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Abstract

In this paper, fourth order exponential compact alternating direction implicit (ADI) finite
difference scheme for solving unsteady 3D convection-diffusion equation with constant
coefficients is derived. This scheme is second order in time and fourth order in space. The
formulation is solved with an efficient numerical method corresponds the solution of tridiagonal
systems. The accuracy and efficiency of this scheme are discussed. We proved a higher order
discretization scheme is unconditionally stable with respect to the initial values by using Fourier
analysis. Numerical results are presented and compared with the fourth order compact ADI

scheme by (Karaa , 2006).

Key words: Three-dimensional unsteady convection-diffusion, high order compact exponential

scheme, ADI method, stability.
1. Introduction

This article is concerned with the
development of accurate solution of the
Three-dimensional unsteady convection-
diffusion  equation with  u(X,y,z,t)

transport variable.

ou  ou o ,0u  au
—-a—-b—-d—+c—
ot 0ox oy 0z OX
ou

— 4

oy

+p qZ—lZJ:O, (x,y,2,t) e QxJ (1)

with initial condition
u(x,y,z,0)=u,(x,y,z), u(x,y,z)eQ (2)
and boundary conditions

u(x,y,z,t)=g(x,y,zt), u(x,y,z,t)eI'xJ (3)

where € is the rectangular domain in R®
with boundary T"=0€, (0,T] is the time
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interval, and C, p and ( are constants

convective velocities, a,band d are

positive constant diffusion coefficients in
X,Y and Z directions, respectively.

The convection-diffusion equation (1) is
an important class of partial differential
equation and arises in physics and
engineering sciences involving the
applications in fluid dynamics(Roache,
1976)., the modelling of transport
phenomenon which may present
temperature, concentration of a contaminant
sea water (Noye,1986a)., Groundwater
pollutants problems and energy and
chemical separation processes (Parlarge
1980, Patankar 1980), the spread of
pollutants in rivers and streams and transport
of pollutants in the atmosphere (Chatwin et
al 1985, Chaudhry et al 1983), flow in
porous media (Fattah et al 1985, Kumar
1988).

Class finite difference methods (FDM),
such as second-order central difference (CD)
scheme and the first-order upwind (UD)
difference scheme, they are working well for
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solving the convection-diffusion equation,
but it is not always very accurate one to be
need a large number of mesh point.
However, their solutions suffer from
excessive time truncation errors, moreover
they put a strong limitation on the courant
number and hence require very small time
steps to generate stable solutions.

Various numerical finite difference
schemes have been proposed to solve the
convection-diffusion equations
approximately. Noye and Tan (1988a) drive
several high order implicit schemes for
unsteady (1D) convection-diffusion
equations and in (Noye et al 1988b) they
proposed a compact nine-point high order
compact (HOC) implicit scheme for
unsteady (2D) convection-diffusion
equations. These schemes have large
interval of stability and its third order
accurate in space and second order accurate
in time. In Rigal, (1988, 1999)derived two
classes of compact difference schemes of
order 2 in time and 4 in space with different
choices of weighting parameters. Spotz and
Carye (2001) extended the 2D HOC scheme
in (Gupta, et al 1984) for solving steady
state equations to solve unsteady state 1D
convection-diffusion equations with variable
coefficients and 2D diffusion equations.
Also, in (Kalita, et al 2002)and (Karaa,
submitted for publication). derived a HOC
schemes with weight time discretization to
solve the unsteady 2D and 3D convection-
diffusion equations, respectively.

To obtain satisfactory higher order
numerical results with reasonable
computational cost, there have been attempts
to develop higher order compact ADI
methods. Michell and Faireweather(1964)
obtained

a high order split formula and later Dai
and Nassar (2002)are using it for 2D
diffusion problems. A higher order compact
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ADI for solving 2D convection-diffusion
equations of order 2 in time and 4 in space is
deriving by Karaa and Zhang( 2004) and
extended this scheme for 3D convection-
diffusion equations in (Karaa,2006).A class
of HOC compact exponential finite
difference methods that is proposed for
solving 1D and 2D steady and unsteady state
convection-diffusion equations with variable
coefficients in (Tain et al 2007a) extended
by Tian and Ge ( 2007b) for 2D unsteady
state convectiondiffusion equations with
ADI scheme.

