Study on post-partum uterine involution by Ultrasonography and progesterone profile in local goats in Iraq

Souhavla O Hussain¹, Khawla A Hussain² and Ahmed A. Al-Ani³

^{1,2} Department of Surgery and Obstetrics, College of Veterinary Medicine, Baghdad University, ³State Board of Agriculture Research /Ministry of Agriculture, Iraq.

E-mail: dr.khawla2000@yahoo.com

Acceptance: 2/7/2015

Summary

The study was conducted to investigate and characteriz the time of uterine involution in local goats in Iraq by measuring the uterine diameter, uterine lumen (mm) and monitoring early postpartum ovarian activity as proved by Ultrasonography and progesterone assessment in local goats. 15 goats were submitted to examine from day 3 to 40 after kidding by Ultrasonography. Trans abdominal ultrasound approach was performed from day 3 to 5 after kidding and continued by trans rectal approach to follow up the uterine involution until day 40. Progesterone levels were measured starting from day of parturition, then a weekly measure until day 34 of post-partum period. Progesterone was assayed by Radio immune assay. The obtained results showed that complete of uterine involution started at day 26 (6.67) % and completed at day 34 post-partum in all does (100%). on the other hand involution of the uterus was completed at day 26, 27, 28, 29, 31, 33 after parturition with a percentage of 6.67%, 13.34%, 33.34%, 40%, 46.67%, 66.67%, 73.34% and 80% respectively. Average uterine lumen (mm) from days 3-7, 8-14, 15-21, 22-28, 29-35 and 36-40 were 9.02, 5.82, 5.14, 3.51, 2.66, and 2.0 (mm) respectively. Average uterine diameter (mm) was 40.25, 33.9, 31.4, 25.57, 20.15 and 16.35 at day 3-7, 8-14, 15-28, 29-35 and 36-40 respectively. Regarding progesterone profile, results indicated that the mean value of the hormone was 0.267±0.005 ng /ml at parturition and the values were 0.320±0.007, 0.414±00.5, 0.536 ±0.013, and 1.945 ±0.129 ng/ ml at day 7, 14, 21 and day 30, respectively. It could be concluded that Ultrasonography image proved to be a valuable and safe tool in monitoring uterine involution and measuring of progesterone is a precise biological marker for the detection of resumption of ovarian cyclist during post-partum period.

Keywords: Local goat, Post-partum, Uterine involution, Ultrasonography, Progesterone.

Introduction

Uterine involution in small ruminant is defined as the day when the diameter of the uterus returned to the original non-pregnant size as observed during the normal estrous cycle (1). Uterine involution in goats and sheep is characterized by rapid decrease of uterine size and increase contraction rates, most commonly between the 3rd and the 10th days postpartum, illustrated by measurements of uterine weight and length and reduction in the size of the uterus after parturition is the greatest change occurring during the first few days after parturition (2) several researcher reported that uterine involution in goats was completed by the 16th days postpartum found at slaughterhouse materials (3), at19th (4 and 5) or at the 28^{th} (6). The post-partum period included of a sequence of anatomic and physiologic -changes of both the uterus and endocrine system, and it is an important factor

greatest change occurring during the first few parturition days after (7). Post-partum morphological changes and their delay in the post-partum uterus and ovaries of farm animals act as a limiting factor for the reproductive performance following parturition (8). Other techniques used for monitoring uterine involution in goats and sheep were assay of hormones and their metabolites (9 and 10), Ultrasonography is plays considered an excellent tool differentiate the normal and abnormal postpartum uterus and in early diagnosis of any abnormal condition related to uterus (11). Ending of uterine involution and resumption of sexual activity following parturition in goats and sheep normally depend on several factors, such as nutrition, nursing of offspring and

to

for the resumption of reproductive activity and regular cycling of a breeding. Reduction in the

size of the uterus after parturition is the

2016

season of parturition (12 and 13) There are many researches shown different intervals to complete uterine involution in goats. (14) Revealed complete macroscopic uterine involution at day 19 Post-partum, (15)reported that complete uterine involution occurred at day 28 Post-partum additionally, histochemical study of Caprine endometrium indicated complete regression of endometrial and re-epithelialization by day 16 Post-partum (16). With these discrepancies about the period necessary for complete uterine involution, decreasing logarithmic measurement, the greatest change occurring during the first few days after parturition and with rapid shrinkage and contraction of the uterus, particularly during the day 3 to day 10 postpartum, as determined by measurements of uterine horn (2).

