On Coc – **Dimension Theory**

Raad Aziz Hussain

WroodHasanHweidee

Raad-64@hotmail.com

wroodhasan1212@gmail.com

Department of Mathematics College of Computer science and Information Technology University of AL-Qadisiya

Abstract:

In this paper we introduce and define a new type on coc—dimension theory. The concept of indX, IndX, dimX, for a topological space X have been studied. In this work, these concepts will be extended by using coc—open sets.

Keywords: coc - open, coc - ind X, coc - Ind X, and coc - dim X.

1. Introduction

The "Dimension function" in Dimension theory is function defined on the class of topological spaces such that d(X) is an integer or ∞ . Then d(X) = d(Y) if and only if X and Y are homeomorphic and $d(\mathbb{R}) = n$ for each positive integer n. The domain of dimension function is topological space and the codomain is the set $\{-1,0,1,\dots\}$. In [A.P.Pears ,1975], The dimension functions ind, Ind, dim, Actually the dimension functions, S - indX, S - IndX, S - dimX by using S - open sets were studied in [Raad Aziz Hussain AL-Abdulla,1992], also the dimension functions, b - indX, b - IndX, b - dimX, by using b - open sets were studied in [Sama

Kadhim Gabar,2010], also the dimension functions, f - indX, f - IndX, f - dimX, by using f - open sets were studied in [NedaaHasanHajee,2011]. and the dimension functions, N - ind, N - Ind, N - dim are by using N - open sets[Enas Ridha Ali,2014] also the dimension functions $S_{\beta} - ind$, $S_{\beta} - Ind$, $S_{\beta} - dim$, by using $S_{\beta} - open$ sets[Sanaa Noor Mohammed, 2015]. In this paper actually the dimension function ,coc-ind , coc-Ind and coc-dim by using coc-open sets. Finally some relations between them are studied and some results relating to these concepts are proved.

2. Preliminaries

Definition (2.1): A subset A of a topological space (X, \mathcal{T}) is called co-compact open set (notation : coc-open set

) if for every $x \in A$, there exists an open set U in X and a compact set $K \in C(X, \mathcal{T})$ such that $x \in U$ - $K \subseteq A$, the complement of coc-open set is called coc-closed set. The family of all coc-open subsets of a space (X, \mathcal{T}) will be denoted \mathcal{T}^K and the family $\{U - K : U \in \mathcal{T} \text{ and } K \in C(X, \mathcal{T})\}$ of coc – open sets will denoted by $\mathcal{B}^K(\mathcal{T})[S.A]$ Ghour and S. Samarah, 2012].

Theorem(2.2)[S.Al Ghour and S. Samarah, 2012]: Let X be a topological space. Then the collection \mathcal{T}^K form a topology on X.

Example(2.3): It is clear that every coc — open set is open set and every coc — closed set is closed, but the converse is not true in general, see the following example. Let $X = \{a, b\}$ and $T = \{\emptyset, X\}$, then $\mathcal{T}^K = \{\{a\}, \{b\}, \emptyset, X\}$. **Proposition(2.4)[Farah HausainJasim,2014]:**Let X be a topological space and Y any non —empty closed set in X. If B is a coc-open set in X, then $B \cap Y$ a coc-open set in Y.

Corollary(2.5)[Farah HausainJasim,2014]:Let X be a topological space and Y any non –empty closed set in X. If B is a coc-closed set in X, then $B \cap Y$ a coc-closed set in Y.

Definition (2.6)[Farah Hausain Jasim, 2014]:

Intersection of all $\cos - closed$ sets containing F is called the $\cos - closure$ of F is denoted by \overline{F}^{coc} .

Theorem(2.7)[Farah Hausain Jasim, 2014]: For any subset F of a topological space X, the following statements are true.

- 1- $\overline{F}^{\text{coc}}$ is the intersection of all $\cos closed$ sets in X containing F.
- 2- $\overline{F}^{\text{coc}}$ is the smallest $\cos closed$ set in X containing F.

- 3- F iscoc closed if and only if $F = \overline{F}^{coc}$.
- 4- If F and E are any subsets of a topological space X and $F \subseteq E$, then $\overline{F}^{\text{coc}} \subseteq \overline{E}^{\text{coc}}$.

