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Abstract 

In this paper, fourth order exponential compact alternating direction implicit (ADI) finite 

difference scheme for solving unsteady 3D convection-diffusion equation with constant 

coefficients is derived. This scheme is second order in time and fourth order in space. The 

formulation is solved with an efficient numerical method corresponds the solution of tridiagonal 

systems. The accuracy and efficiency of this scheme are discussed. We proved a higher order 

discretization scheme is unconditionally stable with respect to the initial values by using Fourier 

analysis. Numerical results are presented and compared with the fourth order compact ADI 

scheme by (Karaa , 2006). 
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1. Introduction 

 

This article is concerned with the 

development of accurate solution of the 

Three-dimensional unsteady convection-            

diffusion equation with ( , , , )u x y z t       

transport variable. 

               
2 2 2

2 2 2

0, ( , , , ) (1)

u u u u u
a b d c

t x y z x

u u
p q x y z t J

y z

    
   

    

 
   

 

 with initial condition 

 

0( , , ,0) ( , , ), ( , , ) (2)u x y z u x y z u x y z 

 

and boundary conditions    

      
( , , , ) ( , , , ), ( , , , ) (3)u x y z t g x y z t u x y z t J 

  

where   is the rectangular domain in 
3R  

with boundary    ,  T,0  is the time 

interval, and c , p  and q  are constants 

convective velocities, ,a band d  are 

positive constant diffusion coefficients in 

,x y  and z  directions, respectively.  

 

The convection-diffusion equation (1) is 

an important class of partial differential 

equation and arises in physics and 

engineering sciences involving the 

applications in fluid dynamics(Roache, 

1976)., the modelling of transport 

phenomenon which may present  

temperature, concentration of a contaminant 

sea water (Noye,1986a)., Groundwater 

pollutants problems and energy and 

chemical separation processes (Parlarge 

1980, Patankar 1980), the spread of 

pollutants in rivers and streams and transport 

of pollutants in the atmosphere (Chatwin et 

al 1985, Chaudhry et al 1983), flow in 

porous media (Fattah et al 1985,Kumar 

1988). 

 

Class finite difference methods (FDM), 

such as second-order central difference (CD) 

scheme and the first-order upwind (UD) 

difference scheme, they are working well for 
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solving the convection-diffusion equation, 

but it is not always very accurate one to be 

need a large number of mesh point. 

However, their solutions suffer from 

excessive time truncation errors, moreover 

they put a strong limitation on the courant 

number and hence require very small time 

steps to generate stable solutions. 

 

Various numerical finite difference 

schemes have been proposed to solve the 

convection-diffusion equations 

approximately. Noye and Tan (1988a) drive 

several high order implicit schemes for 

unsteady (1D) convection-diffusion 

equations and in (Noye et al 1988b) they 

proposed a compact nine-point high order 

compact (HOC) implicit scheme for 

unsteady (2D) convection-diffusion 

equations. These schemes have large 

interval of stability and its third order 

accurate in space and second order accurate 

in time. In Rigal, (1988, 1999)derived two 

classes of compact difference schemes of 

order 2 in time and 4 in space with different 

choices of weighting parameters. Spotz and 

Carye (2001) extended the 2D HOC scheme 

in (Gupta, et al 1984) for solving steady 

state equations to solve unsteady state 1D 

convection-diffusion equations with variable 

coefficients and 2D diffusion equations. 

Also, in (Kalita, et al 2002)and (Karaa, 

submitted for publication). derived a HOC 

schemes with weight time discretization to 

solve the unsteady 2D and 3D convection-

diffusion equations, respectively. 

 

To obtain satisfactory higher order 

numerical results with reasonable 

computational cost, there have been attempts 

to develop higher order compact ADI 

methods. Michell and Faireweather(1964) 

obtained 

a high order split formula and later Dai 

and Nassar (2002)are using it for 2D 

diffusion problems. A higher order compact 

ADI for solving 2D convection-diffusion 

equations of order 2 in time and 4 in space is 

deriving by Karaa and Zhang( 2004) and 

extended this scheme for 3D convection-

diffusion equations in (Karaa,2006).A class 

of HOC compact exponential finite 

difference methods that is proposed for 

solving 1D and 2D steady and unsteady state 

convection-diffusion equations with variable 

coefficients in (Tain et al 2007a) extended 

by Tian and Ge ( 2007b) for 2D unsteady 

state convectiondiffusion equations with 

ADI scheme. 