Materials and Methods

This study was carried out in a state board-Agriculture Researches, for Ruminant Researches Station -Ministry of Agriculture 25Km north west of Baghdad (Agurgof). Fifth ten (15) local Iraqi Does aged (2-5 years) with an average body weight of (40-45kg). They were housed in semi opened shade .Regarding the nutritional regime, the animals kept on the same regime used in the station. Early grazing for about 4 hrs as well providing with green food, and concentrated diet daily at average of 500 gram besides they supplemented with minerals and water ad libidum. The animals were submitted to careful clinical examination to determine that they are healthy and free from diseases. Trans-abdominal Examination by Ultrasonography were performed on all does starting from day 3to 5 to measure the diameter of the involuted uterine horn, using a real-time B-mode ultrasound scanner with a linear-array transducer (5MH), (HONDIA HS-2000 /200V, Japan) and sector probe (7.5) MHZ. HONDIA HS-2000 /200VChina. After that all does examined transracially by lineararray transducer (7.5 MHZ) ALOKA Co. Ltd., USA starting from day 5 up today 40 postpartum. The does were examined transrectally in standing position after evacuation from feces. The rectal probe was made inflexible by an extension rod and gently introduced into the rectum. After applying sufficient amount of gel, and moved medially and laterally to get

.

the best image of the specific uterus, and the maximum diameter of the uterine horn was recorded. Uterine involution was considered to be complete when no additional decrease in uterine diameter for sequences the of examinations was recorded (17). Blood was collected from the jugular vein by Vacationer gel tubes. The blood samples were collected during the time of parturition for determination of progesterone level, then during post-partum period by weekly collection until the day 35 of post-partum, Progesterone hormone was measured by radioimmuno assay (RIA) (kit IMk -458 china).

Results and Discussion

The Ultrasonography examination on the day 3-5 postpartum using the transabdominal approach, showed uterine lumen and wall clearly. There are only few reports on the promising of ultrasound imaging for post-parturient monitoring of uterine involution in sheep and goats (17-19) most studies on the post-partum period events were preformed grossly on slaughter house and examinations of experimental animals (20). The Present study showed rapid decline in the mean Uterine lumen (mm) 9.02, 5.82, 5.14, 3.51. 2.66and 2 mm, from days 3-7, 8-14, 15-21, 22-28, 29-35 and 36-40, respectively. (Table, 2). The result also depicted the mean of uterine diameter are 40.25, 33.9, 31.4, 25.57, 20.15 and 16.35 mm at days 3-7, 8-14, 15-21, 22-28, 29-35 and 36-40, respectively (Table, 3). Results in (Table, 3) showed that complete involution in the local Iraqi goats started in this study at day 26 postpartum (6.67%) and uterine involution in all does (100%) completed at day 34 and 80% at day 33 postpartum. This result disagreement with others reported uterine regression is completed about 17 to 19 days after parturition (5 and 6). The variations in the time required for a complete uterine involution may result from breed differences, nutrition, and period of kidding and suckling. The uterine lumen declined gradually from day 3 until day 34 postpartum (Fig. 1) and accumulation of uterine fluid (lochia) was noted during first week post-partum (Fig. 2) and decreased gradually during the successive examinations.