Definitions(2.8)[Farah Hausain Jasim, 2014]:

Let X be a topological space, Then:

- **1-** $A^{\circ coc} = \bigcup \{ B : B \text{ is coc-open in } X \text{ and } B \subseteq A \}.$
- **2-** The coc neighborhood of B is any subset of X which contains an coc-open set containing B. The coc neighborhood of a subset $\{x\}$ is also called coc-neighborho- od of the point x.
- **3-** Let A subset of X. For each x in X is said to be cocboudary point of A if and only if each coc neighborhood U_x of x, we have $U_x \cap A \neq \emptyset, U_x \cap A^C \neq \emptyset$. The set of all coc boundary points of A is denoted by $b_{coc}(A)$.

Proposition (2.9)[Farah Hausain Jasim, 2014]: Let A be any subset of a topological space X. If a point x is in the coc- interior of A, then there exists a coc-open set U of X containing x such that $U \subseteq A$.

Remark(2.10):

i. $b_{coc}(A) = \overline{A}^{coc} \cap (A^{\circ coc})^{c}$.

ii. Let A be a subset of a topological space X, then $b_{coc}(A) = \emptyset$ if and only if A is both coc-open and cocclosed set.

Definition (2.11)[Farah Hausain Jasim, 2014]: A space X is called $coc - T_1$ *space* if and only if, for each $x \neq y$ in X, there exist coc - open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Proposition (2.12)[S.Al Ghour and S. Samarah, 2012]:If a space X is \mathcal{T}_2 – space, then $\mathcal{T}^K = \mathcal{T}$.

Proposition (2.13)[Farah Hausain Jasim, 2014]:Let X be a topological space. Then X is $coc - T_1$ space if and only if $\{x\}$ is coc - closed set for each $x \in X$.

X is called coc – regular space if and if for each x in X and a closed set F such that $x \notin F$, there exist disjoint coc-open sets U, V such that $x \in U$, $F \subseteq V$. **Definition (2.15):** A space X is said to be coc^* – regular space if and only if , for each $x \in X$ and F is an coc – closed sub such that $x \notin F$, there exist U,V disjoint open sets in X such that $x \in U$ and $F \subseteq V$.

Definition(2.14)[Farah Hausain Jasim, 2014]: A space

Proposition(2.16)[N.J.Pervin, 1964]: A space X is regular space if and only if for every $x \in X$ and each open set U in X such that $x \in U$ there exist an open set w such that $x \in W \subseteq \overline{W} \subseteq U$.

Proposition(2.17)[Farah Hausain Jasim, 2014]: A space X is coc- regular space if and only if for every $x \in X$ and each open set U in X such that $x \in U$ there exist a coc- open set W such that $x \in W \subseteq \overline{W}^{coc} \subseteq U$.

Proposition(2.18): A topological space X is coc*-regular topological space if and only if, for every $x \in X$ and each coc-open set U in X such that $x \in U$ then there exists an open set W such that $x \in W \subseteq \overline{W} \subseteq U$.

Proof: Assume that X is coc*-regular topological space and let $x \in X$ and U is a coc-open set in X such that $x \in U$. then U^c is an coc-closed in X, $x \notin U^c$. Since X is a coc*- regular topological space then there exist disjoint open sets W and V such that $x \in W$ and $U^c \subseteq V$. then it is means $x \in W \subseteq \overline{W} \subseteq \overline{V^c} = V^c \subseteq U$. Conversely; Let $x \in X$ and C be a coc-closed set such that $x \in C^c$. thus there exists an open set W such that $x \in W \subseteq \overline{W} \subseteq C^c$. Then $x \in W$, $C \subseteq (\overline{W})^c$, then we get

to W, $(\overline{W})^c$ is an open sets, $W \cap (\overline{W})^c = \emptyset$. Hence X is \cos^* -regular topological space.

Definition (2.19)[Farah Hausain Jasim, 2014]: A space X is said to be coc — normal space if and only if for every disjoint coc- closed sets F_1 , F_2 there exist disjoint coc — open sets V_1 , V_2 such that $F_1 \subset V_1$, $F_2 \subset V_2$.

