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Abstract 

         In this paper  we study the fuzzy norm and the fuzzy normed space, then we 

define  the  fuzzy  normed  space and  study  the  notion of  weak and  strong fuzzy 

convergence of sequences in fuzzy normed spaces. After that we  prove some basic 

results of  fuzzy convergent in these spaces.  
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1. Introduction 

          The notion of  fuzzy norm on a linear space was  introduced  by Katsaras [1]      

in 1984. Later on many other Mathematicians  like Felbin [2] in 1992, Cheng and 

Mordeson  [3] in 1994, Bag and  Samanta  [4] in 2003  etc, have given different 

definitions of fuzzy normed spaces. In this paper we define fuzzy continuity and fuzzy  

boundedness of functions  in fuzzy normed spaces also we define  strong and  weak 

fuzzy convergence of sequences in fuzzy normed space and discuss the relation 

between them. Finaly we prove some new results on fuzzy convergent in these spaces.  

2. Preliminaries  

In this section some fundamental definitions are given which are used in this paper. 

Definition (2.1) : [5] A binary operation ∗ : [0,1] × [0,1]→[0,1] is called a t-norm if ∗ 

is satisfies the following conditions: 

      (𝒊) ∗ is commutative and associative, 

      (𝒊𝒊) 𝑎 ∗ 1= 𝑎 for all 𝑎 ∈ [0,1], 
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     (𝒊𝒊𝒊) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑  whenever  𝑎 ≤ 𝑐  and  𝑏 ≤ 𝑑  for all (𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]).                  

If  ∗ is continuous then it is called continuous t-norm. 

Definition (2.2) : [6] The 3-tuple (𝑋, 𝑁,∗) is said to be a fuzzy normed space if 𝑋 is a 

vector space, ∗ be a continuous t-norm and 𝑁 is a fuzzy set on 𝑋 × (0,∞) satisfying 

the following conditions for every 𝑥, 𝑦 ∈ 𝑋  𝑎𝑛𝑑  𝑡, 𝑠 > 0: 

      (N.1) 𝑁(𝑥, 𝑡) > 0, 

      (N.2) 𝑁(𝑥, 𝑡) = 1 ⟺  𝑥 = 0, 

      (N.3) 𝑁(𝛼𝑥, 𝑡) = 𝑁 (𝑥,
𝑡

|𝛼|
) for all 𝛼 ≠ 0, 

      (N.4) 𝑁(𝑥, 𝑡) ∗ 𝑁(𝑦, 𝑠) ≤ 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠), 

      (N.5) 𝑁(𝑥, . ): (0,∞) → [0,1] is continuous, 

      (N.6) lim 𝑡→∞𝑁(𝑥, 𝑡) = 1. 

Definition (2.3) : [4] Let (𝑋, 𝑁1 ,∗) and (𝑌, 𝑁2 ,∗) be two fuzzy normed spaces and  

𝑓 ∶ 𝑋 → 𝑌 be a function:   

(1)  𝑓 is called weakly fuzzy continuous at  𝑥0 ∈ 𝑋  if for given 𝜀 > 0 and 𝛼 ∈ (0,1), 

there exists some 𝛿 ∈ ℤ+ such that for all 𝑥 ∈ 𝑋, 

𝑁1(𝑥 − 𝑥0 , 𝛿) ≥ 𝛼   implies   𝑁2(𝑓(𝑥) − 𝑓(𝑥0) , 𝜀) ≥ 𝛼. 

(𝟐)  𝑓 is called strongly fuzzy continuous at  𝑥0 ∈ 𝑋  if given 𝜀 > 0, there exists some 

𝛿 ∈ ℤ+ such that for all 𝑥 ∈ 𝑋, 

𝑁2(𝑓(𝑥) − 𝑓(𝑥0) , 𝜀) ≥  𝑁1(𝑥 − 𝑥0 , 𝛿). 

(3) Let 𝑓 be linear function. 𝑓 is called weakly fuzzy bounded on 𝑋 if for every 𝛼 ∈

(0,1), there exists some 𝑚𝛼 > 0 such that for all 𝑥 ∈ 𝑋, 

𝑁1 (𝑥 ,
𝑡

𝑚𝛼
) ≥ 𝛼  implies  𝑁2(𝑓(𝑥), 𝑡) ≥ 𝛼, ∀𝑡 > 0. 

(4) Let 𝑓 be linear function. 𝑓 is called strongly fuzzy bounded on 𝑋 if for every 𝛼 ∈

(0,1), there exists some 𝑀 > 0 such that for all 𝑥 ∈ 𝑋, 

𝑁2(𝑓(𝑥), 𝑡)  ≥ 𝑁1 (𝑥 ,
𝑡

𝑀
),  ∀𝑡 > 0. 