The end of the uterine involution was characterized by a rapid shrinkage and contraction of the uterus, particularly during the day 3 to day 10 postpartum, The end of the uterine involution was characterized by small uterine diameter, uterine lumen and no further reduction of Uterine diameter for two consecutive examinations and also absence of fluid in the uterine lumen (Fig. 3-7). Regarding progesterone profile during postpartum period in goat, results of the present study (Table. 4) and (Fig. 8) showed low progesterone level was observed at the time of parturition and the mean value was (0.267 ± 0.005) ng/ml and that is true since the event of parturition in goat is triggering by lyses of the corpus luteum and lowering of progesterone level an event followed the activation of hypothalamic -pituitary -adrenal axis resulting in establishment of estrogen synthesis and lowering of progesterone level (21). Progesterone values during the studied period of post-partum at day 7, 14, and 21 were at basal levels 0, 320, 0, 414 and 0, 536 ng /ml respectively on other hand, there is an increase in the Basel level of progesterone with the resumption of post-partum ovarian cyclisty and increase after first ovulation at day 30 post -partum (1.994 ng /ml) this result is general agreement with (22) .The uterine lumen declined gradually from day 3 until day 34 postpartum (Fig. 1) and accumulation of uterine fluid (lochia) was noted during first week of post-partum (Fig. 2) diameter for two consecutive examinations and also absence of fluid in the uterine lumen.

Table,	1:	The	percentage	of	uterine	involution	in
postpar	rtu	n per	iod in local g	goa	ts in Irac	q.	

Days after parturition	NO. of doe	% Uterine involution
26	1	6.67
27	1	13.34
28	3	33.34
29	1	40
30	1	46.67
31	3	66.67
32	1	73.34
33	1	80
34	3	100

Tabla	2. Maan	utorino	lumon	(mm)	in	nostnartum	noriod	in L	ഹച	goats in	Iraa
I able,	2: Mean	uterme	Iumen	(IIIII)	111	postpartum	periou	111 19	ocar	goais m	пац.

Days Post-partum	3-7 Days	8-14 Days	15-21 Days	22-28 Days	29-35 Days	36- 40 Days
No. of scan	24	47	55	40	58	17
Mean Uterine lume (mm)	9 .02 mm	5.82 mm	5.14 mm	3.51 mm	2.66 mm	2 mm

Table, 3: Mean Uterine Diameter (mm) in postpartum period in local goats in Iraq.										
Days (Postpartum)	At days 3-7	At days 8-14	At days 15-21	At days 22-28	At days 29-35	At days 36-40				
Moon Utorino Diomotor	24	47	55	40	58	17				
(mm)	40.25	33.9	31.4	25.57	20.15	16.35				
SE	±0.472	±0.347	±0.325	±0.374	±0.314	±0.55				

			-		-			_	-			
Tabla	1	Concentration	of nu	ogostopopo	hormono	D/ ;	n difforant	dovo	of	nort i	nontum	nomind
таше.	4.	Concentration	ог ог	ogester one	погшоне	-F4I	п ангеген	uavs	OI	DOSL-1	Dartum	Deriou.

	At partum	At day 7	At day 14	At day 21	At day 30
P4 (ng/ml)	0.267 ± 0.005 c	0.320 ± 0.007 bc	0.414 ± 0.005 bc	0.536 ± 0.013 b	1.945 ± 0.129 a
LSD value		*	0.249 *		

The values represented the mean \pm SE, Different letters means significant differences at the level (P<0.05).

I could be concluded that ultrasonography image proved to be a valuable and safe tool in monitoring uterine involution and measuring

of progesterone is precise biological marker for detection of resumption of ovarian cyclisty during post-partum period.

45 40 - UD 35 UL N 30 25 20 15 10 5 0 8-14 15-21 22-28 29-35 36-40 3-7 8-14. 15.21. 22-28. 29-35. 36-40. 3-7. Days

Figure, 1: Uterine diameter and uterine lumen (mm) during different days post-partum period.

Figure, 2: Ultrasonic image of uterine diameter (40.11 mm), and Uterine lumen (9.6mm) with lochia at days 3 post-partum (arrow) in scanned doe.

Figure, 3: Ultrasonography image of uterine diameter and uterine lumen at day 7 of post-partum period.

Figure, 4: Ultrasonic image at days 15 days of postpartum uterine diameter (30.47 mm), and uterine lumen (5.14 mm) arrows in scanned doe.

Figure, 5: Uterine involution in doe at day 21 post-partum, with presence of lochia.

Figure, 6: Ultrasonic image of uterine diameter (26.70 mm) days 28 post-partum period arrows in scanned doe.