Definition (2.20)[Farah Hausain Jasim, 2014]: A space X is said to be coc' — normal space if and only if for every disjoint coc-closed sets F_1 , F_2 there exist disjoint open sets V_1 , V_2 such that $F_1 \subset V_1$, $F_2 \subset V_2$.

Example(2.21): This example show that coc-normal space is not normal space in general. Let $x = \{a, b, c, d\}$, $\mathcal{T} = \{X, \emptyset, \{a, b, d\}, \{a, b, c\}\}$, $\mathcal{T}^K = \{\emptyset, X, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{d, b, c\}, \{a\}, \{b\}, \{d\}, \}$ It is clear that X is coc-normal space and not normal space, since there exists disjoint closed sets $\{d\}$, $\{c\}$ but not there exist disjoint open sets contain them.

Proposition (2.22)[Farah Hausain Jasim, 2014]:A topological space X is coc—normal topological space if and only if for every closed set $F \subseteq X$ and each open set U in X such that $F \subseteq U$ then there exists an coc — open set W such that $F \subset W \subset \overline{W}^{coc} \subset U$.

Proposition (2.23)[Farah Hausain Jasim, 2014]:A topological space X is coc' – normal topological space if and only if for every coc – closed set $F \subseteq X$ and each coc – open set U in X such that $F \subseteq U$ then there exists an coc – open set W such that $F \subset W \subset \overline{W}^{coc} \subset U$.

3. On small Coc – Inductive Dimension Function Definition (3.1): The coc – small inductive dimension of a space X, coc – ind X, is defined inductively as

follows. topological space X, coc - ind X = -1, and only if, X is empty. If n is a non-negative integer, then $coc - ind X \le n$ means that for each point $x \in X$ and each open set G such that G there exists an G coc open set G such that G is an G and G or G open set G such that G if it is true that G in G is an G in G is an G in G

Definition (3.2): The coc * -small inductive dimension of a space X, coc * -ind X, is defined inductively as follows. topological space X, coc - ind X = -1, and only if, X is empty. If n is a non-negative integer, then $coc^*-ind X \le n$ means that for each point $x \in X$ and each open set G such that G if there exists an G open set G such that G if it is true that G if it is true that G if it is true that G if there exists no integer G in G if there exists no integer G in G

Theorem (3.4): Let X be a topological space, if coc - indX = 0 then X is regular space.

Proof: Let $x \in X$ and G an open set such that $x \in G$, since coc - ind X = 0, then there exists an coc - open set V such that $x \in V \subseteq G$ and coc - ind b(V) = -1. Thus $b(V) = \emptyset$, hence V is an open and closed set.

Therefore $x \in V \subseteq \overline{V} \subseteq G$ by proposition (2.16), hence X

Therefore $x \in V \subseteq V \subseteq G$ by proposition (2.16), hence X is regular space.

Theorem (3.5): Let *X* be a topological space, if coc * -indX = 0, then *X* is coc -regular space.

Proof: Let $x \in X$ and G an open set such that $x \in G$, since coc * -ind X = 0, then there exists an coc - open set V such that $x \in V \subseteq G$ and $coc - ind b_{coc}(V) = -1$. Thus $b_{coc}(V) = \emptyset$ by Remark (2.9. ii.), hence V is an

coc —open and coc —closed set. Therefore $x \in V \subseteq \overline{V}^{coc} \subseteq G$ by proposition (2.18), hence X is coc —regular space.

Proposition(3.6):Let *X* be a topological space, if coc - indX is exists then $coc - indX \le indX$.

Proof: By induction on n. If n=-1, then $\operatorname{ind} X=-1$ and $X=\emptyset$, so that $\operatorname{coc}-\operatorname{ind} X=-1$. Suppose the statements is true for n-1. Now, suppose that $\operatorname{ind} X \le n$, to prove $\operatorname{coc}-\operatorname{ind} X \le n$, let $x \in X$ and G is an open set in X such that $x \in G$ since $\operatorname{ind} X \le n$, then there exist anopen set V in X such that $x \in V \subseteq G$ and $\operatorname{ind} b(V) \le n-1$ and since each open set is coc-open set. Then V is a coc-open set such that $x \in V \subseteq G$ and $\operatorname{coc}-\operatorname{ind} b(V) \le n-1$. Hence coc-ind $X \le n$.