 

In this paper, we extension the work of 

Tian and Ge (2007b) by derived a fourth 

order compact exponential ADI finite 

difference scheme for 3D unsteady state 

convection-diffusion equations. Numerical 

results that are obtained more accurate than 

those in (Karaa,2006) . In section 2, we 

establish an efficiency exponential fourth 

order ADI method for solving 3D unsteady 

convection diffusion problems with constant 

coefficients, and the Crank–Nicholson 

method is used for the time discretization. 

Stability analyzed by using Von-

Neumann method verifying the proposed 

present exponential fourth order ADI 

method is unconditionally stable described 

in section 3. The tridiagonal system of 

equation produced by present exponential 

fourth order ADI scheme is strictly 

diagonally dominant is given in section 4. In 

section 5, numerical results for two test 

problems produced by present exponential 

fourth order ADI method are compared with 

Karra (2006) results. Section 5,introduced 

the concludes of this paper . 

2. Exponential compact Fourth-

order ADI finite difference 

method 

 

In order to develop the HOC 

exponential finite difference 
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schemes for solving the convection 

diffusion equation 

 

)x(fcuau xxx  ,              (4) 

where a  is the positive constant 

conductivity, c  is the constant convective 

velocity, f  is a sufficiently smooth function. 

Consider the finite difference scheme for 

equation (4) with constant convection 

coefficient at a grid point. Let the interval 

0[ , ]Nx x  be discretized into N  grid steps 

of size x , where ,xi ihx   

,1 iix xxh    ),( ii xuu  ( ),i if f x  i is 

an index of any grid point in x direction. 

Derivatives in (4) at interior grid points ix  

can be defined using Taylor’s expansion as 
2

2 1

1

2
2 2 2

1

, (5)
(2 1)!

2
, (6)

(2 1)!

i x

i x

n
nx

x h i x i

n

n
nx

xx h i x i

n

h
u D u D u

n

h
u D u D u

n











 


 






                                                                                                                                                               

where 1 1( ) / (2 )
xh i i i xD u u u h   and  

2 2

1 1  ( 2 ) /
xh i i i i xD u u u u h     are the 

central difference approximations for the 

first and second derivatives and n
xD  is the 

nth-order exact derivative operator at any 

interior x . Rewrite equation (4) as 

( )

cx cx

a a
x x ie ae u f



  , 

( )

cx cx

a a
x x iae u f e

 

  .            (7) 

Integration of equation (7) over a spaced 

interval from 1

2
i

x


 to  1

2
i

x


 

2 2
1/2 1/2

2 2

( ( ) ( ) )

( ) .

x x

x x

ch ch

a a
x i x i

ch ch

a a
i

c e u e u

e e f



 





 

          (8) 

 

Assume 
2

xch
K

a
 and using the central 

difference approximate
ixu in equation (8),  

we get 

  

1 1 ( ) .K K K Ki i i i
i

x x

u u u u
c e e e e f

h h

  
  

   
 

  

By adding and replace 1iu   in the second 

term we get 

 

 

1 1 1

2

1 1 1

2 2

2

2 2
( ) .

2

Kx i i i i

x

K K Ki i i i
i

x

ch u u u u
e

h

u u u u
ce e e f

h

   

  

  

  
  

Rearrange this equation, give 

 

   

 

   

1

1

1 1

2

2

2

( ) ,

K K K K

i i

K K
x i

K K K K

i i

x

K K

i

u e e u e ec

h u e e

c
u e e u e e

h

e e f

 







  

 



   
 
  
 

    
 

 

 

and then 

1 1

2

1 1

2

2

.
2

K K

x i i i

K K

x

K K

i i
iK K

x

ch e e u u u

e e h

e e u u
c f

e e h



 





 



   
  

  

  
  

  

 

 

Hence, the equation may be written as; 

2coth( ) .
2 x x

x
h i h i i

ch
K D u cD u f                               

 

Thus, we get 
2 ,
x xh i h i iD u cD u f                    (9) 
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coth , 0
2 2

, 0

x xch ch
c

a

a c



  
   

  
 

      (10)                                                                                         

(12) 

Equation (9) represents the second order 

exponential FD schemes for the convection- 

diffusion equation (4) and it’s equivalent to 

the standard second order central FD 

formula applied to the following equation: 

 

coth .
2 2

x x
xx x

ch ch
u cu f

a

 
   

 
  (11)    

Equation (11) show that when equation (9) 

is used, an artificial diffusion coefficient 

   / 2 coth / 2 1x xa ch a ch a   is 

perturbed to equation (4). 