Figure, 7: Ultrasonic image at days 35 post-partum uterine diameter (19.93) mm, and uterine lumen (2.51mm) arrows in scanned doe.

Figure, 8: Concentration of progesterone hormone -P4 in different days of postpartum period.

2016

- Takayama, H.; Tanaka, T. and Kamomae, H. (2010). Postpartum ovarian activity and uterine involution in non-seasonal Shiba goats, with or without nursing. Small Rumin. Res., 88: 62–66.
- Noakes, D. (2009). The puerperium. In: Noakes, D. E., Parkinson, T. J., England, G.C.W. (Eds.), Veterinary reproduction and obstetrics, ninth edition. Philadelphia, W.B. Saunders, Pp: 194-205.
- **3.** Zdunczyk, S.; Milewski, S.; Baranski, W.; Janowski, T.; Szczepanski, W.; Jurczak, A.; Ras, A. and Lesnik, M. (2004). Postpartum uterine involution in primiparous and pluriparous polish longwool sheep monitored by ultrasonography. Bull. Vet. Inst. Pulawy 48: 255-257.
- **4.** Yeager, A. E.; Concannon, P. W. (1990). Serial ultrasonographic appearance of postpartum uterine involution in Beagle dogs. Theriogenology. 34: 523-535.
- Degefa, T.; Ababneh, M. M.; Moustafa, M. F. (20060. Uterine involution in the post-partum Balady goat. Veterinarski Archiv. 76(2): 119-133.
- Rubianes, E.; Ungerfeld, R.; Vinoles, C.; Carbajal, B.; de Castro, T.; Ibarra, D. (1996). Uterine involution time and ovarian activity in weaned and suckling ewes. Can. J. Anim. Sci., 76: 153-155.
- Noakes, D. E.; Parkinson, T. J. and England, G.C.W. (2009). Veterinary Reproduction and Obstetrics. 9th Ed., WB Saunders Elsevier; Pp: 194-202.
- 8. Greyling, J. P. C. (2000). Reproduction traits in the Boar goat doe. Small Rumin. Res., 36: 171-177.
- **9.** Degefa, T. (2003). Postpartum uterine involution in goat in Jordan. Masters Thesis, Jordan University of Science and Technology, Irbid, Jordan.
- **10.** Ishwar, A. K. (1995). Pregnancy diagnosis in sheep and goats: a review. Small Rumin. Res., 17: 37-44.
- Feldman, E. C. and Nelson, R.W. (1996). Canine and Feline Endocrinology and Reproduction, 2nd ed. WB Saunders Company, Toronto, Pp: 785. ISBN 0-7216-3634-9.

- Van Wyk, L.C.; van Niekerk, C. H.; Belonje, P. C. (1972). Involution of the postpartum uterus of the sheep. J. South Afr. Vet. Ass., 43: 19-26.
- Khanum, S. A.; Hussain, M. and Kausar, R. (2008). Progesterone and estradiol profiles during estrous cycle and gestation in Dwarf goat (Capra Hircus). Pakistan Vet. J. 28: 1-4.
- Baru, P.; Khar, S. K.; Gupta, R. C.; Luthra, R. A. (1983). Uterine involution in goats, agricultural practice. Vet. Med. Small Anim. Clinician., 11: 1773-1776.
- **15.** Greyling, J. P. C.; van Niekerk, C. H. (1991). Macroscopic uterine involution in the postpartum Boar goat. Small Rumin. Res., 4: 277-283.
- Sanchez, M. A.; Garcia, P.; Menendez, S.; Sanchez, B.; Gonzalez, M.; Flores, J. M. (2002). Fibroblastic growth factor receptor (FGF-R) expression during uterine involution in goat. Anim. Reprod. Sci., 69: 25-35.
- **17.** Tielgy, A. H.; Fathalla, M.; Omar, M. A.; Al-Dahash, S. (1982). The clinical and morphological characteristics of the uterus of the goat during the period of involution. Can. Vet. J., 23: 138-140.
- Ababneh, M. M.; Degefa, T. (2005). Ultrasonic assessment of puerperal uterine involution in B\walady goats. J. Vet. Med., 52: 244-248.
- **19.** Hauser, B. and Bostedt, H. (2002). Ultrasonographic observations of the uterine regression in the ewe under different obstetrical conditions. J. Vet. Med. Series A, 49: 511-516.
- **20.** Vinoles, C.; Meikle, A. and Forsberg, M. (2004). Accuracy of evaluation of ovarian structures by transrectal ultrasonography in ewes. Anim. Reprod. Sci., 80: 69-79.
- Gordon, I. (1997). Controlled Reproduction in Sheep and Goats: Controlled Reproduction in Farm Animals Series, Vol. 2, 1st ed., CAB International. United Kingdom, Pp: 398-415.
- 22. Delgadillo, J. A.; Flores, J. A.; Villareal, M. J.; Hoyos, G.; Chemineau, P. and Malpaux, B. (1998). Length of postpartum anestrous in goats in subtropical Mexico: effect of season of parturition and duration of nursing. Theriogenology. 49: 1209-1218.