Theorem (3.7): Let X be a topological space, then coc - indX = 0 if and only if indX = 0.

Proof: By proposition (3.6) if $\operatorname{ind} X = 0$, then $\operatorname{coc} - \operatorname{ind} X \leq 0$ and since $X \neq \emptyset$ then $\operatorname{coc} - \operatorname{ind} X = 0$. Now let $\operatorname{coc} - \operatorname{ind} X = 0$, let $x \in X$ and G an open set in X such that $x \in G$, since $\operatorname{ind} X = 0$ then there exists a coc-open set Y such that $x \in Y \subseteq G$ and $\operatorname{coc}\operatorname{-ind} b(Y) = -1$, then $\operatorname{b}(Y) = \emptyset$, hence $\operatorname{ind} b(Y) = -1$, thus $\operatorname{ind} X \leq 0$, but $X \neq \emptyset$. Therefore $\operatorname{ind} X = 0$.

The following example a space X with coc-indX = indX = 0.

Example (3.8): Let $X = \{a, b\}$ and $T = \{\emptyset, X\}$ be a topology on X, then $\mathcal{T}^K = \{\{a\}, \{b\}, \emptyset, X\}$, and coc-ind X = ind X = 0.

Theorem (3.9) : If A is a clopen (closed and open) subspace of a space X , then coc-ind A \leq coc-ind X. **Proof :** By induction on n. It is clear if n = -1. Suppose that it is true for n-1. Let coc-ind $X \leq n$, to prove that coc-

ind $A \le n$, let $x \in A$ and G an open set in A such that $x \in G$, thus there exist V an open set in X such that $V = G \cap A$, then $x \in V$ and since coc -ind $X \le n$, then there exist W a coc -open set in X, such that $x \in W \subseteq V$ and coc -ind $\operatorname{b}(W) \le n$ -1., let $U = W \cap A$, then U coc -open set in A (since A closed in X). $b_A(U) \subseteq \operatorname{b}(U) \cap A = \overline{U} \cap U^{\circ c} \cap A \subseteq \overline{W} \cap A \cap U^{\circ c} = \overline{W} \cap A \cap (W \cap A)^{\circ c} = \overline{W} \cap A \cap (W^{\circ c} \cup A^c) = \operatorname{b}(W) \cap A \subseteq \operatorname{b}(W)$. We to prove that $\operatorname{b}_A(U)$ is closed set in $\operatorname{b}(W)$, since $\operatorname{b}_A(U)$ a closed set in A and A closed set in A, then A closed set in A and A

Proposition (2.24): A topological space X is coc * —normal topological space if and only if for every coc — closed set $F \subseteq X$ and each coc — open set U in X such that $F \subseteq U$ then there exists an open set W such that $F \subset W \subset \overline{W} \subset U$.

Proof: Assume that X is coc*-normal space and let F is coc-closed set in X and ea- ch U is a coc-open in X such that $F \subseteq U$, then F,U^c are a disjoint coc-closed sets in X. Since X is a coc*- normal space, then there exist disjoint open sets W and V such that $F \subseteq W$ and $U^c \subseteq V$. then it is means $F \subseteq W \subseteq \overline{W} \subseteq \overline{V^c} = V^c \subseteq U$. Conversely; Let F and C a disjoint coc-closed sets in X, then C^c is coc-open set such that $F \subseteq C^c$. Thus there exists an open set W such that $F \subseteq W \subseteq \overline{W} \subseteq C^c$. Then $F \subseteq W$, $C \subseteq (\overline{W})^c$, then we get to W, $(\overline{W})^c$ is an open sets, $W \cap (\overline{W})^c = \emptyset$. Hence X is coc*- normal space.

