When n is an Odd Number

Bassim Kareem Mihsin General Directorate of Education in Karbala bassimKareem3@gmail.com

Abstract

The group of all Z-valuedgeneralized characters of G over the group of induced unit characters from all cyclic subgroups of G, $AC(G)=\overline{R}$ (G)/T(G) forms a finite abelian group, called ArtinCokernel of G. The problem of finding the cyclic decomposition of Artincokernel $AC(D_n \times C_5)$ has been considered in this paper when n is an odd number , we find that if $n=p_1^{\alpha_1}.p_2^{\alpha_2}...p_m^{\alpha_m}$, where $p_1,p_2,...,p_m$ are distinct primes and not equal to 2, then :

$$AC(D_n \times C_5) = \bigoplus_{i=1}^{2} AC(D_n) \bigoplus_{C_2} C_2$$

And we give the general form of Artin's characters table ${\rm Ar}(D_n \times C_5)$ when n is an odd number .

Introduction

For a finite group G the finite abelain factor group R(G)/T(G) is called Artincokernel of G and denoted by AC(G) where $\overline{R}(G)$ denotes the abelian group generated by Z-valued characters of G under the operation of pointwise addition and T(G) is anormal subgroup of $\overline{R}(G)$ which is generated by Artin'scharacters. Permutation characters induce from the principle characters of cyclic Subgroups . A well-known theorem which is due to Artinasserated that T(G) has a finite index is , i.e [:T(G)] is finite .

The exponent of AC(G) is called Artin exponent of G and denoted by A (G).

In 1968 , Lam . T .Y [5] gave the definition of the group AC(G) and the studied $AC(C_n)$.In 1976 , David .G [12] studied A(G) of arbitrary characters of cyclic subgroups. In 1996 , Knwabuez .K [11] studied A(G) of p-groups .

In 2000,H.R.Yassein [4] found AC(G) for the group $\bigoplus_{i=1}^{n} C_p$. In 2002, k.Sekieguchi [12] studied the irreducible Artin characters of p-group and in the Same year H.H.Abbass [10] found \equiv *(Dn).

In 2006, Abid . A .S [6] foundAr(C_n) when C_n is the cyclic group of order n . In 2007, Mirza .R .N [9] found in herthesis Artincokernel of the dihedral group

In this paper we find the general form of ${\rm Ar}(D_n \times C_5)$ and we study ${\rm AC}(D_n \times C_5)$ of the non abelian group $D_n \times C_5$ when n is an odd number .

1. Basic Concepts and Notations:

In this section, we recall some basic concepts, about matrix representation, characters and Artin character which will be used in later section.

Definition (1.1): [1]

A matrix representation of a group G is homomorphism T of G into GL (n, F), n is called the degree of matrix representation T .T is called a unit representation(principal) if T(g)=1, for all $g \in G$.

Definition (1.2):[2]

Let T be a matrix representation of a group G over the field F, the character χ of a matrix representation T is the mapping χ : G \to F defined by χ (g)=Tr(T(g)) refers to the trace of the matrix T(g)(the sum of the elements diagonal of T(g)). The degree of T is called the degree of χ .

Definition (1.3):[3]

Let H be acyclic subgroup of G and let ϕ be a class function on H. The induced class function on G is given by :

$$\phi'(g) = \frac{1}{|H|} \sum_{x \in G} \phi^{\circ}(xgx^{-1}) \quad , \forall g \in G$$

Where \emptyset is defined by :

$$\phi^{\circ}(h) = \begin{cases} \phi(h) & \text{if } h \in H \\ 0 & \text{if } h \notin H \end{cases}$$

Theorem (1.4):[4]

Let H be acyclic subgroup of Gand $h_1, h_2, ..., h_m$ are chosen representatives for Γ -conjugate classes, Then:

1-
$$\phi'(g) = \frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^m \phi(h_i)$$
 if $h_i \in H \cap CL(g)$

$$2-\phi'(g)=0$$
 if $H\cap CL(g)=\phi$

Definition (1.5):[5]

Let G be a finite group, all characters of G induced from the principal character of cyclic subgroups of G is called Artin characters of G.