In this paper, we extension the work of
Tian and Ge (2007b) by derived a fourth
order compact exponential ADI finite
difference scheme for 3D unsteady state
convection-diffusion equations. Numerical
results that are obtained more accurate than
those in (Karaa,2006) . In section 2, we
establish an efficiency exponential fourth
order ADI method for solving 3D unsteady
convection diffusion problems with constant
coefficients, and the Crank—Nicholson
method is used for the time discretization.

Stability analyzed by using Von-
Neumann method verifying the proposed
present exponential fourth order ADI
method is unconditionally stable described
in section 3. The tridiagonal system of
equation produced by present exponential
fourth order ADI scheme is strictly
diagonally dominant is given in section 4. In
section 5, numerical results for two test
problems produced by present exponential
fourth order ADI method are compared with
Karra (2006) results. Section 5,introduced
the concludes of this paper .

2. Exponential compact Fourth-
order ADI finite difference
method

In order to develop the HOC
exponential finite difference
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schemes for solving the convection
diffusion equation

—au,, +cu, = f(x),
where a is the positive constant
conductivity, c¢ is the constant convective
velocity, f is a sufficiently smooth function.

Consider the finite difference scheme for
equation (4) with constant convection
coefficient at a grid point. Let the interval

[X,, Xy ] be discretized into N grid steps
of size AX, where x; =ihy,

hy = %41 =%, Ui =u(x), f=1(x), iis
an index of any grid point in X direction.
Derivatives in (4) at interior grid points X;
can be defined using Taylor’s expansion as

(4)

© h2n _

u =Du—->» —=—D""u, (5
o T §(2n+1)! U )
© 2n
Uy = Dr? U; _ZLD?HZU“ (6)

T Ao 1)

where Dy U; = (U;,; —U; ;) / (2h, ) and
Doy = (U, —2u,+U) /e are the
central difference approximations for the

first and second derivatives and D, is the

nth-order exact derivative operator at any

interior x . Rewrite equation (4) as
CcX CX

_e; (ae_;ux)x = fi !

(7)
Integration of equation (7) over a spaced

interval from X , to X
i-= i+=

2 2
_che chy
C(e 2a (ux)i+1/2 —€ 2a (ux)i—1/2)
ch ch (8)
=(e 2 —e2)f,
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C
Assume K =—X

and using the central

difference approximate u, in equation (8),
we get

h h

X X

U=l U—U .
c!eK K '1]—(eK—eK)fi.

By adding and replace U,,, in the second
term we get

ch, oK 2U;,; —2U; +U;y —Uj
2 h?

_CeK 2U| _ZUI_EI::‘ Ui+1—Ui+1 — (eK _efK) fi.
X

Rearrange this equation, give

K -K K -K
o | U (e +e™)—2u (e +e™)

2h, (e +e™)

x | +U;
+%[um(e“< —e™)-u (e —e" )]

i+1
X

=" -e)f,

and then
K -K
2 ef—e" h?

-K K
o8 e U U |
-K K "

e —e 2h,

Hence, the equation may be written as;

- ng coth(K)D; u; +¢D, u; = f,.

Thus, we get

—aDj u;+cD,u, = f, (9)
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—Chx coth(ChX j c=0
a= 2 2a (10)

a , c=0

(12)

Equation (9) represents the second order
exponential FD schemes for the convection-
diffusion equation (4) and it’s equivalent to
the standard second order central FD
formula applied to the following equation:

ch

—— coth((:hx)uXX +cu, = f. (11)
2 2a

Equation (11) show that when equation (9)
is used, an artificial diffusion coefficient

a[ (ch, /2a)coth(ch, / 2a)—1]is
perturbed to equation (4).

To drive Exponential compact high-order
ADI finite difference method, we consider
the FD scheme for equation (4) with
constant convection coefficient at grid point

X; as,

2
In order to determine the parameters
a,, 04, a, rewrite equation (12) as

~aD}u, +¢D, U = o, (-au, +cu, ),
X X (13)
+a,(-au,, +cu, ), +a,(-au, +cu,),,.

