r + [x, s]r[x, y] = 0$, for all $x, y, r, s \in R$	(12)
Replacing r by rt in (12), we have:	
$[[x, y]x, s]rt + [x, s]rt[x, y] = 0, \text{ for all } x, y, r, s, t \in R$	(13)
Again, right multiplying of (12) by t , we have:	
$[[x, y]x, s]rt + [x, s]r[x, y]t = 0, \text{ for all } x, y, r, s, t \in R$	(14)
Subtracting (14) form (13), we obtain:	
$[x, s]r[t, [x, y]] = 0$, for all $x, y, r, s, t \in R$	(15)

Replacing y by yx in (15), we have:	
$[x, s]r[t, [x, y]x] = 0$, for all $x, y, r, s, t \in R$	(16)
Now, (10) can be rewritten as:	
$-[r, [x, y]x] + [x, r][x, y] = 0$, for all $x, y, r \in R$	(17)
For $r = t$ in (17), we have:	
$-[t, [x, y]x] + [x, t][x, y] = 0$, for all $x, y, t \in R$	(18)
Left multiplying of (18) by $[x, s]r$, we obtain:	
$-[x, s]r[t, [x, y]x] + [x, s]r[x, t][x, y] = 0$, for all $x, y, r, s, t \in R$	(19)
From (16) and (19), we obtain:	
$[x, s]r[x, t][x, y] = 0$, for all $x, y, r, s, t \in R$	(20)
Replacing r by $[x, y]r$ in (20), we have:	
$[x, s][x, y]r[x, t][x, y] = 0$, for all $x, y, r, s, t \in R$	(21)
For $s = t$ in (21) and since R is semiprime ring, we obtain:	
$[x, t][x, y] = 0$, for all $x, y, t \in R$	(22)
Replacing t by yt in (22) and using (22), we have:	
$[x, y]t[x, y] = 0$, for all $x, y, t \in R$	(23)
Invoking semiprimeness again, (23) gives:	
$[x, y] = 0$, for all $x, y \in R$	(24)
Thus <i>R</i> is commutative.	
In the same way given $d(x)oF(y) = -xoy$, for all $x, y \in R$. The argument is similar.	

Corollary 11:

Let R be a 2-torsion free semiprime ring with unity. If R admits a generalized Jordan left derivation F associated with Jordan left derivation d, such that $d(x)oF(y) = \pm xoy$, for all x, $y \in$ R. Then R is commutative.

Theorem 12:

Let R be a 2-torsion free semiprime ring. If R admits a generalized left derivation Fassociated with Jordan left derivation d, such that $d(x) \circ F(y) = \pm [x, y]$, for all $x, y \in R$. Then R is commutative. Proof:

We assume:	
$d(x) \circ F(y) = [x, y]$, for all $x, y \in R$	(1)
By Theorem (2.1), (1) gives:	
$2d(x)F(y) = [x, y]$, for all $x, y \in R$	(2)
Replacing y by yz in (2) we obtain:	
$2d(x)yF(z) + 2d(x)zd(y) = y[x, z] + [x, y]z$, for all $x, y, z \in R$	(3)
Again, Theorem (2), (3) gives:	
$2yd(x)F(z) + 2d(x)zd(y) = y[x, z] + [x, y]z$, for all $x, y, z \in R$	(4)
From (2) and (4), we obtain:	
$2d(x)zd(y) = [x, y]z$, for all $x, y, z \in R$	(5)
In particular, (5) gives:	
$2d(x)xd(y) = [x, y]x$, for all $x, y \in R$	(6)
This implies (see how relation (24) was obtained from relation (6) in the proof	of Theorem (10))
that <i>R</i> is commutative.	
Similarly, we get R is commutative in case:	

Similarly, we get *R* is commutative in case:

$d(x) \circ F(y) = -[x, y]$, for all $x, y \in R$.

Corollary 13:

Let R be a 2-torsion free semiprime ring with unity. If R admits a generalized Jordan left derivation F associated with Jordan left derivation d, such that $d(x)\circ F(y) = \pm [x, y]$, for all $x, y \in$ *R*. Then *R* is commutative.

REFERENCES

[1] Ashraf , M. and Rehman, N., "On Lie ideals and Jordan left derivations of prime rings", Arch. Math. (Bron) 36 (2000), 201-206.

[2] Ashraf, M., Ali, A. and Ali, S., "Some commutativity theorems for rings with generalized derivations", South-East Asian Bull. Math. 31 (2007), 415-421.

[3] Ashraf, M. and Ali, S., "On generalized Jordan left derivations in rings", Bull. Korean Math. Soc. 45 (2) (2008), 253-261.

[4] Bell, H. E. and Rehman, N., "Generalized derivations with commutativity and anticommutativity conditions", Math. J. Okayama Univ. 49 (2007), 139-147.

[5] Brešar, M., "On the distance of the composition of two derivations to the generalized derivations", Glasgow Math. J. 33 (1991), 89-93.

[6] Brešar, M. and Vukman, J., "On left derivations and related mappings", Proc. Amer. Math. Soc. 110 (1) (1990), 7-16.

[7] Herstein, I. N., Rings with involution, Univ. of Chicago Press, Chicago, 1976.

[8] Jing, W. and Lu, S., "Generalized Jordan derivations on prime rings and standard operator algebras", Taiwanese J. of Mahts. 7(4)(2003), 605-613.

[9] Posner, E. C., "Derivations in prime rings", Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

[10] Rehman, N., "On commutativity of rings with generalized derivations", Math. J. Okayama Univ. 44 (2002), 43-49.

[11] Shuliang, H., "Generalized derivations of prime rings", Internat. J. Math. and Math. Sci. 2007 (2007), 1-6.

[12] Sharma, R. K., Prajapati, B., "Lie ideal and generalized Jordan left derivations in semiprime rings", Italian J. of Pure and Applied Math. (2013), 15-22.