When \mathbf{n} is an Odd Number

Bassim Kareem Mihsin General Directorate of Education in Karbala bassimKareem3@gmail.com

Abstract

The group of all Z-valuedgeneralized characters of G over the group of induced unit characters from all cyclic subgroups of $\mathrm{G}, \mathrm{AC}(\mathrm{G})=\bar{R}(\mathrm{G}) / \mathrm{T}(\mathrm{G})$ forms a finite abelian group, called ArtinCokernel of G.The problem of finding the cyclic decomposition of Artincokernel $\mathrm{AC}\left(D_{n} \times C_{5}\right)$ has been considered in this paper when n is an odd number, we find that if $\mathrm{n}=\mathrm{p}_{1}^{\alpha_{1}} \cdot \mathrm{p}_{2}^{\alpha_{2}} . . \mathrm{p}_{m}{ }^{\alpha_{m}}$, where $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ are distinct primes and not equal to 2 , then : $$
\begin{aligned} \operatorname{AC}\left(D_{n} \times C_{5}\right)= & \begin{array}{l} 2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1 \\ \bigoplus_{i=1}^{2} \\ \\ \\ \bigoplus_{i=1} \mathrm{AC}\left(\mathrm{D}_{\mathrm{n}}\right) \end{array} \mathrm{C}_{2} \mathrm{C}_{2} \end{aligned}
$$

And we give the general form of Artin's characters table $\operatorname{Ar}\left(D_{n} \times C_{5}\right)$ when n is an odd number .

Introduction

For a finite group G the finite abelain factor group $\bar{R}(G) / \mathrm{T}(\mathrm{G})$ is called Artincokernel of G and denoted by $\mathrm{AC}(\mathrm{G})$ where $\bar{R}(G)$ denotes the abelian group generated by Z -valued characters of G under the operation of pointwise addition and $\mathrm{T}(\mathrm{G})$ is anormal subgroup of $\bar{R}(G)$ which is generated by Artin'scharacters.Permutationcharcters induce from the principle charcters of cyclic Subgroups . A well-known theorem which is due to Artinasserated that $\mathrm{T}(\mathrm{G})$ has a finite index is , i.e [$: T(G)]$ is finite .
The exponent of $\mathrm{AC}(\mathrm{G})$ is called Artin exponent of G and denoted by $A(G)$.
In 1968, Lam . T .Y [5] gave the definition of the group $\mathrm{AC}(\mathrm{G})$ and the studied $\mathrm{AC}\left(\mathrm{C}_{\mathrm{n}}\right)$.In 1976, David .G [12] studied $\mathrm{A}(\mathrm{G})$ of arbitrary characters of cyclic subgroups. In 1996, Knwabuez.K [11] studied A(G) of p-groups .
 k.Sekieguchi [12] studied the irreducible Artin characters of p-group and in the Same year H.H.Abbass [10]found \equiv * (Dn) .

In 2006, Abid . A .S [6] found $\operatorname{Ar}\left(\mathrm{C}_{\mathrm{n}}\right)$ when C_{n} is the cyclic group of order n . In 2007, Mirza .R.N [9] found in herthesis Artincokernel of the dihedral group

In this paper we find the general form of $\operatorname{Ar}\left(D_{n} \times C_{5}\right)$ and we study $\operatorname{AC}\left(D_{n} \times\right.$ C_{5}) of the non abelian group $D_{n} \times C_{5}$ when n is an odd number .

1. Basic Concepts and Notations:

In this section, we recall some basic concepts,about matrix representation , characters and Artin character which will be used in later section .

Definition (1.1): [1]

A matrix representation of a group G is homomorphism T of G into $\mathrm{GL}(n, \mathrm{~F}), \mathrm{n}$ is called the degree of matrix representation T. T is called a unit representation(principal) if $\mathrm{T}(\mathrm{g})=1$, for all $\mathrm{g} \in \mathrm{G}$.

Definition (1.2):[2]

Let T be a matrix representation of a group G over the field F ,the character χ of a matrixrepresentation T is the mapping $\chi: \mathrm{G} \rightarrow \mathrm{F}$ defined by $\chi(\mathrm{g})=\operatorname{Tr}(\mathrm{T}(\mathrm{g}))$ refers to the trace of the matrix $\mathrm{T}(\mathrm{g})$ (the sum of the elements diagonal of $\mathrm{T}(\mathrm{g})$). The degree of T is called the degree of χ.

Definition (1.3):[3]

Let H be acyclic subgroup of G and let ϕ be a class function on H . The induced class function on G is given by :

$$
\phi^{\prime}(g)=\frac{1}{|H|} \sum_{x \in G} \phi^{\circ}\left(x g x^{-1}\right) \quad, \forall g \in G
$$

Where \emptyset° is defined by :

$$
\phi^{\circ}(h)=\left\{\begin{array}{ccc}
\phi(h) & \text { if } & h \in H \\
0 & \text { if } & h \notin H
\end{array}\right.
$$

Theorem (1.4):[4]

Let H be acyclic subgroup of Gand $h_{1}, h_{2}, \ldots, h_{m}$ are chosen representatives for Γ conjugate classes, Then :
$1-\quad \phi^{\prime}(g)=\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \phi\left(h_{i}\right) \quad$ if $\quad h_{i} \in H \cap C L(g)$
$2-\phi^{\prime}(g)=0 \quad$ if $\quad H \cap C L(g)=\phi$

Definition (1.5):[5]

Let G be a finite group, allcharacters of G induced from the principal character of cyclic subgroups of G is called Artin characters of G.

Definition (1.6):[4]

Artin characters of the finite group can be displayed in a table called Artin characters table of Gwhich is denoted by $\operatorname{Ar}(\mathrm{G})$.