From equations (5) and (6), we have

2
D, u, =u, +%XDX3ui +o(h})
h2
Diu, =u, +-*Diu +o(h})
X i 12

Substituting these equations into equation
(13) , we obtain

114

h? h?
~a| U, +-%Dlu |+clu +-2Du |=
12 6

3
—aayU,, +a,cu,; —a, DU, +acu, . (14)
~aa,Du, +ca,Du..
Rearrange equation (14),we obtain
(2 —1)CUy; + (—acy + 4+ @ Uy
ch?
+ (—ao, +a,C— 6X )Dlu, (15)

ah?
_|_

12
Add f.to both sides, and using equation (4),

we have
—-au, +cu, = f + (e -1)cu

- aazj D;u. +0o(h})=0.

Xi
N\ i (16)
+ (—aoz0 tal+ a)uxxi + (-ag +a,t- ?) U,

2
+ ﬂ—aoc2 Dy, +0(h!) =0.
12
From (15), we have
(¢y—1c =0,

—aa,+acC+a=0,

2 (7)
ch; _o,
6

—aq; +a,C—

X

12

—aa,.

Solution equation (17), gives the parameters

M+h_f C—'/—'O
c? 6
a, = 2 (18)
= c=0
12

Equation (12) with equation (18) is an
0(h4) compact FD scheme and it’s a
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diagonally dominant tri-diagonal system of
equations. The 40C exponential FD scheme
(12) for the equation (4) is equivalent to the
standard second-order central FD scheme
applied to the following equation:

(—a&xz +C5x)ui =(1-|— a,D, +a2DX2) f., (19)
which an artificial diffusion coefficient
a[ (ch, /2a)coth(ch, /2a)—1] and an
artificial source term o f, +, f,, have
been added.

The modified differential equation
corresponding to the equation (19) can be
obtained by expressing Taylor series. From
(16) with (18), we have

2
—au, +cu = f + [Oigx - aazj Dlu,
(20)
4 4
_ < DJu, + ah, DSu, +o(h?).
120 360

Equation (19) can be formulated
symbolically as

(Lt a8, +07) (-2 +3, )u, = £, (21)

-1
Here the operator (1+ a0, + azé'xz) has

symbolic meaning only.

This symbolic construction can be used to
derive higher order compact schemes for 3D
convection-diffusion equation (Li et al
(1995),Tian and Ge( 2003), Zhang( 2002),
Hirsh (1975), Karra and Zhang (2004).

An analogous symbolic fourth compact
approximation operator can also be obtained
for y and Z variables. For convenience,

we define several finite difference operators
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L =1+a0, +a,02, A =—ad’+cs,
L, =1+ 86, + B,5,, A =-pB5; +pd,,
L, =1+ 70, +7,0;, A =-y5;+05,,

and
h
hcoth Py , p#0
p=1 2 2b :
b, p=0
b_—ﬂ’ p;/_-o
ﬂ]_: p ’
0 =0
_ h2
b(bpzﬂ)+€y’ 020
ﬂzzﬁ 2 1 (21)
i ~0
12’ b=
qzzcoth@hzj, q=0
V= ,
d, g=0
d;j/’ q_—/_-o
7/]_: q ’
0 g=0
_ 2
d(d2 7). g0
AT . @

where o,,6, and 55 ,67 are the first and

the second central difference operator with
mesh sizes Ay and Azinthe yand Z

directions, respectively.
Applying the forth order compact difference

operators L;l, L;l and L;l to the equation

stady-state 3D convection diffusion equation
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(4), we obtain the following exponential
fourth-order compact approximation:

(LA +LIA, + LA, Juj = fiy +o(h’),
(24)

where

o(h*) denotes the O(hf) + o(h;‘) + O(hf)

termand (i, j, k )denote (Xi,yj,zk).