 

To drive Exponential compact high-order 

ADI finite difference method, we consider 

the FD scheme for equation (4) with 

constant convection coefficient at grid point 

ix  as; 

2

0 1 2 ,
x xh i h i i xi xxiD u cD u f f f        (12) 

In order to determine the parameters 

0 1 2, ,    rewrite equation (12) as 

2

0

1 2

( )

( ) ( ) .

x xh i h i xx x i

xx x xi xx x xxi

D u cD u au cu

au cu au cu

 

 

    

     
  (13) 

 

From equations (5) and (6), we have 

 
2

3 4

2
2 4 4

( )
6

( )
12

x i

x i

x
h i x x i x

x
h i xx x i x

h
D u u D u o h

h
D u u D u o h

  

  

 

Substituting these equations into equation    

(13) , we obtain  

2 2
4 3

3

0 0 1 1

4 3

2 2

12 6

.

x x
xx x i x x i

x x xi x i xxi

x i x i

h h
u D u c u D u

a u cu a D u cu

a D u c D u



   

 

   
       

   

   

 

 (14) 

Rearrange equation (14),we obtain

 0 0 1

2
3

1 2

2
4 4

2

( 1)

( )
6

( ) 0.
12

xi xxi

x
x i

x
x i x

cu a c u

ch
a c D u

h
a D u o h

   

 




    

   

 
    
 

   (15) 

Add if to both sides, and using equation (4), 

we have

 

0

2
3

0 1 1 2

2
4 4

2

( 1)

( )
6

( ) 0.
12

xx x i xi

x
xxi x i

x
x i x

au cu f cu

ch
a c u a c D u

h
a D u o h



    




    

       

 
    
 

(16) 

From (15), we have 

 

0

0 1

2

1 2

2

2

( 1) 0,

0,

0,
6

.
12

x

x

c

a c

ch
a c

h
a



  

 




 

   

   



                                 (17) 

 

Solution equation (17), gives the parameters 

 

 

 

  2

2

2 2

, 0
6

, 0
12

x

x

a a h
c

c

h
c






 

 
 


          (18) 

Equation (12) with equation (18) is an 
4( )o h compact FD scheme and it’s a 
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diagonally dominant tri-diagonal system of 

equations. The 4OC exponential FD scheme 

(12) for the equation (4) is equivalent to the 

standard second-order central FD scheme 

applied to the following equation:  

                            

   2 2

1 21 ,x x i x x ic u D D f         (19) 

which an artificial diffusion coefficient 

   / 2 coth / 2 1x xa ch a ch a    and  an 

artificial source term 1 2x xxf f   have 

been added. 

 

The modified differential equation 

corresponding to the equation (19) can be 

obtained by expressing Taylor series. From 

(16) with (18), we have
2

4

2

4 4
5 6 6

12

( ).
120 360

x
xx x i x i

x x
x i x i x

h
au cu f a D u

ch h
D u D u o h






 
     

 

  

(20) 

Equation (19) can be formulated 

symbolically as

   
1

2 2

1 21 .x x x x i ic u f     


      (21) 

Here the operator  
1

2

1 21 x x   


   has 

symbolic meaning only. 

 

This symbolic construction can be used to 

derive higher order compact schemes for 3D 

convection-diffusion equation (Li et al 

(1995),Tian and Ge( 2003), Zhang( 2002), 

Hirsh (1975), Karra and Zhang (2004). 

 

An analogous symbolic fourth compact 

approximation operator can also be obtained 

for  y  and z  variables. For convenience, 

we define several finite difference operators 

 

2 2

1 2

2 2

1 2

2 2

1 2

1 , ,

1 , ,

1 , ,

x x x x x x

y y y y y y

z z z z z z

L A c

L A p

L A q

     

     

     

     

     

     

 

and 

coth , 0
,2 2

, 0

y yph ph
p

b

b p



  
  

   




 

1

, 0
,

0 0

b
p

p

p








 
 

                    

  2

2

2
2

, 0
6

,

, 0
12

y

y

hb b
p

p

h
p





 
 


 




  (21)  

     
coth , 0

,2 2

, 0

z zqh qh
q

d

d q



  
  

  
 

 

   
1

, 0
,

0 0

d
q

q

q








 
 

 

  2

2

2
2

, 0
6

,

, 0
12

z

z

d d h
q

q

h
q





 
 


 





       (22) 

where ,y z   and 
2 2,y z   are the first and 

the second central difference operator with 

mesh sizes y  and z in the y and z  

directions, respectively.  