Proposition (1.7):[6]

The number of all distinct Artin characters on a group G is equal to the number of Γ classes on G .

Definition (1.8):[1]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(\mathrm{g})$ $\in \mathrm{Z}$, for all $\mathrm{g} \in \mathrm{G}$.

Definition (1.9):[6]

Let $\mathrm{T}(\mathrm{G})$ be the subgroup of $\bar{R}(G)$ generated by Artin characters .
$\mathrm{T}(\mathrm{G})$ is a normal subgroup of $\bar{R}(G)$.Then the factor abelian $\operatorname{group} \bar{R}(G) / T(G)$ is called Artincokernel of G, denoted by $\mathrm{AC}(\mathrm{G})$.

Proposition (1.10):[6]

$\mathrm{AC}(\mathrm{G})$ is a finitely generated Z - module

Theorem [Artin] (1.11):[7]

Every rational valued character of G can be written as a linear combination of Artin characters with rational coefficient.

2. The Factor Group $\mathbf{A C}(\mathbf{G})$:

In this section, we use some concepts in linear Algebra to study the factor group $\mathrm{AC}(\mathrm{G})$. We will give the general form of $\operatorname{Ar}\left(D_{n} \times C_{5}\right)$ when n is an odd number. We shall study $\operatorname{Ac}(G)$ dihedral group D_{n} and $\equiv^{*}\left(D_{n}\right)$ when n is an odd number.

Definition (2.1): [5]

Let $\mathrm{T}(\mathrm{G})$ be the subgroup of $\bar{R}(G)$ generated by Artin characters .
$\mathrm{T}(\mathrm{G})$ is a normal subgroup of $\bar{R}(G)$, then the factor abelian $\operatorname{group} \bar{R}(G) / T(G)$ is called Artincokernel of G, denoted by $\mathrm{AC}(\mathrm{G})$.

Definition (2.2): [8]

Ak-th determinant divisor of M is the greatest common divisor (g.c.d)of all the $\mathrm{k}-$ minors of M.This is denoted by $D_{k}(M)$.

Lemma (2.3)

Let M, P and W be matrices with entries in the principal idealdomain R and p, W be invertible matrices , then :
$D_{k}(P \cdot M \cdot W)=D_{k}(M)$ Modulo the group of units of R.

Theorem (2.4):[8]

Let M be an $k \times k$ matrix with entries in a principal ideal domain R, then there exits matrices P and W such that :

1- P and W are invertible $.2-\mathrm{P} \mathrm{M} \mathrm{W}=\mathrm{D} .3-\mathrm{D}$ is a diagonal matrix .
4 -If we denote $\mathrm{D} j \mathrm{j}$ by d_{i} then there exists a natural number $\mathrm{m} ; 0 \leq \mathrm{m} \leq \mathrm{k}$
such that $\mathrm{j}>\mathrm{m}$ implies $\mathrm{d}_{j}=0$ and $\mathrm{j} \leq \mathrm{m}$ implies $\mathrm{d}_{j} \neq 0$ and $1 \leq \mathrm{j} \leq \mathrm{m}$
$\operatorname{implies} \mathrm{d}_{j} \mid \mathrm{d}_{j-1}$.

Definition (2.5):[8]

Let M be matrix with entries in a principal ideal domain R, equivalent to matrix $\mathrm{D}=$ $\operatorname{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{m}, 0,0, \ldots, 0\right\}$ such that $\mathrm{d}_{j} \mid \mathrm{d}_{j-1}$ for $1 \leq \mathrm{j}<\mathrm{m}$, we
call D the invariant factor matrix of M and $d_{1}, d_{2}, \ldots, d_{m}$ theinvariant factors of M.

Remark(2.6):

According to the Artin theorem (1.12) there exists an invertible matrixM ${ }^{-1}(\mathrm{G})$ with entries in the set of rational numbers such that:
$\stackrel{*}{\equiv}(\mathrm{G})=\mathrm{M}^{-1}(\mathrm{G}) \cdot \mathrm{Ar}(\mathrm{G})$ and this implies,
$\mathrm{M}(\mathrm{G})=\operatorname{Ar}(\mathrm{G}) \cdot(\stackrel{*}{\equiv}(\mathrm{G}))^{-1}$
$\mathrm{M}(\mathrm{G})$ is the matrix expressing the $\mathrm{T}(\mathrm{G})$ basis in terms of the $\bar{R}(G)$ basis.

By theorem (2.5) there exists two matrices $\mathrm{P}(\mathrm{G})$ and $\mathrm{W}(\mathrm{G})$ with a determinant ∓ 1 such that :
$\mathrm{P}(\mathrm{G}) . \mathrm{M}(\mathrm{G}) \cdot \mathrm{W}(\mathrm{G})=\operatorname{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{l}\right\}=\mathrm{D}(\mathrm{G})$
where $\mathrm{d}_{i}={ }_{-}^{+} \mathrm{D}_{i}(\mathrm{G}) \mid \mathrm{D}_{i-1}(\mathrm{G})$ and \boldsymbol{l} is the number of Γ-classes.

Theorem (2.7):[4]

$\mathrm{AC}(\mathrm{G})=\bigoplus_{i=1}^{m} \mathrm{z}$ where $\mathrm{d}_{i}=\stackrel{+}{-} \mathrm{D}_{i}(\mathrm{G}) \mid \mathrm{D}_{i-1}(\mathrm{G})$ where m is the number of all distinct \square-classes.