4. On Large coc – Inductive Dimension Function

Definition(4.1): The coc-large inductive dimension of a space X, coc-IndX, is defined large inductively as follows. A space X satisfies coc- IndX = -1 if and only if X is empty. If n is a non-negative integer, then coc-Ind $X \le n$ means that for each closed set F and each open set G of G such that $G \subseteq G$ there exists acoc-open set $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ such that $G \subseteq G$ and Ind $G \subseteq G$ such that $G \subseteq G$ such that

Definition (4.2):Thecoc * - large inductive dimension of a space X,coc-IndX, is defined large inductively as follows: A space X satisfies coc^* -IndX = -1 if and only if X is is a non-negative integer, thencoc * -Ind $X \le n$ means that for each closed set F and each open set F of F such that $F \subseteq F$ there exists open set F such that $F \subseteq F$ and F such that $F \subseteq F$ such that $F \subseteq F$ and $F \subseteq F$ such that $F \subseteq F$ such tha

Proposition(4.3):Let X be a topological space, if coc-IndX = 0, then X is normal.

Proof: Let F be a closed set in X and G is an open set such that $F \subseteq G$. Since coc-IndX = 0, then there exist coc-open W such that coc-Ind b(W) = -1, hence W is open and closed set therefore $F \subseteq W \subseteq \overline{W} \subseteq U$, then X is normal.

Proposition(4.4):Let *X* be a topological space, if coc * -Ind X = 0, then X coc-normal space.

Proof: Let F be a closed set in X and U is a open set such that $F \subseteq U$. Since \cos^* - $\operatorname{Ind} X = 0$, then there exist coc -open W such that coc - $\operatorname{Ind} b_{\operatorname{coc}}(W) = -1$, hence W is coc -open and coc -closed set therefore $F \subseteq W \subseteq \overline{W}^{\operatorname{coc}} \subseteq U$ by proposition (2.23) X is coc —normal space.

Proposition(4.5):Let X be a topological space.coc - IndX is exists, then $coc - IndX \le IndX$.

Proof: By induction on n. It is clear that n=-1. Suppose that it is true for n-1. Now, suppose that $IndX \le n$, to prove that $IndX \le n$, let $IndX \le n$, let $IndX \le n$, let $IndX \le n$ and $IndX \le n$ is an open set in $IndX \le n$, then there is open set $IndX \le n$ in $IndX \le n$, then there is open set $IndX \le n$ is an $IndX \le n$ in $IndX \le n$. Since each open set is coc-open set. Then $IndX \le n$ is coc-open set such that $IndX \le n$ is $IndX \le n$. Hence $IndX \le n$ in $IndX \le n$.

Theorem (4.6): Let X be a topological space, then IndX = 0, if and only if coc - IndX = 0. **Proof:** By proposition (4.5) If IndX = 0, then coc-Ind $X \le 0$, and $sinceX \ne \emptyset$, then coc-IndX = 0. Now, Let coc-Ind X = 0 and Let F is closed set in X and each open set G in G such that G is G. Since G since G in G such that G in G such that G in G and G and G and G in G and G such that G in G and G such that G is both open and closed set, then G open such that G is both open and closed set, then G open such that G is both open and G and G in G and G and G in G and G and G in G in G and G and G and G in G and G in G and G in G and G in G in G and G in G in G and G in G in

Theorem (4.7): If A is a clopen (closed and open) subspace of a space X, then coc-Ind A \leq coc-Ind X. **Proof:** By induction on n. It is clear if n = -1. Suppose that it is true for n-1. Let coc-ind $X \leq n$, to prove that coc-Ind A $\leq n$, let F is closed set in A and G an open set in A such that $F \subseteq G$, thus there exists V an open set in X such that $V = G \cap A$, then $F \subseteq V$ and since coc-Ind $X \leq n$, then there exist W a coc-open set in X, such that $F \subseteq G$