دراسة الارتداد الرحمي بعد الولادة بوساطة جهاز الموجات فوق الصوتية ومستوى هورمون الراسة الارتداد الرحمي بعد الولادة بوساطة الموجات الموجات في العراق

سهيله أونيس حسين 1 و خوله عباس حسين 2 و احمد علاء الدين طه 3

^{1، 2} فرع الجراحة والتوليد، كلية الطب البيطري، جامعة بغداد، ³ دائرة البحوث الزراعية، وزارة الزراعة، العراق.

E-mail: dr.khawla2000@yahoo.com

الخلاصة

أجريت الدراسة لمعرفة الوقت اللازم لارتداد الرحم في الماعز المحلي بوساطة قياس قطر الرحم والتجويف الرحمي بالمليمتر بوساطة جهاز الموجات فوق الصوتية من اليوم الثالث إلى اليوم 40 بعد الولادة ومتابعة النشاط المبيضي بعد الولادة بواسطة قياس مستوى البروجستيرون في يوم الولادة ثم أسبوعيا لغاية اليوم 30 بعد الولادة. اشتملت الدراسة على 15 معزى خضعت للفحص عن طريق البطن بواسطة جهاز الموجات فوق الصوتية من اليوم الثالث إلى اليوم الخامس بعد الولادة ثم استمر الفحص عن طريق المستقيم لحين اكتمال الارتداد الرحمي. أظهرت نتائج الفحص بوساطة جهاز الموجات فوق الصوتية وبينت اكتمال الارتداد الرحمي بدأ من اليوم 26 وبنسبة 7%. 66 في جميع حيوانات الدراسة بنسبة 100% في اليوم 35 بعد الولادة. أشارت النتائج إلى أنّ تركيز البروجستيرون في يوم الولادة بلغ 20.00±0.200 و 0.00±0.00% في اليوم 35 بعد الولادة. أشارت النتائج إلى و1.012 لنوغرام/مل في الولادة بلغ 20.00±0.200 و 0.00±0.00% وي اليوم 35 بعد الولادة. أشارت النتائج إلى و1.012 لناوغرام/مل في الولادة بلغ 20.00±0.00% و 0.00±0.00% و 1.00±0.00% و 1.00±0.00% و1.012 بناوغرام/مل في الايام 7 و14 و21 و30 على التوالي. نستنتج من الدراسة المكانية متابعة الارتداد الرحمي بدهاز و1.029 ناوق الصوتيه وقياس مستوى البروجستيرون في مدة ما بعد الولادة واكتمال ألارتداد الرحمي بدهاز واعتبار الارتداد الرحمي مكتملاً اعتماداً على بقاء قياس قطر الرحم ثابتاً لعدة قياسات وإن قياس مستوى البروجستيرون يعتبر من واعتبار الارتداد الرحمي مكتملاً اعتماداً على بقاء قياس قطر الرحم ثابتاً لعدة قياسات وإن قياس مستوى البروجستيرون يعتبر من

الكلمات المفتاحية: الماعز المحلى، مدة بعد الولادة، الارتداد الرحمى، جهاز الموجات فوق الصوتية، البروجسترون.