Theorem(2.8):[9]

If n is an odd number such that $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$, where $p_{1}, p_{2}, \cdots \cdots, p_{m}$ are distinct primes, then :

$$
\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)-1
$$

$A C\left(D_{n}\right)=$

C_{2}

Proposition (2.9): [8]

The rational valued characters table of the cyclic groupC $p_{p^{x}}$ of the ranks+1 where p is a prime number which is denoted by $\left(\equiv^{*}\left(\mathrm{C}_{p^{*}}\right)\right)$, is given asfollows:

$\begin{gathered} \Gamma- \\ \text { classes } \end{gathered}$	[1]	$\left[\mathrm{r}^{p^{s-1}}\right]$	$\left[\mathrm{r}^{p^{s-2}}\right]$	$\left[\mathrm{r}^{p^{s-3}}\right.$	\ldots	$\left[\mathrm{r}^{p^{2}}\right]$	$\left[\mathrm{r}^{p}\right]$	[r]
θ_{1}	$\begin{gathered} \mathrm{p}^{s-1}(\mathrm{p}- \\ 1) \end{gathered}$	- p^{s-1}	0	0	\ldots	0	0	0
θ_{2}	$\begin{gathered} \mathrm{p}^{s-2}(\mathrm{p}- \\ 1) \end{gathered}$	$\begin{gathered} \mathrm{p}^{s-2}(\mathrm{p}- \\ 1) \end{gathered}$	- p^{s-2}	0	\ldots	0	0	0
θ_{3}	$\mathrm{p}^{s-3}(\mathrm{p}-$ 1)	$\mathrm{p}^{s-3}(\mathrm{p}-$ 1)	$\mathrm{p}^{s-3}(\mathrm{p}-$ 1)	- p^{s-3}	\ldots	0	0	0
\vdots	!	!	!	\vdots	:	!	\vdots	\vdots
θ_{s-1}	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	\ldots	$\begin{gathered} \mathrm{p}(\mathrm{p}- \\ 1) \end{gathered}$	-p	0
θs	p-1	p-1	p-1	p-1	\ldots	p-1	p-1	-1
θ_{s+1}	1	1	1	1	\ldots	1	1	1

Table (2.1)
where its rank $\mathrm{s}+1$ represents the number of all distinct Γ-classes.

Remark (2.10):[8]

If $\mathrm{n}=\mathrm{p}_{1}^{\alpha 1} \cdot \mathrm{p}_{2}^{\alpha 2} \ldots . \mathrm{p}^{\alpha_{m}}$ where $\mathrm{p}^{1}, \mathrm{p}^{2}, \ldots, \mathrm{p}^{m}$,are distinct primes, then :
$\equiv^{*}\left(\mathrm{C}_{\mathrm{n}}\right)=\equiv^{*}\left(\mathrm{C} p_{1}^{\alpha 1}\right) \otimes \equiv^{*}\left(\mathrm{C} p_{2}^{\alpha 2}\right) \otimes \ldots \otimes \equiv^{*}\left(\mathrm{C} P_{m}^{\alpha m}\right)$.

Definition (2.11):[7]

The dihedral group D_{n} is a certain non- abelian group of order2n .It is usually thought of as a group of transformations of the Euclidean plane of regular n-polygon consisting of rotations (about the origin) with the angle $2 \mathrm{k} \pi / \mathrm{n}, \mathrm{k}=0,1,2, \ldots, \mathrm{n}-1$ and reflections (across lines through the origin).In generalwe can write it as: $\mathrm{D}_{\mathrm{n}}=\left\{S^{j} r^{k}: 0\right.$ $\leq \mathrm{k} \leq \mathrm{n}-1,0 \leq \mathrm{j} \leq 1\}$
which has the following properties :

$$
r^{n}=1, S^{2}=1, S r^{k} S^{-1}=r^{-k}
$$

Definition (2.12):

The group $D_{n} \times C_{5}$ is the direct product group $D_{n} \times C_{5}$, where C_{5} is a cyclic group of order 5 consisting of elements $\left\{1, r^{\prime}, r^{2^{\prime}}, r^{3^{\prime}}, r^{\left.4^{\prime}\right\}}\right\}$ with $\left(r^{\prime}\right)^{5}=1$. It is of order 10n

Theorem(2.13):[10]

The rational valued characters table of D_{n} when n is an odd number is given as follows:

$\equiv *\left(D_{n}\right)=$		Γ-classes of C_{n}						[S]0
	θ_{1}	$\equiv{ }^{*}\left(\mathrm{C}_{\mathrm{n}}\right)$						
	-							!
	θ_{S-1}	1	1	1	...	1	1	0
	θ_{S}							1
	θ_{S+1}	1	1	1	\ldots	1	1	-1

Table (2.2)
Where S is the number of Γ-classes of C_{n}.

Theorem(2.14):

The rational valued characters table of the group $D_{n} \times C_{5}$ when n is an odd number is given as follows:
$\equiv{ }^{*}\left(D_{n} \times C_{5}\right)=\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right) \otimes \equiv{ }^{*}\left(C_{5}\right)$

Theorem (2.15):[6]

The general form of Artin characters table of $C_{p^{s}}$ when p is a prime numberand s is positive integer is given by the lower Triangluer matrix
$\operatorname{Ar}\left(\mathrm{C} p^{s}\right)=$

Γ-classes	$[1]$	$\left[r^{p^{s-1}}\right]$	$\left[r^{p^{s-2}}\right]$	$\left[r^{p^{s-3}}\right]$	\cdots	$[r]$
$\left\|C L_{\alpha}\right\|$	1	1	1	1	\cdots	1
$\left\|C_{p^{s}}\left(C L_{\alpha}\right)\right\|$	p^{s}	p^{s}	p^{s}	p^{s}	\cdots	p^{s}
φ_{1}^{\prime}	p^{s}	0	0	0	\cdots	0
φ_{2}^{\prime}	p^{s-1}	p^{s-1}	0	0	\cdots	0
φ_{3}^{\prime}	p^{s-2}	p^{s-2}	p^{s-2}	0	\cdots	0
\vdots						
φ_{s}^{\prime}	P	P	p	P	\cdots	0
φ_{s+1}^{\prime}	1	1	1	1	\cdots	1