Definition (1.6):[4]

Artin characters of the finite group can be displayed in a table called Artin characters table of Gwhich is denoted by Ar(G).

Proposition (1.7):[6]

The number of all distinct Artin characters on a group G is equal to the number of $\ \Gamma$ -classes on G.

Definition (1.8):[1]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in G$.

Definition (1.9):[6]

Let T(G) be the subgroup of $\overline{R}(G)$ generated by Artin characters.

T(G) is a normal subgroup of $\overline{R}(G)$. Then the factor abelian group $\overline{R}(G)/T(G)$ is called Artincokernel of G, denoted by AC(G).

Proposition (1.10):[6]

AC(G) is a finitely generated Z – module

Theorem [Artin] (1.11):[7]

Every rational valued character of G can be written as a linear combination of Artin characters with rational coefficient.

2. The Factor Group AC(G):

In this section, we use some concepts in linear Algebra to study the factor group AC(G). We will give the general form of Ar $(D_n \times C_5)$ when n is an odd number . We shall study Ac(G) dihedral group D_n and $\equiv^* (D_n)$ when n is an odd number.

Definition (2.1):[5]

Let T(G) be the subgroup of $\overline{R}(G)$ generated by Artin characters.

T(G) is a normal subgroup of $\overline{R}(G)$, then the factor abelian group $\overline{R}(G)/T(G)$ is called Artincokernel of G, denoted by AC(G).

Definition (2.2): [8]

Ak-th determinant divisor of M is the greatest common divisor (g.c.d)of all the k- minors of M.This is denoted by $D_k(M)$.

Lemma (2.3)

Let M, P and W be matrices with entries in the principal idealdomain R and p, W be invertible matrices, then:

 $D_k(P \cdot M \cdot W) = D_k(M)$ Modulo the group of units of R.

Theorem (2.4):[8]

Let M be an $k \times k$ matrix with entries in a principal ideal domain R , then there exits matrices P and W such that :

1 - P and W are invertible .2 - P M W = D .3 - D is a diagonal matrix .

4 -If we denote Djj by d, then there exists a natural number m; $0 \le m \le k$

such that j > m implies $d_j = 0$ and $j \le m$ implies $d_j \ne 0$ and $1 \le j \le m$

implies $d_i \mid d_{i-1}$.

Definition (2.5):[8]

Let M be matrix with entries in a principal ideal domain R, equivalent to matrix D = diag $\{d_1, d_2, \ldots, d_m, 0, 0, \ldots, 0\}$ such that $d_j \mid d_{j-1}$ for $1 \le j < m$, we

call D the invariant factor matrix of M and d_1, d_2, \ldots, d_m theinvariant factors of M.

Remark(2.6):

According to the Artin theorem (1.12) there exists an invertible matrix $M^{-1}(G)$ with entries in the set of rational numbers such that :

$$\stackrel{*}{\equiv}$$
 (G) = M⁻¹ (G) .Ar (G) and this implies,

$$M(G) = Ar(G) \cdot (\equiv (G))^{-1}$$

M(G) is the matrix expressing the T(G) basis in terms of the R(G) basis.

By theorem (2.5) there exists two matrices P(G) and W(G) with a determinant ∓ 1 such that :

$$P(G). M(G).W(G) = diag \{ d_1, d_2, ..., d_l \} = D(G)$$

where $d_i = -D_i(G) \mid D_{i-1}(G)$ and I is the number of Γ-classes.

Theorem (2.7):[4]

AC(G) = $\bigoplus_{i=1}^{m}$ z where $d_i = \stackrel{+}{-}D_i(G) \mid D_{i-1}(G)$ where m is the number of all distinct \square -classes.