Applying the forth order compact difference 

operators 
1 1,x yL L 

 and 
1

zL
 to the equation 

stady-state 3D convection diffusion equation 
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(4), we obtain the following exponential 

fourth-order compact approximation: 

  

 1 1 1 4( ),n

x x y y z z ijk ijkL A L A L A u f o h     

                                                                 (24) 

where 
4( )o h denotes the 

4 4 4( ) ( ) ( )x y zo h o h o h   

term and  , ,i j k denote  , ,i j kx y z . 

An exponential fourth-order ADI 

approximation on to the unsteady 3D 

convection-diffusion equation (1) 

can be obtain by replacing f  by 
u

t





 in 

equation (24). 

 1 1 1

4( ),

n
n

x x y y z z ijk

ijk

u
L A L A L A u

t

o h

   
   

 



 (25)  

where 
nu  is the approximate solution at 

time 

,nt n t n   represents the time increment,  

and 
1n nt t t    is the time step size. A 

fourth-order semi –discrete approximation 

(25) to the unsteady 3D convection-

diffusion equation (1) was also used in 

(Karra, 2005). 

 

From Taylor series expansions, we have 

 
2 2 3 3

2 3
1

4 4

4

1

1
2! 3!

,

4!

exp .

n n

ijk ijk

n n

ijk ijk

t t
t

t t t
u u

t

t

u t u
t





     
    

   
  
  

 

 
  

 

(26) 

Substituting (25) into equation (26), we have 

 

  1 1 1 1exp ,n n

ijk x x y y z z ijku t L A L A L A u         (27) 

 

  
 

 

1 1 1 1

1 1 1

exp
2

exp ,
2

n

x x y y z z ijk

n

x x y y z z ijk

t
L A L A L A u

t
L A L A L A u

   

  

 
  

 

 
   

 

 (28)    

      

since, the operators , , , , ,x y z x y zA A A L L L

have commutative property commutative , 

then yields 

 

1 1

1 1 1

1 1

exp exp
2 2

exp exp
2 2

exp exp .
2 2

x x y y

n

z z ijk x x

n

y y z z ijk

t t
L A L A

t t
L A u L A

t t
L A L A u

 

  

 

    
   
   

    
   

   

    
   
   

   (29) 

Using the Taylor expansions, equation (29) 

becomes 

1 1

1 1 1

1 1

3 4

1 1
2 2

1 1
2 2

1 1
2 2

( ) ( ),

x x y y

n

z z ijk x x

n

y y z z ijk

t t
L A L A

t t
L A u L A

t t
L A L A u

o t o th

 

  

 

   
   

  

    
     

   

   
   

  

   

(30) 

 

which is the Crank-Niclson time 

discretization if 
3 4( ) ( )o t o th   is 

neglect. 

Rearrange equation (30), we obtain 
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1

3 4

2 2

2 2

2 2

( ) ( ).

x x y y

n

z z ijk x x

n

y y z z ijk

t t
L A L A

t t
L A u L A

t t
L A L A u

o t o th



   
   

  

    
     

   

   
   

  

   

(31) 

This approximation is second-order accurate 

in time and fourth-order accurate in space.  

Crank- Niclson method for time 

discretization is unconditionally stabile, but 

to solving system of algebraic equations, we 

need large amounts of computations. Hence, 

we used the ADI method (Thomas, 1995), 

which is applicable to the iterative solution 

of unsteady 3D convection-diffusion 

equation and it’s requires to solving one- 

dimensional implicit problems for each time 

step. In order to applying an exponential 

Foruth-order ADI scheme with the boundary 

conditions which will be use in our 

numerical solutions for the unsteady 3D 

convection-diffusion problem, we introduce 

an intermediate variableu
, equation (31) 

leads to 

2 2

,
2 2

x x x x

n

y y z z

t t
L A u L A

t t
L A L A u

    
     

   

   
   

  

   (32a) 

,
2

y y

t
L A u u  

  
 

                 (32b) 

1 .
2

n

z z

t
L A u u  
  

 
              (32c) 

 

The intermediate variable u
satisfying the 

initial and boundary conditions (2) and (3), 

 

(i) 
0

0,u u  at all mesh points, 

(ii) , , ,n nu g N  on the boundary .  