An exponential fourth-order ADI
approximation on to the unsteady 3D
convection-diffusion equation (1)

ou
can be obtain by replacing f by Ty in

equation (24).
ou” a1 a1 1 n
( = j = (LA +LA + LA, Ju,
ijk

+o(h*),

where U"
time
t, = NAt,n represents the time increment,

and At =t"" —t" is the time step size. A
fourth-order semi —discrete approximation
(25) to the unsteady 3D convection-
diffusion equation (1) was also used in
(Karra, 2005).

(25)

is the approximate solution at

From Taylor series expansions, we have

A A
U™ = o 2! 8’[2 3l ot n
LA ot ik’

+T?+ (26)

n+1

0
uk exp(At 8tj ijk*

Substituting (25) into equation (26), we have

n+1

Ut = exp(—At(LfA& FLIA + L;lAZ)) N, (27)
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exp( (LA L ,%+L‘1Az)j e o8

_exp( (L A LA + L Az)j s

since, the operators A, A/, AL, Ly, L,

have commutative property commutative ,
then yields

b zon
% LA ju = exp(_TAt L;lﬁ&] (29)

%ML;lijex (—L Azj i

Using the Taylor expansions, equation (29)
becomes

1+%L A, (1

exp

n+l

exp ik

exp

At 4
+?Ly ij

At
={1-—L
[ 2 XA*)(SO)
At _
1—?Lylﬁ\/ (1——L Azj "

+o(At?) + o(Ath*),

n+1
ijk

1+%L;1AZ u

which is the Crank-Niclson time
discretization if 0(At®) +o0(Ath*)is
neglect.

Rearrange equation (30), we obtain
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At At
Lﬁf;&}(Ler?AyJ
At 41 At
L +— Mt B [ —
z+ 2 Azjuljk ( X 2 ij(Bl)
At At n
Ly_?p\/j(Lz_?Az)uijk

+o(At?) + o(Ath*).

This approximation is second-order accurate
in time and fourth-order accurate in space.
Crank-  Niclson  method for time
discretization is unconditionally stabile, but
to solving system of algebraic equations, we
need large amounts of computations. Hence,
we used the ADI method (Thomas, 1995),
which is applicable to the iterative solution
of unsteady 3D convection-diffusion
equation and it’s requires to solving one-
dimensional implicit problems for each time
step. In order to applying an exponential
Foruth-order ADI scheme with the boundary
conditions which will be wuse in our
numerical solutions for the unsteady 3D
convection-diffusion problem, we introduce

an intermediate variableu”, equation (31)

leads to
LX+%Ax u*:(LX—%A&j

At At (322)
Ly—7Ay (LZ—?AZ)U”,
Ly+%Ay u™ =u’, (32b)
LZ+%AZ)U””:U**. (32¢)

The intermediate variable U satisfying the
initial and boundary conditions (2) and (3),

(1 u’ = U,, at all mesh points,

117

(i) u"=g",...,N, onthe boundary oQ.

Equation (32) clear that this scheme has the
same of accuracy as formula (31) in time
and space. In section 4 , the resulting
(EHOC ADI) scheme (32) in each ADI
solution step give a rise to strictly diagonally
dominant tridiagonal matrix equation which
can inverted by simple tridiagonal Gaussian
decomposition .

The intermediate variable U” introduce in
each ADI scheme above is not necessarily
approximation to the solution at any time
levels, then from equation (3)

At

e L i n+1.
(L5 Ao

This formula give U™ explicitly in terms of

the central difference of g”+1 with respect

to the z. If the boundary conditions are
independent of the time, the formulae giving

u™ on the boundary 0Q reduce to
u” =(Lz +§Azjg

2
3-Stability analysis
We use Von Neumann stability analysis to
define the stability limit of (EHO ADI)

scheme to 3D convection-diffusion
equation.