Theorem(2.8):[9]

If n is an odd number such that $n=p_1^{\alpha 1}\cdot p_2^{\alpha 2}\cdot \cdots \cdot p_m^{\alpha_m}$, where $p_1,p_2,\cdots \cdot p_m$ are distinct primes, then:

$$(\alpha_1+1)\cdot(\alpha_2+1)\cdot\cdot\cdot(\alpha_m+1)-1$$

$$\bigoplus_{i=1} C_2$$

Proposition (2.9): [8]

The rational valued characters table of the cyclic group C_{p^*} of the ranks+1 where p is a prime number which is denoted by $(\equiv^* (C_{p^*}))$, is given as follows:

Γ- classes	[1]	[r p ^{s-1}]	[r ^{ps-2}]	[r p ^{s-3}		$[\mathbf{r}^{p^2}]$	$[\mathbf{r}^p]$	[r]
θ_{1}	$p^{s-1}(p-1)$	- p ^{s-1}	0	0		0	0	0
θ_{2}	$p^{s-2}(p-1)$	$p^{s-2}(p-1)$	- p ^{s-2}	0		0	0	0
θ_3	p s-3 (p-	p s-3 (p-	p s-3 (p-	- p s-3		0	0	0
	1)	1)	1)					
÷	:	:	:	:	i	:	:	÷
θ_{s-1}	p(p-1)	p(p-1)	p(p-1)	p(p-1)	•••	p(p- 1)	-p	0
θς	p-1	p-1	p-1	p-1		p-1	p-1	-1
θ_{s+1}	1	1	1	1	•••	1	1	1

Table (2.1)

where its rank s+1 represents the number of all distinct Γ -classes.

Remark (2.10):[8]

If $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ where p^1 , p^2 , ..., p^m , are distinct primes, then:

$$\equiv^*(C_n) = \equiv^*(C_{p_1^{\alpha 1}}) \otimes \equiv^*(C_{p_2^{\alpha 2}}) \otimes \ldots \otimes \equiv^*(C_{p_m^{\alpha m}}).$$

Definition (2.11):[7]

The dihedral group D_n is a certain non- abelian group of order2n .It is usually thought of as a group of transformations of the Euclidean plane of regular n-polygon consisting of rotations (about the origin) with the angle $2k\pi/n$, k=0,1,2,...,n-1 and reflections (across lines through the origin).In generalwe can write it as: $D_n=\{S^j r^k: 0\}$

$$\leq k \leq n-1, 0 \leq j \leq 1$$

which has the following properties:

$$r^{n}=1$$
, $S^{2}=1$, $Sr^{k}S^{-1}=r^{-k}$

Definition (2.12):

The group $D_n \times C_5$ is the direct product group $D_n \times C_5$, where C_5 is a cyclic group of order 5 consisting of elements $\{1,_{r'},_{r2'},_{r3'},_{r4'}\}$ with $(r')^5=1$. It is of order 10n

Theorem(2.13):[10]

The rational valued characters table of D_n when n is an odd number is given as follows:

		Γ -classes of C_n							[S]	
	θ_1				=*	(C_n)			0	
$\equiv^* (D_n) =$	i		- (C _n)							
- (D _n)-	Θ_{S-1}	1		1	1		1	1	0	
	θ_S								1	
	Θ_{S+1}		1	1	1		1	1	-1	

Table (2.2)

Where S is the number of Γ -classes of C_n .

Theorem(2.14):

The rational valued characters table of the group $D_n \times C_5$ when n is an odd number is given as follows:

$$\equiv^* (D_n \times C_5) = \equiv^* (D_n) \otimes \equiv^* (C_5)$$

Theorem (2.15):[6]

The general form of Artin characters table of C_{p^s} when p is a prime number and s is positive integer is given by the lower Triangluer matrix

	Γ-classes	[1]	$\left[r^{p^{s-1}}\right]$	$\left[r^{p^{s-2}}\right]$	$\left[r^{p^{s-3}}\right]$	•••	$\begin{bmatrix} r \end{bmatrix}$
	$ CL_{\alpha} $	1	1	1	1	•••	1
	$\left C_{p^s}(CL_{\alpha})\right $	p s	p s	p s	p s	:	p s
	$arphi_1'$	p s	0	0	0		0
$Ar(C p^s)=$	$arphi_2'$	s-1	p s-1	0	0		0
	$arphi_3'$	p^{s-2}	p ^{s-2}	p ^{s-2}	0	•••	0
	1					:	;
	φ_s'	P	P	p	P	:	0
	φ'_{s+1}	1	1	1	1	•••	1

Table (2.3)

Corollary (2.16):[4]

Let n any positive integers and $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \cdots \cdot p_m^{\alpha_m}$ where p_1 , p_2 , \cdots , p_m are distinct primes, then:

$$Ar(C_n) = Ar(C_{P_1^{\alpha_1}}) \otimes Ar(C_{P_2^{\alpha_2}}) \otimes \cdots \otimes Ar(C_{P_m^{\alpha_m}})$$

Where \otimes is the tensor product.