 

Equation (32) clear that this scheme has the 

same of accuracy as formula (31) in time 

and space. In section 4 , the resulting 

(EHOC ADI) scheme (32) in each ADI 

solution step give a rise to strictly diagonally 

dominant tridiagonal matrix equation which 

can inverted by simple tridiagonal Gaussian 

decomposition .  

 

The intermediate variable u
 introduce in 

each ADI scheme above is not necessarily 

approximation to the solution at any time 

levels, then from equation (3) 

1.
2

n

z z

t
u L A g  

  
 

            (33) 

This formula give u
 explicitly in terms of 

the central difference of 
1ng 
 with respect 

to the .z  If the boundary conditions are 

independent of the time, the formulae giving 

u
 on the boundary   reduce to 

2
z z

t
u L A g  

  
 

                     (34) 

3-Stability analysis 

We use Von Neumann stability analysis to 

define the stability limit of (EHO ADI) 

scheme to 3D convection-diffusion 

equation. 

Let the numerical solution  , , ,i j k nu x y z t  

be represented by a finite Fourier series, and 

for linear stability, we can examine the 

behaviour of single term of the series, as 

follows 

     exp exp exp ,n n

ijk x y zu I i I j I k     (35)  

where 1I   ,  
n  is amplitude at time 

level n , and ,x x x y y yv h v h   , and 

z z zv h   are phase angles with the wave 

numbers , ,x yv v  and zv in the ,x y and z
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directions, respectively.  Substituting (35) 

into (31), we obtain the amplification factor  

 
1

, ,
n

x y z n
G


  





  and we can be 

written as 

 , , ( ) ( ) ( ) ,x y z x y zG l l l       

 

Where 

 
   
   

R exp exp
( ) ,

exp exp

x x

x

x x

Q I S I
l

K M I N I

 


 

  


  
 (38a) 

where  

 22

1
1 2 ,

x

K t
h

      

1 22

1 1
,

2 2 2x x

c t t
M

h h


 

    
      

   
 

1 22

1 1
,

2 2 2x x

c t t
N

h h


 

    
       

   

  22

1
1 2 ,

x

Q t
h

      

1 22

1 1
,

2 2 2x x

c t t
R

h h


 

    
      

   

1 22

1 1
.

2 2 2x x

c t t
S

h h


 

    
       

   
(38b) 

Rearrange equation (38) and using the 

formula,  

    
1

in exp exp
2

x x xS I I
I

      

and 

    
1

exp exp ,
2

x x xCos I I      

we give 

   

2 22

2 2

1

exp exp

4 2
1 ( ) ( )

2 2

.
2

x x

x x

x x

x x

x x

Q R I S I

t
Sin Sin

h h

I Ic t
Sin Sin

h h

 

   


 

  


  


 

 Similarly, from equation (38), we obtain 

   

2 22

2 2

1

exp exp

4 2
1 ( ) ( )

2 2

.
2

x x

x x

x x

x x

x x

K M I N I

t
Sin Sin

h h

I Ic t
Sin Sin

h h

 

   


 

  


  


 

 Thus, we give 

 

   
   

1 2 3 4

1 2 3 4

( ) ,x

I
l

I

   


   

  


  
  ( 39) 

with 

 

2 22
1 22 2

1
3 4

4 2
1 ( ), ( ),

2 2

, .
2

x x

x x

x x

x x

t
Sin Sin

h h

c t
Sin Sin

h h

   
 


   


  


 

 

The other terms ( )yl   and ( )zl   are 

defined in a similar way by replacing x  by 

,y z  in the above expressions respectively. 

To study the stability condition is  

 , , 1x y zG      for all , ,x y   and 

 , .z     To verified this condition 

directly equation (39) yields to  

   

   

22

1 2 3 4

2

1 2 3 4 ,
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and then  
1 2 3 4 0    . 

Furthermore, calculate 
1 2 3 4 0    , we 

have 

1 2 3 4

2 22

2 2

2 21

2

2 4
1 ( ) ( )

2 2

1 ( ) ( ).
2 2 2

x x

x x

x x

x

t
Sin Sin

h h

c t
Sin Sin

h

   

   

  

 

 
 

 

  
  

 

     (40) 

 We must prove that  1 2 3 4 0    . 