W ⊆ V and coc-Ind b(W) ≤ n-1, let U = W ∩A, then U coc-open set in A (since A closed in X). $b_A(U)$ ⊆ b(U) ∩ A = \overline{U} ∩ U $^{\circ c}$ ∩A ⊆ \overline{W} ∩A∩ U $^{\circ c}$ = \overline{W} ∩A∩ (W ∩ A) $^{\circ c}$ = \overline{W} ∩A∩ (W $^{\circ c}$ ∪ A^c) = b(W) ∩ A⊆ b(W). We to prove that $b_A(U)$ is closed set in b(W), since $b_A(U)$ a closed set in A and A closed set in X, then $b_A(U)$ a closed set in X. Now; $\overline{b_A(U)}^{b(W)} = \overline{b_A(U)}$ ∩ b(W) = $\overline{b_A(U)}$ ∩ b(W) = $\overline{b_A(U)}$. Since coc-Ind b(W) ≤ $\overline{b_A(U)}$ = $\overline{b_A(U)}$. Since coc-Ind b(W) ≤ $\overline{b_A(U)}$ = $\overline{b_A(U)}$. Then coc-Ind b(U) ≤ $\overline{b_A(U)}$. Therefore coc-Ind A ≤ $\overline{b_A(U)}$.

5. On Coc- Covering Dimensiaton Function

Definition(5.1) [**A.P. Pears, 1975**]: Let X be a set and \mathcal{A} a family of subsets of X, by an order of the family \mathcal{A} we mean the largest integer n such that the family \mathcal{A} contains n+1 sets with a non- empty intersection, if no such integer exists, we say that the family \mathcal{A} has order ∞ . The order of a family \mathcal{A} is denoted by ord \mathcal{A} .

Definition(5.2) [Stephen Willard, 1970]: If \mathcal{U} and \mathcal{V} are covers of X, we say \mathcal{U} refines \mathcal{V} , iff each $\mathcal{U} \in \mathcal{U}$ is contained in some $\mathcal{V} \in \mathcal{V}$.

Definition (5.3): The coc-covering dimension (cocdim X) of a topological X is the least integer n such that every finite open covering of X has open refinement of order not exceeding n or ∞ if there is no such integer. Thus $\operatorname{coc-dim} X = -1$ if and only if X is empty, and $\operatorname{coc-dim} X \leq n$ if each finite open covering of X has $\operatorname{coc-open}$ refinement of order not exceeding X that $\operatorname{coc-dim} X \leq n - 1$. Finally $\operatorname{coc-dim} X = \infty$ if for every integer X it is false that $\operatorname{coc-dim} X \leq n - 1$.

Definition (5.4): The coc'-covering dimension (coc' – dim X) of a topological space X is the least integer n such that every finite coc-open covering of X has coc-open refinement of order not exceeding n or ∞ if there is no such integer. Thus coc'-dim X = -1 if and only if X is

empty, and $\operatorname{coc'-dim} X \leq n$ if each finite open cover-ing of X has $\operatorname{coc-open}$ refinement of order not exceeding n. We have $\operatorname{coc'-dim} X = n$ if it is true that $\operatorname{coc'-dim} X \leq n$, but it is not true that $\operatorname{coc'-dim} X \leq n-1$. Finally $\operatorname{coc'-dim} X = \infty$ if for every integer n it is false that $\operatorname{coc'-dim} X \leq n$.

proposition(5.5): Let X a topological space, then $coc\text{-}dim X \leq dim X$.

 $\label{eq:proof: proof: Suppose that $\dim X \leq n$. Let $$ a finite open cover $$ of X, then there exist \mathcal{V} an open refinement of order $\leq n$. Since every open set is coc-open set, then \mathcal{U} has \mathcal{V} a cocopen refinement of order $\leq n$, therefore coc-dim $X \leq n$. }$

proposition(5.6):Let X a topological space, then $cocdim X \le coc' - dim X$.

proof: suppose that coc'-dim $X \le n$. Let \mathcal{U} a finite open cover of X, then \mathcal{U} a finite coc-open cover of X, then \mathcal{U} a coc-open cover. Since coc'-dim $X \le n$, then there exists \mathcal{V} a coc-open refinement of order $\le n$. Hence has \mathcal{V} a coc-open refinement of order $\le n$, therefore coc-dim $X \le n$.

Lemma (5.7) : If (X, \mathcal{T}) is a CC space, then coc-dim $X = \cos'$ -dim $X = \dim X$.

Proof :By[**S.Al Ghour and S. Samarah, 2012**] the statement are equivalent :(i) (X, T) is a CC space . (ii) $T = T^K$.