Proposition (2.17):[6]

If p is a prime number and s is a positive integer, then M(Cp) is an upper triangular matrix with unite entries.

$$M(C_{p^{s}}) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

which is $(s+1)\times(s+1)$ square matrix

Proposition (2.18):[2]

The general form of matrices $P(C_{p^s})$ and $W(C_{p^s})$ are:

$$P(C_{p^s}) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots \\ & & & \ddots & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

which is $(s+1)\times(s+1)$ square matrix and $W(C_{p^s})=I_{s+1}$ where I_{s+1} is an identity matrix and $D(Cp^s)=\mathrm{diag}\{1,1,\ldots,1\}$.

Remarks (2.19):

1- In general if $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_m^{\alpha_m}$ such that p_1, p_2, \dots, p_m are distinct primes and α_i any positive integers for all $i = 1, 2, \dots, m$; then:

$$\begin{split} &C_n \!\!=\!\! C_{p_1^{\alpha_1}} \! \times C_{p_2^{\alpha_2}} \! \times \ldots \times C_{p_m^{\alpha_m}} \,. \\ &M\left(C_n\right) \!=\!\! M\left(C_{p_1^{\alpha_1}}\right) \otimes M\left(C_{p_2^{\alpha_2}}\right) \otimes \ldots \otimes M\left(C_{p_m^{\alpha_m}}\right) . \end{split}$$

So, we can write $M(C_n)$ as:

$$M(C_{n}) = \begin{bmatrix} & & & & & & 1 \\ & R(C_{n}) & & & & \vdots \\ & & & & & 1 \\ & & & & & 1 \\ O & O & O & \dots & O & 1 \end{bmatrix}$$

Where $R(C_n)$ is the matrix obtained by omitting the last row $\{0,0,...,0,1\}$ and the last column $\{1,1,...,1\}$ from the tensor product,

$$M(C_{p_1^{\alpha_1}})\otimes M(C_{p_2^{\alpha_2}})\otimes \ldots \otimes M(C_{p_m^{\alpha_m}}). \ M(C_n) \ is,$$

$$(\alpha_1+1)(\alpha_2+1)...(\alpha_m+1) \times (\alpha_1+1)(\alpha_2+1)...(\alpha_m+1)$$
 square matrix.

2)
$$P(C_n) = P(C_{p_1^{\alpha_1}}) \otimes P(C_{p_2^{\alpha_2}}) \otimes ... \otimes P(C_{p_m^{\alpha_m}}).$$

3) W (C_n) = W(C_{$$p_1^{\alpha_1}$$}) \otimes W(C _{$p_2^{\alpha_2}$}) \otimes ... \otimes W (C _{$p_m^{\alpha_m}$}).

3. The Main Results

In this section we give the general form of Artin characters table of the group $D_n \times C_5$ and the cyclic decomposition of the factor group ${\rm AC}(D_n \times C_5)$ when n is an odd number .

Theorem(3.1):

The Artin characters table of the group $D_n \times \mathcal{C}_5$ when n is an odd number is given as follows :

$$Ar(D_n \times C_5) =$$

Γ-Classes	[1,1']	[1,r']	Γ -Classes of $C_n \times C_5$					[S,1]	[S,r']
$ CL_{\alpha} $	1	1	2	2			2	n	n
$ C_{D_n \times c_5} $	10n	10n	5n	5n			5n	10	10
$(CL_{\alpha}) $									
$\Phi_{(1,1)}$									0
$\Phi_{(1,2)}$	$_{2\mathrm{Ar}(\mathrm{C_n})} \bigotimes _{\mathrm{Ar}(\mathrm{C_5})}$:
:									:
$\Phi_{(l,1)}$									÷
$\Phi_{(l,2)}$								0	0
$\Phi_l l + 1,1)$	5n	0	0				0	5	0
$\Phi(l+1,2)$	5n	0	0				0	0	5

Table(3.1)

where l is the number of Γ -classes of C_n and $C_5 = \langle r' \rangle = \{ 1', r' \}$.