Let the numerical solution u(xi VY Zy ,tn)

(33)

(34)

be represented by a finite Fourier series, and
for linear stability, we can examine the
behaviour of single term of the series, as
follows

uj =n"exp{1i}exp{13 jlexp{1 9k}, (35)

where | =+/=1, n" is amplitude at time
level n,and 3, =v,h,, 3 =V h  and
9, =V,h, are phase angles with the wave

numbers VX,Vy, and Vv, inthe X,Yyand Z
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directions, respectively. Substituting (35)
into (31), we obtain the amplification factor

G(&X,Sy,Sz): i and we can be

written as !
G(%.9,.9)<

Where

1(9,)=
where

K :1—h—12(2052 —aAt),

Q+Rexp{13}+Sexp{-19,}
K+Mexp{l3}+Nexp{-14}

X

(382)

X

1 CAt 1 aAt
- 2 1, - 2t)

2h, 2 h; 2

1 CAt 1 alt
N=e——rof - — |+5| o —F |,

2h, 2 h 2

1

Qzl—F(2a2+aAt),

1 CAt 1 aAt
R=——ray—— |+=| a,+— |
2h, 2 hy 2

5o 1 ( a1+CAt] 1

aAt
— 38b
2h, 2 hf( 2 ) (380)

Rearrange equation (38) and using the

formula,
. 1

Sing, :E(exp{ 19,} —exp{-19,})
and

Cos$, :%(exp{lsx} +exp{-13,}),

we give
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Q+Rexp{14}+Sexp{-184}
20At 9

da, .. 5,9
=1-——22Sin?(2) - ===Sin?(=*
7S () - S Sin' ()
al Sing. — IcAt Sing.
h, 2h,

Similarly, from equation (38), we obtain
K+Mexp{l4}+Nexp{-13, }

2aAt

4a, . 2,9
=1——228|n2(2) Sn( )
+0!—1|Sin,9X %Smg

h, 2h,

Thus, we give
I —
(A +2)+ 1 (2 + 2y)
with
4o ZaAt
f=1-228int (%), 7, -
QY a: CAt
=—=8ing,, 4, =——Sing,.
ﬂg hx X 4 2hx

The other terms 1(3,) and 1(9,) are

defined in a similar way by replacing X by
Y, Z in the above expressions respectively.

To study the stability condition is
G(%.9,,9)<1 for all 9,9,

92 e[—7z,7r]. To verified this condition
directly equation (39) yields to

(=) + (A=)
<(A+A) +(A+4),

and

]9X
Sin* (%),
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and  then A, + A4, =0,
Furthermore, calculate A4, + 4,4, =20, we
have

Ay + Aol =
20t 4o 3, vy
e [1— hzzsn (2))Sln (2) (40)

CalAt

El Sin® (= )jSm (‘Z)

We conclude that the (EFOCADI) scheme
when applied to the 3D convection-diffusion
equation, is unconditionally stabile.

4-The Diagonal Dominance
We prove the tridiagonal systems of

equations formed by schemes (32), consider
the equation (32c) and rewrite it as follows

2

2n, {1+ 70, + 7,07 + g(—y&f +q0, )}u”+1 =u”

We must prove that 4,4, + 1,4, >0. 2

1_ When C = 0’ then un+1 + ulrj}—,lkﬂ - uirj}—,lk—l + |n]—1k+l 2U n+1k + ulnj—lk -1

h2 i,j.k 7 2h e, h2

a=a, a, =0, azzﬁ (41) X . ) . X
n+ 2u n+! + un+ un+ un+

Substituting (41) into (40), gives _ Ay Ui '2‘ k Tk Atq ikt Pkt -

4 @) Hence,
ZCAt 1 -2 19 -2 19 42 n+1 n+1
X n+1 * (44)

We know that ¢ >0 and 0 < Sinz(%) <1

, this deduce to A A, + 4,4 =0 for all
9 € [—72,7[]

2- when ¢ #0, then
g _dma _a(a—a) h?
o TR c? 6
Substituting (43) into (40), gives

_2Mta (1 4a(@a-a) |ioa S
W Ihe =5 [3 i jsmz)

- (43)

2Ata

(1 Sin?(= )jSm( -2)>0

X

2
Similarly, we can prove ‘I(gy)‘ <land

(%) <1.