1- when 0c  , then 
2

1 2, 0, .
12

xh
a                   (41) 

Substituting (41) into (40), gives 

1 2 3 4

2 2

2

2 1
1 ( ) ( )

3 2 2

x x

x

c t
Sin Sin

h

   

 

 

  
 

 

    (42) 

We know that 0c   and 
20 ( ) 1

2

xSin


 

, this deduce to 1 2 3 0     for all 

 ,x     

 

2- when 0c  , then  

  2

1 2 2
,

6

x
a aa h

c c


 


   . (43) 

Substituting (43) into (40), gives 

 

4

1 2 3 4 2 2 2

2 2

2

2 1 4 ( )
( )

3 2

2
1 ( ) ( ) 0

2 2

x

x x

x x

x

t a a
Sin

h c h

ta
Sin Sin

h

  
   

 

  
   

 

  
   

 

Similarly, we can prove 
2

( ) 1yl   and 

2
( ) 1zl   . 

We conclude that the (EFOCADI) scheme 

when applied to the 3D convection-diffusion 

equation, is unconditionally stabile. 

 

4-The Diagonal Dominance  

 

We prove the tridiagonal systems of 

equations formed by schemes (32), consider 

the equation (32c) and rewrite it as follows 

 

 2 2 1

1 2

1 1 1 1 1

, , 1 , , 1 , , 1 , , , , 11

, , 1 2 2

1 1 1 1 1

, , 1 , , , , 1 , , 1 , , 1

, ,2

1
2

2

2

2

2 2 2

n

z z z z

n n n n n

i j k i j k i j k i j k i j kn

i j k

z z

n n n n n

i j k i j k i j k i j k i j k

i j k

z z

t
q u u

u u u u u
u

h h

u u u u ut tq
u

h h

     

 



 

    

   

    

    

 
      

 

  
 

   
  

Hence, 

1 1

, , , , 1 , , , ,

1

, , , , 1 , , .

n n

i j k i j k i j k i j k

n

i j k i j k i j k

A u B u

C u u

 



 





 
     (44)       

This execute to the coefficient matrix of 

the linear system 

, , , , , , ,i j k i j k i j kQ tri A B C      

where 

2 1 2
, , 2 2

,
2 2 2

i j k

z z z z

t q
A

h h h h

    
     

  
 

2
, , 2 2

2
1 ,

2
i j k

z z

t
B

h h

  
   
 

 

2 1
, , 2 2

.
2 2 2

i j k

z z z z

t q
C

h h h h

    
     

  
 

The matrix Q  is a diagonal dominance if 

the conditions satisfied 

 , , , , , , .i j k i j k i j kB A C   
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It easily found that 

2 1
, , 2 2

2 2 1 2 1

2 2 2 2

2 2

.
2 2 2

1
2 2

.
2 2 2 2

i j k

z z z z

z z z z z z

z z z z

t q
C

h h h h

t

h h h h h h

t q t q

h h h h

  

     

 

  
     

  


     

    
      

   

 

 

Is a sufficient condition for  

, , , , , , .i j k i j k i j kB A C 

   

2 2

2

coth

2 2 2

2

2

2

z

z z z z

x x

x x x x

z z

z z

q h x q

h h h h

qe qe

h e e h e e

q

h h

 



 

    

  
 

 

  (45) 

 

 

2 2

2

coth

2 2 2

.
2

z

z z z z

x

x x
z zz

q h x q

h h h h

qe q

h hh e e

 





    

  


 

                                                        (46) 

 
 2 2

2 2
,

x x

x x
z zz

q e e

h hh e e

 





 


         (47) 

where 
2

zqh
x

d
 , from (45), (46) and (47) 

produce that 

2

2 2
.

2 2 2 2

z

z z z z

t

h

t q t q

h h h h



 




    
     

   

  (48) 

 

We must prove that 

 

2 2 1 2 1

2 2 2

2
1 .

2 2z z z z zh h h h h

    
        (49) 

 

1-When 0,q  then 

2

1 2, 0, .
12

zh
d         (50) 

Substituting (50) into (49), gives 

 

2 2 1

2 2

2 1

2

2 5 1
1 , ,

6 2 12

1
.

2 12

z z z

z z

h h h

h h

  

 

   

 

 

 

The above equation satisfying equation (49). 

 

2- When  0,q   then  

2
22

2

1 coth
2 2 21

3
2

2

2 1 coth
.