Proof:-By theorem(2.15)

$Ar\left(C_{5}\right) =$	Γ- classes	[1']	[r']
	$ig CL_lphaig $	1	1
	$ c_{5(CL_{lpha})} $	5	5
	$arphi_1'$	5	0
	$arphi_2'$	1	1

Table (3.2)

Each cyclic subgroup of the group $D_n \times C_5$ is either a cyclic subgroup of $C_n \times C_5$ or $(S, r') > \text{or}(S, l') > \text{.If H is a cyclic subgroup of } C_n \times C_5$, then :

 $H=H_i \times <1'>$ or $H_i \times < r'>= H_i \times C_5$ for all $1 \le i \le l$ where l is the number of Γ -classes of C_n

If
$$H=H_i\times<1'>$$
and $x\in D_n\times C_5$

If $x \notin H$ then by theorem(1.4)

$$\Phi_{(1,i)}(x)=0$$
 for all $0 \le i \le l$ [since $H \cap CL(x) = \emptyset$]

If $x \in H$ then either x = (1, 1') or $\exists S, 0 < S < n$ such that $x = (r^S, 1')$

If x=(1,1'), then:

$$\Phi_{(I,1)}(x) = \frac{\left|c_{D_{n \times_{C_5}}(X)}\right|}{\left|c_{H(X)}\right|} \cdot \varphi'(x) \quad [\text{since H} \cap CL(x) = \{(1,1')\}],$$

where φ is the principle character

$$= \frac{10n}{|H_{i}|. |\langle 1' \rangle|} \cdot 1 = \frac{10n}{|H_{i}|} = 2. \frac{n}{|H_{i}|} \cdot 1.5 = 2 \frac{|C_{C_{n}}(1)|}{|C_{H_{i}}(1)|} \cdot \varphi(1) \cdot \varphi'(1')$$
$$= 2 \cdot \varphi_{i}(1) \cdot \varphi'(1')$$

If $x = (r^s, 1')$ then

$$\Phi_{(i,1)}(x) = \frac{\left| c_{D_{n \times C_{5}}(X)} \right|}{\left| c_{H(X)} \right|} \cdot \sum_{1}^{2} \varphi' \left(x \right) \quad [\text{since } H \cap CL(x) = \left\{ \left(r^{s}, 1' \right), \left(r^{-s}, 1' \right) \right\}] \\
= \frac{5n}{\left| H_{i \times < 1' > } \right|} \cdot (1+1) \\
= \frac{5n}{\left| H_{i \times < 1' > } \right|} \cdot 2 = \frac{5n}{\left| H_{i} \right|} \cdot 2 \\
= 2 \cdot \frac{n}{\left| H_{i(r^{s})} \right|} \cdot 1.5 = 2 \frac{\left| C_{C_{n}}(r^{s}) \right|}{\left| C_{H_{i}}(r^{s}) \right|} \cdot \varphi(r^{s}) \cdot \varphi'(1') = 2 \cdot \varphi_{i} \left(r^{s} \right) \cdot \varphi'_{1}(1')$$

If
$$H=H_i \times \langle r' \rangle = H_i \times C_5$$

let
$$x \in D_n \times C_5$$

if $x \notin H$ then

$$\Phi_{(i,2)}(x)=0$$
 for all $1 \le i \le l$ [since $H \cap CL(x) = \emptyset$]

If $x \in H$ then either g = (1, 1') or x = (1, r') or $\exists S, 0 < S < n$ such that $x = (r^S, r')$