+Cljkuljk+l_uljk

This execute to the coefficient matrix of
the linear system

Q :triLA,j,k +B; ik +Ci,j,kJ’

where

Yo _ o Atly, q
. = _+_ ,
A= 1 "o 77 h? 2hzﬂ

Bijk: 1 27/2+At7/

>
(N

N

>
[N

c _|Z_n _Afry_ 4}
WA h2 2h, 2\ h? 0 2h,

The matrix Q is a diagonal dominance if
the conditions satisfied

Busl> A+ (Gl
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It easily found that
Yo_n Ay 9
MK h2 2, 2R 2h,
T2y A_t27 S\l2 N (2 2
h?| [ h? | |h? 2h,| [h?  2h,

Aty 9
2\ h* 2h )

z

N E(z La ‘+
2(h? 2h

Is a sufficient condition for

Bl >[A s +[Cusil:

7 9q|_| yhcothx g

h2 2h| | 2n%  2h,

_ 2g¢’ ‘_ ge*
- 2hz(eX —e‘x) - hz(eX —e‘x) 9
_r . a
"1 on)

_r .9 __;/hzcothx+ q
h? 2h| | 2n?  2h,
__ 9" _r_a
h(e*—e™) h7 2h,
(46)

27| q(ex+e‘x) 2y

hZ|~ h(e*-e™) h “n

where X = Z—ZZ from (45), (46) and (47)

produce that

120

Aty
h2
Z (48)
—At lz+ q +—At lz_i .
2 \h; 2h 2 (h; 2h,
We must prove that
2
I ki R
h?|"|h2 2h| |h? 2h
1-Whenq = 0, then
2
y=d, =0, V2=15 ©0
Substituting (50) into (49), gives
2 5 r_n 1
1 2 - y 2 - ]
h; 6 h 2h, 12
voon 1
hZ2 2h, 12

The above equation satisfying equation (49).
2- When q#0, then

1—q—hzcothx
1-%_2_" 2

h; 3 z(th
2d

_ 2 1-xcothx
3 2x°

(51)

Similarly, we obtain
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Yo, s
hy 2h,
(52)
1 1-xcothx 1-xcothx
—+ —+ ,
6 4x 4x
and
Vo o
2
hs  2h, (53)
Lrl—xcothx_l—xcothx
6 4x? 4x

Since 1— xcoth x <0 ,for all non zero real
X, we have

1— xcoth x

X2

<0. (54)

From reference (Tian and Ge 2007),

1— xcoth x
-1<—<0, if x>0 and
X
1— xcoth x
O<—— <1, if x<0 when x>0,
X
yield to
1 1-xcothx
—_t | =
6 4x
1+1—xcothx’ 1+l—xcothx>0(55)
6 4x 6 X
xcothx—l_ll 1—xcothxSO
4x 6 X
‘1 1-xcothx
_.|_—:
6 4x
1 1-xcothx 1-xcothx 4  (56)
——, <<=
6 4x X 6
xcothx—l_l ﬂ<1—xcothx
4x 6 6 X

Adding (56) and (55), we obtain

121

1 1-xcothx| |1 1—xcothx|
4+ +1=- =
6 4x | 6 4x |
1 4 1-xcothx (57)
L Sty )|
3 6 X
xcothx—l. _1£1—xcothx£—_4
2X X 6
1— xcoth x
Since —1<—— <0 for x>0and

X
from equation (57), we see that

1

1_1— xcoth x <§- (58)

1 1-xcothx
__|_—
6 4X

6 4x

+ ‘

So, we find by using triangle inequality and
equations (51), (54) and (58) the following

7/—§+A + 7—2— M1l<p— 27;2 . (59)

h?  2h| |h? 2h, h’

The discussion for X < Qs equivalent,

therefore, we obtain

1—2—7;2 > 7—§—A +7/—§+A.(6O)
h2 | |h2 2h| |h® 2h,

Then for all real X,

L2 A e | e

h2| | h?| [h? 2h| [h?  2h,

2 (h? 2h,

The proof complete.

Atry 9
2 (h? 2,

5-Numerical Results

Test 1:

We first examine a diffusion problem in the
cubic region with diffusion coefficients
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a=b=d=1and c=p=q=0.. The
exact solution of this test problem given by
u(x,y,z) =e "

The initial and boundary condition are
taken from this solution. We consider
uniform grids with different mesh sizes and
different regions and compare the accuracy
of the computed solutions from the present
exponential fourth order ADI scheme and
fourth order ADI scheme of samir karaa . The
quantity that we compare is the average
absolute errors of the computed solution with
respect to the exact solution. In Table 1, we
show that, the new scheme has the same of
accuracy compare with samir karaa scheme.