Table (2.3)

Corollary (2.16):[4]

Let n any positive integers and $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$ where
$p_{1}, p_{2}, \cdots \cdots, p_{m}$ are distinct primes, then :
$\operatorname{Ar}\left(C_{n}\right)=\operatorname{Ar}\left(C_{P_{1}^{\alpha 1}}\right) \otimes \operatorname{Ar}\left(C_{P_{2}^{\alpha 2}}\right) \otimes \cdots \cdots \otimes \operatorname{Ar}\left(C_{P_{m}^{\alpha_{m}}}\right)$

Where ${ }^{\otimes}$ is the tensor product.

Proposition (2.17):[6]

If p is a prime number and s is a positive integer, then $\mathrm{M}(\mathrm{C} p)$ is an upper triangular matrix with unite entries.

$$
M\left(C_{p^{s}}\right)=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
0 & 1 & 1 & \ldots & 1 \\
0 & 0 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

which is $(s+1) \times(s+1)$ square matrix

Proposition (2.18):[2]

The general form of matrices $P\left(C_{p^{s}}\right)$ and $W\left(C_{p^{s}}\right)$ are :

$$
P\left(C_{p^{s}}\right)=\left[\begin{array}{cccccccc}
1 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
& & & & & \ddots & & \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

which is $(\mathrm{s}+1) \times(\mathrm{s}+1)$ square matrix and $W\left(C_{p^{s}}\right)=I_{s+1}$ where I_{s+1} is an identity matrix and $\mathrm{D}\left(\mathrm{C} p^{s}\right)=\operatorname{diag}\{1,1, \ldots, 1\}$.

Remarks (2.19):

1- In general if $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$ such that $p_{1}, p_{2}, \cdots \cdots, p_{m}$ are distinct primes and α_{i} any positive integers for all $\mathrm{i}=1,2, \ldots, \mathrm{~m}$; then :
$\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{p_{1}{ }^{\alpha 1}} \times \mathrm{C}_{p_{2}{ }^{\alpha 2}} \times \ldots \times \mathrm{C}_{p_{m}{ }^{\alpha m}}$.

$$
\mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{M}\left(\mathrm{C}_{p_{1}^{\alpha 1}}\right) \otimes \mathrm{M}\left(\mathrm{C}_{p_{2}^{\alpha 2}}\right) \otimes \ldots \otimes \mathrm{M}\left(\mathrm{C}_{p_{m}{ }^{\alpha m}}\right)
$$

So, we can write $\mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right)$ as:

$$
\mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right)=\left[\begin{array}{llllll}
& & & & & 1 \\
& & R\left(C_{n}\right) & & 1 \\
& & & & & \vdots \\
\mathrm{O} & \mathrm{O} & \mathrm{O} & \ldots & \mathrm{O} & 1
\end{array}\right]
$$

Where $\mathrm{R}\left(\mathrm{C}_{\mathrm{n}}\right)$ is the matrix obtained by omitting the last row $\{0,0, \ldots, 0,1\}$ and the last column $\{1,1, \ldots, 1\}$ from the tensor product,
$\mathrm{M}\left(\mathrm{C}_{p_{1}{ }^{\alpha 1}}\right) \otimes \mathrm{M}\left(\mathrm{C}_{p_{2}{ }^{\alpha 2}}\right) \otimes \ldots \ldots \ldots \ldots \ldots \ldots \otimes \mathrm{M}\left(\mathrm{C}_{p_{m}{ }^{\alpha m}}\right) . \mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right)$ is,
$\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{m}+1\right) \times\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{m}+1\right)$ square matrix.
2) $\mathrm{P}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{C}_{p_{1}{ }^{\alpha 1}}\right) \otimes \mathrm{P}\left(\mathrm{C}_{p_{2}{ }^{\alpha 2}}\right) \otimes \ldots \otimes \mathrm{P}\left(\mathrm{C}_{p_{m}{ }^{a n}}\right)$.
3) $\mathrm{W}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{W}\left(\mathrm{C}_{p_{1}{ }^{\alpha 1}}\right) \otimes \mathrm{W}\left(\mathrm{C}_{p_{2}{ }^{\alpha 2}}\right) \otimes \ldots \otimes \mathrm{W}\left(\mathrm{C}_{p_{m}{ }^{a m}}\right)$.

3. The Main Results

In this section we give the general form of Artin characters table of the $\operatorname{group} D_{n} \times C_{5}$ and the cyclic decomposition of the factor group $\operatorname{AC}\left(D_{n} \times C_{5}\right)$ when n is an odd number.

Theorem(3.1):

The Artin characters table of the group $D_{n} \times C_{5}$ when n is an odd number is given as follows :
$\operatorname{Ar}\left(D_{n} \times C_{5}\right)=$

Γ-Classes	[1,1']	[$1, r^{\prime}$]	Γ-Classes of $\mathrm{C}_{\mathrm{n}} \times \mathrm{C}_{5}$					[S, 1]	[S, r^{\prime}]
$\left\|\mathrm{CL}_{\alpha}\right\|$	1	1	2	2	2	n	n
$\begin{gathered} \mid C_{D_{n} \times C_{5}} \\ \left(\mathrm{CL}_{\alpha}\right) \mid \end{gathered}$	10n	10n	5 n	5 n	\ldots	...	5n	10	10
$\Phi_{(1,1)}$	$2 \operatorname{Ar}\left(\mathrm{C}_{\mathrm{n}}\right) \bigotimes_{\operatorname{Ar}\left(\mathrm{C}_{5}\right)}$							0	0
$\Phi_{(1,2)}$								\vdots \vdots	\vdots
$\Phi(l, 1)$								\vdots	\vdots
$\Phi_{(}(\underline{2})$								0	0
$\Phi_{(} l+1,1_{)}$	5 n	0	0	0	5	0
$\left.\Phi_{(} l+1,2\right)$	5 n	0	0	0	0	5