3 2

z

z z

qh
x

d

h qh

d

x x

x




  
 
 
 


 

       (51) 

 
Similarly, we obtain 
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2 1

2

2

2

1 1 coth 1 coth
,

6 4 4

z zh h

x x x x

x x

 
 

 
 

      (52) 

and 

 

2 1

2

2

2

1 1 coth 1 coth
.

6 4 4

z zh h

x x x x

x x

 
 

 
 

       (53) 

 

Since 1 coth 0x x   ,for all non zero real 

x , we have  

 

2

1 coth
0.

x x

x


                                     (54) 

 

From reference (Tian and Ge 2007), 

1 coth
1 0,

x x

x


    if 0x   and

1 coth
0 1,

x x

x


   if 0x   when 0x  , 

yield to 

 

1 1 coth

6 4

1 1 coth 1 1 coth
, 0

6 4 6

coth 1 1 1 coth
, 0

4 6

x x

x

x x x x

x x

x x x x

x x


 

 
  


   



(55)   

1 1 coth

6 4

1 1 coth 1 coth 4
, 1

6 4 6

coth 1 1 4 1 coth
.

4 6 6

x x

x

x x x x

x x

x x x x

x x


 

 
   


   



 (56)                                                   

 
Adding (56) and (55), we obtain 

 

                                          

1 1 coth 1 1 coth

6 4 6 4

1 4 1 coth
0

3 6

coth 1 1 coth 4
. 1

2 6

x x x x

x x

x x

x

x x x x

x x

 
   


  


     



(57) 

 

Since  
1 coth

1 0
x x

x


    for 0x  and 

from equation (57), we see that   

 

1 1 coth 1 1 coth 1
.

6 4 6 4 2

x x x x

x x

 
     (58) 

 
So, we find by using triangle inequality and 

equations (51), (54) and (58) the following 

2 1 2 1 2

2 2 2

2
1 .

2 2z z z z zh h h h h

    
        (59) 

 

The discussion for 0x  is equivalent, 

therefore, we obtain 

2 2 1 2 1

2 2 2

2
1 .

2 2z z z z zh h h h h

    
      (60) 

 

Then for all real x , 

 

2 2 1 2 1

2 2 2 2

2 2

2
1

2 2

.
2 2 2 2

z z z z z z

z z z z

t

h h h h h h

t q t q

h h h h

     

 


     

    
      

   
 

The proof complete. 

 

5-Numerical Results  
Test 1:  
We first examine a diffusion problem in the 

cubic region with diffusion coefficients



Basrah Journal of Science (A)                                                          Vol.34 (1), 111- 127  , 2011 

 

122 

 

1a b d    and 0.c p q   . The 

exact solution of this test problem given by  
23( , , ) sin( )sin( )sin( ).tu x y z e x y z   

 

The initial and boundary condition are 

taken from this solution. We consider 

uniform grids with different mesh sizes and 

different regions and compare the accuracy 

of the computed solutions from the present 
exponential fourth order ADI scheme and 

fourth order ADI scheme of samir karaa . The 

quantity that we compare is the average 

absolute errors of the computed solution with 

respect to the exact solution. In Table 1, we 

show that, the new scheme has the same of 

accuracy compare with samir karaa scheme. 

This is because if 0c p q   ,  then the 

exponential forth order compact scheme has 

the same formula with forth order compact 

scheme 

Test 2:  

Also, we use another test problem which 

has the analytic solution given by 

( , , ) ,x y z tu x y z e     

with coefficient 2, 1a b d    and 

1.c p q    The boundary and the initial 

conditions are directly taken from this 

solution. In Fig. 1 we plot the average 

absolute errors at each point x y z   for  

1t  and (a) 0.1h  and region 
3

1,1 , (b)  

0.2h  and region 
3

2,2 ,(c) 0.3h   and 

region 
3

3,3 , (d) 0.4h   and region

 
3

4,4 , (e) 0.5h   and region 
3

5,5 , at 

0.001dt   .  
The figures show the superiority of the 

present exponential fourth order ADI scheme.  