If x = (1, 1')

$$\Phi_{(i,2)} = \frac{\left|c_{D_{n \times c_{5(x)}}}\right|}{\left|c_{H(x)}\right|} \cdot \varphi(x) \quad [\text{si} r^s \text{nce } H \cap CL(x) = \{(1,1')\}]$$

$$= \frac{10n}{\left|H_{i \times c_{5}}\right|} = \frac{10n}{2|H_{i}|} = \frac{5n}{|H_{i}|} = 5 \frac{\left|c_{C_{n}}(1)\right|}{\left|c_{H_{i}}(1)\right|} \cdot \varphi(1) = 5 \cdot \varphi_{i}(1) \cdot \varphi_{2}'(1)$$
If $x = (1, r')$ then

$$\Phi_{(i,2)}(x) = \frac{\left|c_{D_{n \times c_{5(x)}}}\right|}{\left|c_{H(X)}\right|}. \ \varphi(x) \quad \text{[since } H \cap CL(x) = \{(1,r')\}]$$

$$= \frac{10n}{\left|H_{i \times C_{5}}\right|}$$

$$= \frac{10n}{2|H_{i}|} = \frac{5n}{|H_{i}|} = 5\frac{\left|c_{C_{n}}(1)\right|}{\left|c_{H_{i}}(1)\right|} = 5. \ \varphi_{i}(1). \ \varphi'_{2}(r')$$

If $x = (r^S, r')$ then

$$\Phi_{(i,2)}(x) = \frac{\left|c_{D_{n \times C_{5}}(x)}\right|}{\left|c_{H(x)}\right|} \cdot \sum_{1}^{2} \varphi' \left(x\right) \text{ [since } H \cap CL(x) = \left\{\left(r^{s}, r'\right), \left(r^{-s}, r'\right)\right\}\right]$$

$$= \frac{5n}{\left|H_{i \times C_{5}}\right|} (1+1) = \frac{10n}{2|H_{i}|} = \frac{5n}{|H_{i}|} = 2\frac{\left|c_{C_{n}}(r^{s})\right|}{\left|c_{H_{i}}(r^{s})\right|} \cdot \varphi(r^{s}) \cdot \varphi'_{2}(r') = 5 \cdot \varphi_{i}(r^{s}) \cdot \varphi'_{2}(r').$$

$$\varphi'_{2}(r').$$

If
$$H = \langle (S, 1') \rangle = \{ (1, 1'), (S, 1') \}$$
 then

$$\Phi_{(l+1,1)}((1,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(S,1')}\right|}. \ \varphi(x) = \frac{10n}{2} = 5n$$

$$\Phi_{(l+1,1)}((S,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(S,1')}\right|}. \ \varphi(x) \text{[since H } \cap \text{CL}((S,1')) = \{(S,1')\}$$

$$\{c_{H(S,1')}\} = \frac{10}{2} = 5$$

Otherwise

$$\Phi_{(l+1,1)}(x)=0$$
 for all $x \in D_n \times C_5$ [since $x \notin H$]

If
$$H=<(S,r')>=\{(1,1'),(S,r')\}$$

$$\Phi_{(l+1,2)}((1,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(1,1')}\right|} \cdot \varphi(1,1') \quad \text{[since } H \cap CL((1,1')) = \{(1,1')\}]$$

$$= \frac{10n}{2} \cdot 1 = 5n$$

$$\Phi_{(l+1,2)}((S,r')) = \frac{\left|c_{D_{n \times c_{5(S,r')}}}\right|}{\left|c_{H(S,r')}\right|} \cdot \varphi(S,r') = \frac{10}{2} \cdot 1 = 5$$

Otherwise $\Phi_{(l+1,2)}(x) = 0$ for all $x \in D_n \times C_5$ since $H \cap CL(x) = \emptyset$

Proposition (3.2):

If $n=p_1^{\alpha 1}\cdot p_2^{\alpha 2}\cdot \cdots \cdot p_m^{\alpha_m}$ where p_1 , p_2 , \cdots , p_m are distinct primes and $p_i\neq 2$ for all $1\leq i\leq m$ and α_i any positive integers, then:

$$M(D_{n \times C_5}) = \begin{bmatrix} 2R(C_n) \times M(C_5) & 1111 \\ 2R(C_n) \times M(C_5) & 1111 \\ 0 & 0 & \dots & 01111 \\ 0 & 0 & \dots & 01010 \\ 1 & 1 & \dots & 11100 \\ 1 & 1 & \dots & 11001 \end{bmatrix}$$

which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1] \times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]$ square matrix.