Lemma(5.8): If(X, \mathcal{T}) is a $coc\mathcal{T}_2$ -space, then coc-dim X = coc'-dim X = dim X.

Proof : By [S.Al Ghour and S. Samarah, 2012] if (X, \mathcal{T}) is a $coc\mathcal{T}_2$ -space, then $\mathcal{T} = \mathcal{T}^K$.

Definition (5.9): A coc-base for the topology of a space X is a set β of coc-open sets such that for every point $x \in X$ and every neighborhood X of X, there exists X such that $X \in X$ is a coc-base if each open set is a union of some members of X.

Definition(5.10): A coc*-base for the topology of a space X is a set β of coc-open sets such that for every point $x \in X$ and every coc-neighborhood N of x, there exists B such that $x \in B \subseteq N$. Equivalently β is a coc*-base if each open set is a union of some members of β .

Theorem(5.11):Let X be a topological space. If X has a coc-base of sets which are both coc-open and coc-closed, then $\operatorname{coc-dim} X = 0$ for an \mathcal{T}_1 – space, the converse is true.

Proof: Suppose that X has coc-base of sets which are both coc-open and coc-closed. Let $\{U_i\}_{i=1}^k$ be a finite open cover of X, it has a coc-open and coc-closed refinement W, if $w \in W$, then $w \subset U_i$ for some i. Let each $w \in \mathcal{W}$ be associated with one of the U_i sets containing it and let U_i be the union of these members of W, thus associated with U_i . Thus $V_i = W_i \setminus \bigcup_{r < i} W_r$ is coc-open set and hence $\{V_i\}_{i=1}^k$ forms disjoint coc-open refinement of $\{U_i\}_{i=1}^k$, then $\operatorname{coc-dim} X = 0$ Conversely; Suppose that X is $coc-T_1$ space such that $coc-T_1$ $\dim X = 0$.Let $x \in X$ and G be an pen set in X such that $x \in G$. Then $\{x\}$ is closed set, then $\{G, X-\{x\}\}$ is finite open cover of X. Since $\operatorname{coc-dim} X = 0$, then there exists coc-open refinement $\{V, W\}$ of order 0 such that $V \cap W = \emptyset$, $V \cup W = X$, $V \subset G$ and $W \subset X - \{x\}$. Then V iscoc-open and coc-closed set in X such that $x \in W^c \subseteq V \subseteq G$ and hence X has coc-base of coc-open and coc-closed.

Remark(5.14) [A.P. Pears, 1975]: Let X be a topological space with dim X = 0. Then X is normal space.

Theorem (5.15): Let X be a topological space. If cocdim X = 0, then X is coc-normal space.

Proof: Let F_1 and F_2 are disjoint closed sets of X. Then $\{X-F_1, X-F_2\}$ is open cover of X. Since coc-dim X=0,

then it is has coc-open refinement of order 0, hence So that coc-open sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, therefore $H \subset X - F_1$ and $G \subset X - F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is coc-normal space.

Theorem (5.16): Let X be a topological space. If $\operatorname{coc'}$ -dim X = 0, then X is $\operatorname{coc'}$ -normal space.

Proof: Let F_1 and F_2 are disjoint coc-closed sets of X. Then $\{X-F_1, X-F_2\}$ is coc-open covering of X. Since $\operatorname{coc'-dim} X = 0$, then it is has coc-open refinement of order 0, hence there exists $\operatorname{coc-open}$ sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, so that $H \subset X-F_1$ and $G \subset X-F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is $\operatorname{coc'-normal}$ space.

Theorem (5.18): If *A* closed subset of a topological space *X*, then $\operatorname{coc-dim} A \leq \operatorname{coc-dim} X$.

Proof: Suppose that dim $X \le n$, let $\{U_1, U_2, ..., U_k\}$ be an open cover of A, then for each i, $U_i = A \cap V_i$, where V_i is an open set in X. The finite open covering $\{V_1, V_2, ..., V_k, X-A\}$ of X has coc-open refinement \mathcal{W} in X of order $\le n$. Let

 $\mathcal{V} = \{ W \cap A : W \in \mathcal{W} \}$, by proposition(2.4), then \mathcal{V} is coc-open refinement of $\{U_1, U_2, ..., U_k\}$ of order $\leq n$. Thus coc-dim $A \leq n$.