Table(3.1)
where l is the number of Γ-classes of C_{n} and $\mathrm{C}_{5}=\left\langle r^{\prime}\right\rangle=\left\{1^{\prime}, r^{\prime}\right\}$.
Proof:-By theorem(2.15)

$\operatorname{Ar}\left(\mathrm{C}_{5}\right)=$| Γ-classes | $\left[1^{\prime}\right]$ | $\left[r^{\prime}\right]$ |
| :---: | :---: | :---: |
| $\left\|C L_{\alpha}\right\|$ | 1 | 1 |
| $\left\|c_{5\left(C L_{\alpha}\right)}\right\|$ | 5 | 5 |
| φ_{1}^{\prime} | 5 | 0 |
| φ_{2}^{\prime} | 1 | 1 |

Table (3.2)

Each cyclic subgroup of the group $D_{n} \times C_{5}$ is either a cyclic subgroup of $\mathrm{C}_{\mathrm{n}} \times \mathrm{C}_{5}$ or $\left\langle\left(S, r^{\prime}\right)\right\rangle$ or $\left\langle\left(S, 1^{\prime}\right)\right\rangle$.If H is a cyclic subgroup of $\mathrm{C}_{\mathrm{n}} \times \mathrm{C}_{5}$, then :
$\mathrm{H}=\mathrm{H}_{\mathrm{i}} \times<1^{\prime}>$ or $\mathrm{H}_{\mathrm{i}} \times<r^{\prime}>=\mathrm{H}_{\mathrm{i}} \times \mathrm{C}_{5}$ for all $1 \leq i \leq l$ where l is the number of Γ classesof C_{n}

If $\mathrm{H}=\mathrm{H}_{\mathrm{i}} \times<1^{\prime}>$ and $\mathrm{x} \in D_{n} \times C_{5}$
If $\mathrm{x} \notin \mathrm{H}$ then by theorem(1.4)

$$
\Phi_{(1, \mathrm{i})}(\mathrm{x})=0 \text { for all } 0 \leq i \leq l \quad[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\phi]
$$

If $\mathrm{x} \in \mathrm{H}$ then either $\mathrm{x}=\left(1,1^{\prime}\right)$ or $\exists S, 0<S<n$ such that $\mathrm{x}=\left(r^{s}, 1^{\prime}\right)$
If $x=\left(1,1^{\prime}\right)$, then :

$$
\Phi_{(\mathrm{I}, 1)}(\mathrm{x})=\quad \frac{\left|C_{D_{n \times} C_{5}(X)}\right|}{\left|C_{H(X)}\right|} \cdot \varphi^{\prime}(x) \quad\left[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\left\{\left(1,1^{\prime}\right)\right\}\right],
$$

where φ is the principle character

$$
\begin{aligned}
& =\frac{10 n}{\left|H_{i}\right| \cdot\left|<1^{\prime}>\right|} \cdot 1=\frac{10 n}{\left|H_{i}\right|}=2 . \quad \frac{n}{\left|H_{i}\right|} \cdot 1.5=2 \frac{\left|C_{C_{n}}(1)\right|}{\left|C_{H_{i}}(1)\right|} \cdot \varphi(1) \cdot \varphi^{\prime}\left(1^{\prime}\right) \\
& \quad=2 \cdot \varphi_{i}(1) \cdot \varphi^{\prime}\left(1^{\prime}\right)
\end{aligned}
$$

If $\mathrm{x}=\left(r^{s}, 1^{\prime}\right)$ then

$$
\begin{aligned}
\Phi_{(\mathrm{i}, 1)}(\mathrm{x})= & \frac{\left|C_{D_{n \times C_{5}}(x)}\right|}{\left|C_{H(X)}\right|} \cdot \sum_{1}^{2} \varphi^{\prime}(x) \quad\left[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\left\{\left(r^{s}, 1^{\prime}\right),\left(r^{-S}, 1^{\prime}\right)\right\}\right] \\
& =\frac{5 n}{\left|H_{i \times<1^{\prime}>}\right|} \cdot(1+1) \\
= & \frac{5 n}{\left|H_{i \times<1^{\prime}>}\right|} \cdot 2=\frac{5 n}{\left|H_{i}\right|} \cdot 2 \\
= & 2 \cdot \frac{n}{\left|H_{i\left(r^{s}\right)}\right|} \cdot 1.5=2 \frac{\left|C_{C_{n}}\left(r^{s}\right)\right|}{\left|C_{H_{i}}\left(r^{s}\right)\right|} \cdot \varphi\left(r^{s}\right) \cdot \varphi^{\prime}\left(1^{\prime}\right)=2 \cdot \varphi_{i}\left(r^{s}\right) \cdot \varphi_{1}^{\prime}\left(1^{\prime}\right)
\end{aligned}
$$

If $\mathrm{H}=\mathrm{H}_{\mathrm{i}} \times\left\langle r^{\prime}\right\rangle=\mathrm{H}_{\mathrm{i}} \times \mathrm{C}_{5}$
let $\mathrm{x} \in D_{n} \times C_{5}$
if $\mathrm{x} \notin \mathrm{H}$ then

$$
\Phi_{(\mathrm{i}, 2)}(\mathrm{x})=0 \text { for all } 1 \leq i \leq l[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\phi]
$$