Proof:

By theorem(3.1) we obtain the Artin characters table $Ar(D_{n \times c_5})$ and from theorem(1.11) we find the rational valued characters table

$$\stackrel{*}{\equiv} (D_{n \times c_5}) \ .$$

Thus by the definition of M(G) we can find the matrix M($D_{n \times c_5}$):

$$= \begin{bmatrix} 2R(C_n) \otimes M(C_5) & 1 & 1 & 1 & 1 \\ 2R(C_n) \otimes M(C_5) & 1 & 1 & 1 & 1 \\ & \vdots & \vdots & \vdots & \vdots \\ & & & 1 & 0 & 1 & 0 \\ 0 & 0 & \dots & & & 0 & 1 & 1 & 1 \\ 0 & 0 & \dots & & & & 0 & 1 & 0 & 1 \\ 1 & 1 & & & & & & 1 & 1 & 0 & 0 \\ 1 & 1 & & & & & & & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots+1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots+1]$ square matrix.

Proposition (3.3):

If $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ such that g.c.d $(p_i, p_j) = 1$ and $p_i \neq 2$ are prime numbers and α_i any positive integers, then:

And

Where
$$k = 2[(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdots (\alpha_m + 1) - 1] \times 2[(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdots (\alpha_m + 1) - 1]$$

They are $2[(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_m + 1) + 1] \times 2[(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_m + 1) + 1]$ square matrix.

Proof:

By using theorem(2.5) and taking the form $M(D_n \times C_5)$ from proposition(3.2) and the above forms of $P(D_n \times C_5)$ and $W(D_n \times C_5)$ then we have

$$D(D_n \times C_5) = diag\{2,2,2,...,-2,1,1,1\}$$

Which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]$ squarematrix.

Theorem (3.4):

If $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \cdots \cdot p_m^{\alpha_m}$ where p_1 , p_2 , \cdots , p_m are distinct prime numbers such that $p_i\neq 2$ and α_i any positive integers for all i, $1\leq i\leq m$, then the cyclic decomposition $\mathrm{AC}(D_{n\times C_5})$ is :

$$2((\alpha_1+1)\cdot(\alpha_2+1)\cdot\cdot\cdot(\alpha_m+1))-1$$

$$\bigoplus_{i=1} C_2$$

$$\operatorname{AC}(D_{n \times C_5}) = \bigoplus_{i=1}^{2} \operatorname{AC}(D_n) \bigoplus_{C_2}$$

Proof:-

From proposition (3.3) we have

$$\begin{split} & \text{P}(D_{n \times C_5}) \text{ .M}(D_{n \times C_5}) \text{ .W}(D_{n \times C_5}) = & \text{diag}\{2,2,2,\ldots,-2,1,1,1\} = \{d_1,d_2,\ldots,\\ & \text{d}_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)-1)}, \text{d}_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))-1}, \text{d}_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))},\\ & \text{d}_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))+1} \text{d}_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))+2}\}. \end{split}$$
 By theorem (2.8) we get

$$2((\alpha_{1}+1)\cdot(\alpha_{2}+1)\cdot\cdot\cdot(\alpha_{m}+1))-1$$

$$AC(D_{n\times C_{5}})=\bigoplus_{i=1}^{2((\alpha_{1}+1)\cdot(\alpha_{2}+1)\cdot\cdot\cdot(\alpha_{m}+1))-1}$$

$$=\bigoplus_{i=1}^{2((\alpha_{1}+1)\cdot(\alpha_{2}+1)\cdot\cdot\cdot(\alpha_{m}+1))-1}$$

From theorem(2.9) we have :

$$\begin{array}{c}
2\\ \bigoplus\\ AC(D_{n\times C_5}) = \bigoplus_{i=1}^{2} AC(D_n) & \bigoplus\\ C_2
\end{array}$$

Example (3.6):

To find the cyclic decomposition of the groups $AC(D_{24389 \times C_5})$

,
AC(
$$D_{12901781\times C_5})$$
 and AC($D_{219330277\times C_5})$.