6. Relation between the dimensions Coc-ind and Coc-Ind

Theorem (6.1): Let X be a topological space, if X is regular, then coc-ind $X \le coc$ -Ind X.

Proof: By induction on n, if n = -, then the statement is

Suppose that the statement is true for n - 1.

Now; Suppose that coc-Ind $X \le n$, to prove coc-ind $X \le n$. Let $x \in X$ and G be an open set such that $x \in G$. Since X is regular space, then there exists an open set G such that G is regular space, then there exists an open set G such that G is closed, G

Proposition (6.3): Let X be a topological space, if $X \mathcal{T}_1 - space$, then coc^* -ind $X \le coc^*$ -IndX.

Proof: By induction on n, if n = -1, then the statement is true.

Suppose that the statement is true for n - 1.

Now, Suppose that coc^* -Ind $X \le n$, to prove coc^* -ind $X \le n$. Let $x \in X$ and each open set $G \subseteq X$ of the point x, since X is \mathcal{T}_1 — space, then $\{x\}$ is closed set and $\{x\} \subseteq G$. s Since coc^* -Ind $X \le n$, then there exists an coc -open set V in X such that $\{x\} \subseteq V \subseteq G$ and coc^* -Ind $b_{coc}(V) \le n-1$. Hence coc^* -ind $b_{coc}(V) \le n-1$ and $x \in V \subseteq G$. Thus coc^* -ind $x \le n$.

Proposition (6.4): Let *X* be a topological space, if *X* is corregular space, then coc^* -ind $X \le coc^*$ -Ind X.

Proof: By the same away in proposition(6.1).

References

- [1] Ra'ad Aziz Hussain AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).
- [2] Atallah Themer AL-Ani "On Compactification, Mapping and Dimension Theory" Ph.D. Dissertation university of London, Queen Elizabeth college, (1974).
- [3] S.Al Ghour and S. Samara "Cocompact Open Sets and Continuity", Abstract and Applied analysis, Volume 2012, Article ID 548612, 9 Pages, 2012.
- [4] Enas Ridha Ali" On Dimension Theory by Using N-Open Set", M.Sc. thesis University of AL Qadisiyacollege of mathematics and computer science, (2014).
- [5] Bourkaki. N, Elements of Mathematics "General Topology" Chapter 1-4 Springer verlog, Berlin, Heidelberg, New York, London, Paris, Tokyo, 2nd Edition, (1989).
- [6] Sama Kadhim Gaber "On b-Dimension Theory" M.Sc.thesis university AL Qadisiyacollege of mathematics and computer science, (2010).
- [7] R. Engelking "GeneralTopology", Sigma Seres in pure mathematics, VI,6 ISBN 3-88538-006-4, (1989).

- [8] Nedaa Hasan Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university AL Qadisiyacollege of mathematics and computer science, (2011).
- [9] Farah Hausain Jasim "On Compactness Via Coc-Open sets", M.Sc. thesis University of AL – Qadisiyacollege of mathematics and computer science, (2014).
- [10] Sanaa Noor Mohamid "on S_{β} Dimension Theory "M.Sc. thesis university AL Qadisiyacollege of mathematics and computer science, (2015).
- [11] A.P.Pears "On Dimension Theory of General Spaces" Cambridge university press, (1975).
- [12] S. Willard "General Topology" University of Albera, (1970).

حول نظرية البعد باستخدام المجموعات المفتوحة من النمط -coc رعد عزيز حسين العبد الله، ورود حسن هويدي شروم قسم الرياضيات، كلية علوم الحاسوب وتكنولوجيا المعلومات ، جامعة القادسية

ملخص:

في هذا البحث نقدم ونعرف نوع جديد وعام حول نظرية البعد من النمط - coc لقد درسنا المفاهيم ind ,Ind,dim وسوف نعرف في هذا البحث تلك المفاهيم باستخدام المجموعات المفتوحة من النمط - coc وايجاد بعض العلاقات فيما بينها .