If $\mathrm{x} \in \mathrm{H}$ then either $\mathrm{g}=\left(1,1^{\prime}\right)$ or $\mathrm{x}=\left(1, r^{\prime}\right)$ or $\exists S, 0<S<n$ such that $\mathrm{x}=\left(r^{s}, r^{\prime}\right)$ If $x=\left(1,1^{\prime}\right)$

$$
\begin{gathered}
\Phi_{(\mathrm{i}, 2)}=\frac{\left|C_{D n \times c_{5(x)}}\right|}{\left|C_{H(X)}\right|} \cdot \varphi(x)\left[\operatorname{sir}^{s} \text { nce } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\left\{\left(1,1^{\prime}\right)\right\}\right] \\
=\frac{10 n}{\left|H_{i \times C_{5}}\right|}=\frac{10 n}{2\left|H_{i}\right|}=\frac{5 n}{\left|H_{i}\right|}=5 \frac{\mid C_{C_{n}(1) \mid}^{\left|C_{H_{i}}(1)\right|} \cdot \varphi(1)=5 \cdot \varphi_{i}(1) \cdot \varphi_{2}^{\prime}(1)}{\text { If } \mathrm{x}=\left(1, r^{\prime}\right) \text { then }} \\
\Phi_{(\mathrm{i}, 2)}(\mathrm{x})=\frac{\left|C_{D n \times c_{5(x)}}\right|}{\left|C_{H(X)}\right|} \cdot \varphi(x) \quad\left[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\left\{\left(1, r^{\prime}\right)\right\}\right] \\
=\frac{10 n}{\left|H_{i \times C_{5}}\right|} \\
=\frac{10 n}{2\left|H_{i}\right|}=\frac{5 n}{\left|H_{i}\right|}=5 \frac{\left|C_{C_{n}}(1)\right|}{\left|C_{H_{i}}(1)\right|}=5 \cdot \varphi_{i}(1) \cdot \varphi_{2}^{\prime}\left(r^{\prime}\right)
\end{gathered}
$$

If $\mathrm{x}=\left(r^{s}, r^{\prime}\right)$ then

$$
\begin{gathered}
\Phi_{(\mathrm{i}, 2)}(\mathrm{x})=\frac{\mid C_{D_{n \times} C_{5}}(X \mid}{\left|C_{H(X)}\right|} \cdot \sum_{1}^{2} \varphi^{\prime}(x)\left[\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\left\{\left(r^{s}, r^{\prime}\right),\left(r^{-s}, r^{\prime}\right)\right\}\right] \\
=\frac{5 n}{\left|H_{i \times C_{5}}\right|}(1+1)=\frac{10 n}{2\left|H_{i}\right|}=\frac{5 n}{\left|H_{i}\right|}=2 \frac{\mid C_{C_{n}\left(r^{s}\right) \mid}^{\left|C_{H_{i}}\left(r^{s}\right)\right|} \cdot \varphi\left(r^{s}\right) \cdot \varphi_{2}^{\prime}\left(r^{\prime}\right)=5 \cdot \varphi_{i}\left(r^{s}\right)}{\varphi_{2}^{\prime}\left(r^{\prime}\right) .}
\end{gathered}
$$

If $\mathrm{H}=\left\langle\left(S, 1^{\prime}\right)\right\rangle=\left\{\left(1,1^{\prime}\right),\left(S, 1^{\prime}\right)\right\}$ then

$$
\begin{gathered}
\Phi_{(l+1,1)}\left(\left(1,1^{\prime}\right)\right)=\frac{\mid C_{D_{n \times c_{5\left(1,1^{\prime}\right)}} \mid}}{\left|C_{H\left(S, 1^{\prime}\right)}\right|} \cdot \varphi(x)=\frac{10 n}{2}=5 n \\
\Phi_{(l+1,1)}\left(\left(S, 1^{\prime}\right)\right)=\frac{\mid C_{D_{\left.n \times c_{5\left(1,1^{\prime}\right)}\right)} \mid}^{\left|C_{H\left(S, 1^{\prime}\right)}\right|} \cdot \varphi(x)\left[\text { since } \mathrm{H} \cap \operatorname{CL}\left(\left(S, 1^{\prime}\right)\right)=\left\{\left(S, 1^{\prime}\right)\right.\right.}{\}]=\frac{10}{2}=5}
\end{gathered}
$$

Otherwise

$$
\Phi_{(l+1,1)}(\mathrm{x})=0 \text { for all } \mathrm{x} \in D_{n} \times C_{5,[\text { since } \mathrm{x} \notin \mathrm{H}]}
$$

If $\mathrm{H}=\left\langle\left(S, r^{\prime}\right)>=\left\{\left(1,1^{\prime}\right),\left(S, r^{\prime}\right)\right\}\right.$

$$
\begin{gathered}
\Phi_{(l+1,2)}\left(\left(1,1^{\prime}\right)\right)=\frac{\mid C_{D_{n \times c_{5\left(1,1^{\prime}\right)}} \mid} \cdot \varphi\left(1,1^{\prime}\right) \quad\left[\text { since } \mathrm{H} \cap \mathrm{CL}\left(\left(1,1^{\prime}\right)\right)=\left\{\left(1,1^{\prime}\right)\right\}\right]}{\left|C_{H\left(1,1^{\prime}\right)}\right|} \cdot \\
=\frac{10 n}{2} \cdot 1=5 n \\
\Phi_{(l+1,2)}\left(\left(S, r^{\prime}\right)\right)=\frac{\left\lvert\, C_{D n \times c_{5\left(s, r^{\prime}\right)} \mid}^{\left|C_{H\left(s, r^{\prime}\right)}\right|} \cdot \varphi\left(s, r^{\prime}\right)=\frac{10}{2} \cdot 1=5\right.}{}
\end{gathered}
$$