This is because if C=pP=0=0, then the

exponential forth order compact scheme has
the same formula with forth order compact
scheme

Test 2:

Also, we use another test problem which

has the analytic solution given by
X+y+z+t

u(x,y,z)=e ,
with coefficient a=2,b=d =1 and
C= p=0g=1. The boundary and the initial

conditions are directly taken from this
solution. In Fig. 1 we plot the average
absolute errors at each point X=Y =2 for

t=1and (a) h=0.land region[l,l]B, (b)
h=0.2and region[2,2]3,(c) h=0.3 and
region[3,3]3, (d h=0.4 and region

[4,4]3, (e) h=0.5 and region[5,5]3, at

dt=0.001.
The figures show the superiority of the
present exponential fourth order ADI scheme.
In Table 2 we show that, the average
absolute of the new scheme is less than from
the Samir Karaa scheme

sin(zx)sin(zy)sin(zz).
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5. Conclusions

We have introduced a fourth order
exponential compact ADI scheme with
Crank-Nicholson technique for solving
three-dimensional unsteady
convection-diffusion equation. The
unconditionally stability of new
scheme is proved with respect to initial
values. Our Numerical results showed
that present scheme is computationally
more efficient and more accurate than
the fourth order scheme of samir karaa.
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Table 1. Average absolute error at t = 1 computed by two different schemes. For testl.

h 0.1 0.2 0.3 0.4 0.5
region 1] 22" 33] [44] 55
At=0.1

Samir Karaa ADI

method 3.89E-14 4.21E-14 4.47E-14 4.03E-14 1.97E-14
Present ADI

method 3.89E-14 4.21E-14 4.47E-14 4.03E-14 1.97E-14
At=0.01

Samir Karaa ADI

method 1.09E-15 1.94E-16 3.83E-15 1.57E-14 2.85E-14
Present ADI

method 1.09E-15 1.94E-16 3.83E-15 1.57E-14 2.85E-14
At=0.002

Samir Karaa ADI

method 1.82E-16 1.41E-15 5.23E-15 1.67E-14 2.97E-14
Present ADI

method 1.82E-16 1.41E-15 5.23E-15 1.67E-14 2.97E-14
At=0.001

Samir Karaa ADI

method 6.55E-16 1.90E-15 5.36E-15 1.63E-14 2.93E-14
Present ADI

method 6.55E-16 1.90E-15 5.36E-15 1.63E-14 2.93E-14

Table 2. Average absolute error at t = 1 computed by two different schemes. For test 2 .

h 0.1 0.2 0.3 0.4 0.5

region 1] 2,21 13.3] (4,41 [5,5]
At=0.1

Samir Karaa ADI method 1.77E-04 4,10E-03 5.28E-02 6.24E-01 7.8580891
Present ADI method 1.77E-04 4.07E-03 5.11E-02 5.64E-01 6.2207654
At=0.01

Samir Karaa ADI method 2.18E-06 6.95E-05 2.27E-03 6.69E-02 1.7197148
Present ADI method 2.09E-06 4,17E-05 5.18E-04 5.85E-03 6.99E-02
At =0.002

Samir Karaa ADI method 1.71E-07 2.95E-05 1.77E-03 6.15E-02 1.659899
Present ADI method 8.39E-08 1.69E-06 2.35E-05 4.05E-04 9.98E-03
At=0.001

Samir Karaa ADI method 1.08E-07 2.83E-05 1.76E-03 6.13E-02 1.6580297
Present ADI method 2.10E-08 4.37E-07 8.04E-06 2.35E-04 8.11E-03
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FIG.1. Comparison of average absolute error at t = 1 of the present scheme with Samir Karaa scheme
at dt = 0.001. (a) h= 0.1, (b)h=0.2, (c) h=10.3, (d) h=0.4, (e) h=10.5.
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