We can use above theorem:

2- AC(
$$D_{219330277} \times c_5$$
) =AC($D_{29}^{3}.23^{2} \times c_5$)= $C_{2} = i = 1$ $C_{2} = i = 1$ $C_{2} = i = 1$

$$= \bigoplus_{i=1}^{2} AC(D_{29}^{3}_{.23}^{2}) \bigoplus C_{2}.$$

$$2((3+1)\cdot(2+1)\cdot(1+1))-1$$

$$3-AC(D_{219330277\times C_{5}}) = AC(D_{29}^{3}_{.23}^{2}_{.17}\times c_{5}) = \bigoplus_{i=1}^{2} C_{2}$$

$$\bigoplus_{i=1}^{47} C_2 = \bigoplus_{i=1}^{2} AC(D_{29}^{3}_{.23}^{2}_{.17}) \bigoplus C_2.$$

References

- [1] Culirits . C and . Reiner . I ," Methods of Representation Theory to Finite Groups and Order", John wily&sons, New york, 1981.
- [2] A. M, Basheer "Representation Theory of Finite Groups", AIMS, Africa, 2006.
- [3] J Moori, "Finite Groups and Representation Theory ", University of Kawzulu Natal, 2006.
- [4]H. R Yassien ," On ArtinCokernel of Finite Group", M.Sc. Thesis, Babylon University, 2000.
- [5]T .Y Lam," Artin Exponent of Finite Groups ", Columbia University, New York, 1968.
- [6] A. S, Abid. "Artin's Characters Table of Dihedral Group for Odd Number", MSc.Thesis, university of kufa,2006.
- [7]J. P Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.
- [8]M . S Kirdar .M . S, "The Factor Group of The Z- Valued Class Function Modulo the Group of The Generalized Characters ",Ph. D. Thesis, University of Birmingham, 1982.
- [9]Mirza . R . N , " On ArtinCokernel of Dihedral Group Dn When n is An Odd Number ",M.Sc. thesis , University of Kufa ,2007.
- [10] H .H Abass," On Rational of Finite Group D_n when n is anodd "Journal Babylon University, vol7, No-3,2002.
- [11]Knwabusz . K, " Some Definitions of Artin's Exponent of Finite Group ", USA.National foundation Math.GR.1996.
- [12] David .G," Artin Exponent of Arbitrary Characters of Cyclic Subgroups ", Journal of Algebra,61,pp.58-76,1976.

حول النواةالمشارك -آرتن للزمرة $D_n \times C_5$ عندما $D_n \times C_5$ عندما

باسم كريم محسن المديرية العامة للتربية في محافظة كربلاء

المستخلص:

ان زمرة كلّ الشواخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الشواخص المحتثة من الشواخص ال زمرة كلّ الشواخص العمومية ذات القيم الصحيحة للزمرة $AC(G)=\overline{R}(G)/T(G)$ تكون زمرة ابيلية منتهية و تسمى النواة الأحادية للزمرة G إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة AC(G) تم اعتبارها في هذا البحث المشارك $D_n \times C_5$ عندما $D_n \times C_5$ عندما $D_n \times C_5$ عندما $D_n \times C_5$ عندما وجدنا إذا كانت $D_n \times C_5$ عندما و إن $D_n \times C_5$ عندما و عندما و عندما و عندما و عندما و عندما و عندما إذا كانت $D_n \times C_5$ عندما و عندما إذا كانت و عندما و عندما

$$AC(D_{n} \times C_{5}) = \bigoplus_{i=1}^{2} AC(D_{n}) \bigoplus_{i=1}^{2} C_{2}$$

$$= \bigoplus_{i=1}^{2} AC(D_{n}) \bigoplus_{i=2}^{2} C_{2}$$

و عدد الصيغة العامة لجدول شواخص آرتن Ar($D_n imes C_5$) عندما يكون عدم عدد فردي .