In Table 2 we show that, the average 

absolute of the new scheme is less than from 

the Samir Karaa scheme 

 

 

 

5. Conclusions 

 

We have introduced a fourth order 

exponential compact ADI scheme with 

Crank-Nicholson technique for solving 

three-dimensional unsteady 

convection-diffusion equation. The 

unconditionally stability of new 

scheme is proved with respect to initial 

values. Our Numerical results showed 

that present scheme is computationally 

more efficient and more accurate than 

the fourth order scheme of samir karaa. 
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Table 1. Average absolute error at t = 1 computed by two different schemes. For test1.  
h  0.1  0.2  0.3  0.4  0.5  

region  [1,1] 
3

 [2,2] 
3

 [3,3] 
3

 [4,4] 
3

 [5,5] 
3

 

Δt=0.1  

Samir Karaa ADI 

method  3.89E-14  4.21E-14  4.47E-14  4.03E-14  1.97E-14  

Present ADI 

method  3.89E-14  4.21E-14  4.47E-14  4.03E-14  1.97E-14  

Δt =0.01  

Samir Karaa ADI 

method  1.09E-15  1.94E-16  3.83E-15  1.57E-14  2.85E-14  

Present ADI 

method  1.09E-15  1.94E-16  3.83E-15  1.57E-14  2.85E-14  

Δt =0.002  

Samir Karaa ADI 

method  1.82E-16  1.41E-15  5.23E-15  1.67E-14  2.97E-14  

Present ADI 

method  1.82E-16  1.41E-15  5.23E-15  1.67E-14  2.97E-14  

Δt =0.001  

Samir Karaa ADI 

method  6.55E-16  1.90E-15  5.36E-15  1.63E-14  2.93E-14  

Present ADI 

method  6.55E-16  1.90E-15  5.36E-15  1.63E-14  2.93E-14  

 

 
Table 2. Average absolute error at t = 1 computed by two different schemes. For test 2 .  
h  0.1  0.2  0.3  0.4  0.5  

region  [1,1] 
3

 [2,2] 
3

 [3,3] 
3

 [4,4] 
3

 [5,5] 
3

 

Δt =0.1  

Samir Karaa ADI method  1.77E-04  4.10E-03  5.28E-02  6.24E-01  7.8580891  

Present ADI method  1.77E-04  4.07E-03  5.11E-02  5.64E-01  6.2207654  

Δt =0.01  

Samir Karaa ADI method  2.18E-06  6.95E-05  2.27E-03  6.69E-02  1.7197148  

Present ADI method  2.09E-06  4.17E-05  5.18E-04  5.85E-03  6.99E-02  

Δt =0.002  

Samir Karaa ADI method  1.71E-07  2.95E-05  1.77E-03  6.15E-02  1.659899  

Present ADI method  8.39E-08  1.69E-06  2.35E-05  4.05E-04  9.98E-03  

Δt =0.001  

Samir Karaa ADI method  1.08E-07  2.83E-05  1.76E-03  6.13E-02  1.6580297  

Present ADI method  2.10E-08  4.37E-07  8.04E-06  2.35E-04  8.11E-03  
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FIG.1. Comparison of average absolute error at t = 1 of the present scheme with Samir Karaa scheme 

at dt = 0.001. (a) h= 0.1, (b)h= 0.2, (c) h= 0.3, (d) h=0.4, (e) h= 0.5. 
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 الأسلىب الأسي الضوني الوضغىط )الوتناوب الأتجاه( هن الزتبت الزابعت

 لحل هعادلاث الأنتقال والأنتشار ثلاثيت البعذ 

 

 شذي أحوذ ههذي

 

جاهعت البصزة–كليت العلىم -قسن الزياضياث  

 

 
 

 الخلاصت

 

)يتُاوب الأتجاِ( يٍ انزتثح , تى أشتقاق أسهىب انفزوقاخ انًحذدج الأسيح انضًُيح انًضغىطح في هذا انثحث

نحم يعادنح الأَتقال والأَتشار ثلاثيح انثعذ يع انًعايلاخ انثاتتح وانًعتًذج عهى انزيٍ. هذا الأسهىب  انزاتعح

يٍ انزتثح انثاَيح تانُسثح نهزيٍ وانزتثح انزاتعح نهحيز. وقذ تى حم انصيغح تأستخذاو طزيقح عذديح كفؤج تقاتم 

ر. انذقح وانكفاءج نهذا الأسهىب تى يُاقشتها. أثثتُا أٌ هذا الأسهىب نزتة عهيا تكىٌ حم َظاو ثلاثي الاقطا

انُتائج انعذديح تى  استقزاريتها غيز يقيذج وغيز يشزوطح تانُسثح نهقيى الأتتذائيح تأستخذاو تحهيم فىريز.

عح وانًقذو يٍ قثم  عزضها ويقارَتها يع الأسهىب الأسي انًضغىط )انًتُاوب الأتجاِ( يٍ انزتثح انزات

.Karra  