Otherwise $\Phi_{(l+1,2)}(\mathrm{x})=0$ for all $\mathrm{x} \in D_{n} \times C_{5}$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\phi$

Proposition (3.2):

If $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$ where $p_{1}, p_{2}, \cdots \cdots, p_{m}$ are distinct primes and $\quad p_{i} \neq 2$ for all $1 \leq i \leq m$ and α_{i} any positive integers, then:

$$
M\left(D_{\left.\mathrm{n} \times \mathrm{C}_{5}\right)}=\left[\begin{array}{ccccccc}
& & & 1 & 1 & 1 & 1 \\
& 1 & 0 & 1 & 0 \\
2 R\left(C_{n}\right) \times M\left(C_{5}\right) & 1 & 1 & 1 & 1 \\
& & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots \cdots & 0 & 1 & 1 & 1
\end{array}\right]\right.
$$

which is $2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right] \times 2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right]$ square matrix .

Proof:

By theorem(3.1) we obtain the Artin characters table $\operatorname{Ar}\left(D_{n \times c_{5}}\right)$ and from theorem(1.11) we find the rational valued characters table

$$
\stackrel{*}{\equiv}\left(D_{n \times c_{5}}\right) .
$$

Thus by the definition of $\mathrm{M}(\mathrm{G})$ we can find the matrix $\mathrm{M}\left(D_{n \times c_{5}}\right)$:

$$
\mathrm{M}\left(D_{n} \times C_{5}\right)=\operatorname{Ar}\left(D_{n} \times C_{5}\right) .\left(\equiv\left(D_{n} \times C_{5}\right)\right)^{-1}=\left[\begin{array}{cccccccccccc}
2 & 2 & 2 & 2 & \cdots & \cdots & \cdots & \cdots & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & \cdots & \cdots & \cdots & \cdots & 1 & 0 & 1 & 0 \\
0 & 0 & 2 & 2 & \cdots & \cdots & \cdots & \cdots & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 2 & \cdots & \cdots & \cdots & \cdots & 1 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & & & & & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & \ddots & & & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & & \ddots & & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & & & \ddots & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & \cdots & \cdots & \cdots & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & \cdots & \cdots & \cdots & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccccccc}
& & & & 1 & 1 & 1 & 1 \\
& & & 0 & 1 & 0 \\
2 R\left(C_{n}\right) \otimes M\left(C_{5}\right) & & & 1 & 1 & 1 & 1 \\
& & & \vdots & \vdots & \vdots \\
& & & & 1 & 0 & 1 & 0 \\
0 & 0 & \cdots \cdots & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & \cdots \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & \cdots \cdots & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \cdots & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Which is $2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots+1\right] \times 2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots+1\right]$ square matrix .

Proposition (3.3):

If $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$ such thatg.c.d $\left(p_{i}, p_{j}\right)=1$ and $p_{i} \neq 2$ are prime numbers and α_{i} any positive integers, then:

$$
\begin{aligned}
& \mathrm{W}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{\mathbf{5}}\right)=\left[\begin{array}{cccccccccc}
\\
& & & & & & & 0 & 0 & 0 \\
0 & & 0 \\
& & & & & & 0 & 0 & 0 & 0 \\
& & I_{k} & & & & \vdots & \vdots & \vdots & \vdots \\
& & & & & & \vdots & \vdots & \vdots & \vdots \\
& & & & & & 0 & 0 & 0 & 0 \\
& & & & & & 0 & 0 & 0 & 0 \\
-1 & -1 & \cdots & \cdots & -1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & \cdots & \cdots & 0 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & \cdots & \cdots & 1 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & \cdots & \cdots & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Where $k=2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdot\left(\alpha_{3}+1\right) \cdots\left(\alpha_{m}+1\right)-1\right] \times 2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdot\left(\alpha_{3}+1\right) \cdots\left(\alpha_{m}+1\right)-1\right]$
They are $2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right] \times 2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right]$ square matrix.

Proof:

By using theorem(2.5) and taking the form $\mathrm{M}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{5}\right)$ from proposition(3.2) and the above forms of $\mathrm{P}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{5}\right)$ and $\mathrm{W}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{5}\right)$ then we have

$$
\mathrm{P}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{\mathbf{5}}\right) \cdot \mathrm{M}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{\mathbf{5}}\right) . \mathrm{W}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{\mathbf{5}}\right)=\left[\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & \cdots & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \cdots & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathrm{D}\left(D_{n} \times C_{5}\right)=\operatorname{diag}\{2,2,2, \ldots \ldots,-2,1,1,1\}
$$

Which is $2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right] \times 2\left[\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)+1\right]$ squarematrix.

Theorem (3.4):

If $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots \cdots p_{m}^{\alpha_{m}}$ where $p_{1}, p_{2}, \cdots \cdots, p_{m}$ are distinct prime numbers such that $p_{i} \neq 2$ and α_{i} any positive integersfor all $i, 1 \leq i \leq m$, then the cyclic decomposition $\mathrm{AC}\left(D_{n \times C_{5}}\right)$ is :

$$
\operatorname{AC}\left(D_{n \times C_{5}}\right)=\begin{gathered}
2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1 \\
\oplus_{i=1} \\
\left.\operatorname{AC}^{2}\left(D_{n \times C_{5}}\right)=\bigoplus_{i=1} \mathrm{AC}_{2} \mathrm{D}_{\mathrm{n}}\right)
\end{gathered} \oplus_{\mathrm{C}_{2}}
$$

Proof:-

From proposition (3.3) we have

$$
\begin{gathered}
\mathrm{P}\left(D_{n \times C_{5}}\right) \cdot \mathrm{M}\left(D_{n \times C_{5}}\right) \cdot \mathrm{W}\left(D_{n \times C_{5}}\right)=\operatorname{diag}\{2,2,2, \ldots,-2,1,1,1\}=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \ldots \ldots \ldots,\right. \\
\mathrm{d}_{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)-1\right)}, \mathrm{d}_{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1}, \mathrm{~d}_{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)}, \\
\left.\mathrm{d}_{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)+1} \mathrm{~d}_{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdot \cdots\left(\alpha_{m}+1\right)\right)+2}\right\} .
\end{gathered}
$$

By theorem (2.8) we get

$$
\begin{gathered}
\mathrm{AC}\left(D_{n \times C_{5}}\right)=\bigoplus_{i=1}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1} \\
2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1 \\
=\bigoplus_{i=1} \quad \mathrm{C}_{\mathrm{di}}
\end{gathered}
$$

From theorem(2.9) we have :

$$
\mathrm{AC}\left(D_{n \times C_{5}}\right)=\bigoplus_{i=1}^{2} \mathrm{AC}\left(\mathrm{D}_{\mathrm{n}}\right) \oplus_{\mathrm{C}_{2}}
$$

Example (3.6):

To find the cyclic decomposition of the groups $\mathrm{AC}\left(D_{24389 \times C_{5}}\right)$
, $\mathrm{AC}\left(D_{12901781 \times C_{5}}\right)$ and $\mathrm{AC}\left(D_{219330277 \times C_{5}}\right)$.
We can use above theorem :

1- $\mathrm{AC}\left(D_{24389 \times C_{5}}\right)=\mathrm{AC}\left(29^{3} \times c_{5}\right)=\bigoplus_{i=1} \quad \mathrm{C}_{2}=\bigoplus_{i=1} \mathrm{C}_{2}=\bigoplus_{i=1}^{2} \mathrm{AC}\left(\mathrm{D}_{29}{ }^{3}\right) \oplus$
C2 .
2- $\mathrm{AC}\left(D_{219330277} \times c_{5}\right)=\mathrm{AC}\left(\mathrm{D}_{29}{ }^{3} .23^{2} \times c_{5}\right)=\bigoplus_{i=1}^{2((3+1) \cdot(2+1))-1} \quad \mathrm{C}_{2}=\bigoplus_{i=1}^{23} \mathrm{C}_{2}$

$$
=\bigoplus_{i=1}^{2} \mathrm{AC}\left(\mathrm{D}_{29}{ }^{3} \cdot 23^{2}\right){ }^{\oplus} \mathrm{C}_{2} .
$$

$3-\mathrm{AC}\left(D_{219330277 \times C_{5}}\right)=\mathrm{AC}\left(\mathrm{D}_{29}{ }^{3} .23^{2} .17 \times c_{5}\right)=$

$$
2((3+1) \cdot(2+1) \cdot(1+1))-1
$$

$$
=\bigoplus_{i=1}^{47} \mathrm{C}_{2}=\bigoplus_{i=1}^{2} \mathrm{AC}\left(\mathrm{D}_{29}{ }^{3} \cdot 23^{2} .17\right) \oplus_{\mathrm{C}_{2}} .
$$

References

[1]Culirits . C and.Reiner . I ," Methods of Representation Theory with Appcation to Finite Groups and Order", John wily\&sons, New york, 1981.
[2] A. M, Basheer " Representation Theory of Finite Groups " ,AIMS, South Africa, 2006 .
[3] J Moori, " Finite Groups and Representation Theory " ,UniversityofKawzulu Natal, 2006 .
[4]H. R Yassien ," On ArtinCokernel of Finite Group", M.Sc. Thesis, Babylon University, 2000.
[5]T .Y Lam," Artin Exponent of Finite Groups ", Columbia University, New York, 1968.
[6] A . S, Abid . "Artin's Characters Table of Dihedral Group for Odd Number " , MSc.Thesis, university of kufa,2006.
[7]J . P Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.
[8]M . S Kirdar .M. S, " The Factor Group of The Z- Valued Class Function Modulo the Group of The Generalized Characters ",Ph. D. Thesis, University of Birmingham, 1982.
[9]Mirza . R . N , " On ArtinCokernel of Dihedral Group Dn When n is An Odd Number ",M.Sc. thesis , University of Kufa ,2007.
[10] H .H Abass," On Rational of Finite Group D_{n} when n is anodd "Journal Babylon University,vol7,No-3,2002.
[11]Knwabusz . K, " Some Definitions of Artin's Exponent of Finite Group ", USA.National foundation Math.GR.1996.
[12] David .G," Artin Exponent of Arbitrary Characters of Cyclic Subgroups ", Journal of Algebra,61,pp.58-76,1976.

حول النواةالمشارك -آرتن للزمرة5 ${ }_{5}$ × عندماnعد فردي

باسم كريم محسن

المديرية العامة للتربية في محافظة كربلاء

المستخلّص :
ان زمرة كل الشو اخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الثو اخص المحتثة من الثواخص الأحادية للزمر الجزئية الدائرية $A C(G)=\bar{R}(G) / T(G)$ تكون زمرة ابيلية منتهية و تسمى النواة المشارك ـآرتن للزمرة G .إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة AC(G) تم اعتبار ها في هذا البحث
 أعداد أولية مختلفة لا تساوي 2 فان :

$$
2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1
$$

$$
\begin{aligned}
\mathrm{AC}\left(D_{n} \times C_{5}\right)= & \bigoplus_{i=1}^{2} \\
& \bigoplus_{i=1}^{2} \mathrm{AC}\left(\mathrm{D}_{\mathrm{n}}\right)
\end{aligned} \mathrm{C}_{2}
$$