As in classical theory, the following is easy to prove. 
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Theorem (2.4) : [4] Let (𝑋, 𝑁1 ,∗) and (𝑋, 𝑁2 ,∗) be two fuzzy normed spaces and  

𝑓 ∶ 𝑋 → 𝑌 be a linear function. Then 𝑓 is strongly (𝑤𝑒𝑎𝑘𝑙𝑦) fuzzy continuous if  

and only if strongly (𝑤𝑒𝑎𝑘𝑙𝑦) fuzzy bounded. 

3. Main results 

Theorem (3.1) : Let (𝑋, 𝑁,∗) be a fuzzy normed space, we further assume that, 

        (N.7) 𝛼 ∗ 𝛼 = 𝛼    ∀𝛼 ∈ [0,1] 

        (N.8) 𝑁(𝑥, 𝑡) > 0  ∀𝑡 > 0 ⟹ 𝑥 = 0.  

Define ‖𝑥‖𝛼 = inf {𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼 }. Then{ ‖𝑥‖𝛼 ∶ 𝛼 ∈ (0,1)}  is an ascending 

family of norms on 𝑋. We call these norms as  𝛼-norms on 𝑋 corresponding to fuzzy 

norm 𝑁 on 𝑋. 

Proof : Let 𝛼 ∈ (0,1). To prove ‖𝑥‖𝛼 is a norm on 𝑋. It is easy to see that (N.1),  

(N.2), (N.3), (N.5) and (N.6) are true. We now prove (N.4) :                                                

‖𝑥‖𝛼 + ‖𝑦‖𝛼 = inf  { 𝑠 > 0 ∶ 𝑁(𝑥, 𝑠) ≥ 𝛼 } + inf  { 𝑡 > 0 ∶ 𝑁(𝑦, 𝑡) ≥ 𝛼 }  

                       = inf  { 𝑠 + 𝑡 > 0 ∶ 𝑁(𝑥, 𝑠) ≥ 𝛼 , 𝑁(𝑦, 𝑡) ≥ 𝛼 } 

                       = inf{ 𝑠 + 𝑡 > 0 ∶ 𝑁(𝑥, 𝑠) ∗ 𝑁(𝑦, 𝑡) ≥ 𝛼 ∗ 𝛼 = 𝛼 } 

                       ≥ inf{ 𝑠 + 𝑡 > 0 ∶ 𝑁(𝑥 + 𝑦 , 𝑠 + 𝑡 ) ≥ 𝛼 } 

                       = ‖𝑥 + 𝑦‖𝛼, which proves (N.4). 

Let 0 < 𝛼1 < 𝛼2 < 1. 

‖𝑥‖𝛼1 = inf  {𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼1}  and  ‖𝑥‖𝛼2 = inf  { 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼2 }. 

Since 𝛼1 < 𝛼2 , { 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼2 } ⊂ { 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼1 } 

⟹ inf{ 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼2 } ≥ inf{ 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼1 }  

⟹ ‖𝑥‖𝛼2  ≥ ‖𝑥‖𝛼1.                                                                                                                

Thus, we see that { ‖𝑥‖𝛼 ∶  𝛼 ∈ (0,1)} is an ascending family of norms on 𝑋.   

Definition (3.2) : [7] Let (𝑋, 𝑁,∗) be a fuzzy normed space. 

               (a) A sequence {𝑥𝑛} in 𝑋 is said to be fuzzy converges to 𝑥 𝑖𝑛 𝑋  if for each 

𝜀 ∈ (0,1) and each 𝑡 > 0, there exists 𝑛0 ∈ ℤ
+ such that  𝑁(𝑥𝑛 − 𝑥 , 𝑡) > 1 − 𝜀 for 
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all 𝑛 ≥ 𝑛0 (or equivalently  lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑥 , 𝑡) = 1 ) and 𝑥 is called the limit of the 

sequence {𝑥𝑛}. 

              (b) A sequence {𝑥𝑛} in 𝑋 is said to be fuzzy Cauchy if for each  𝜀 ∈ (0,1)  

and each 𝑡 > 0, there exists 𝑛0 ∈ ℤ
+ such that 𝑁(𝑥𝑛 − 𝑥𝑚 , 𝑡) > 1 − 𝜀 for all  

𝑛,𝑚 ≥ 𝑛0 (or equivalently lim
𝑛,𝑚→∞

𝑁(𝑥𝑛 − 𝑥𝑚 , 𝑡) = 1 )  and 𝑥 is called the limit of 

the sequence {𝑥𝑛}. 

               (c) A fuzzy normed space in which every fuzzy Cauchy sequence is a fuzzy  

convergent is said to be complete.                                          

Definition (3.3) : Let (𝑋, 𝑁,∗) be a fuzzy normed space. The sequence {𝑥𝑛} is said   

to be: 

             (𝒊) weakly fuzzy convergent to 𝑥 ∈ 𝑋 if and only if, for every  𝜀 > 0 and   

𝛼 ∈ (0,1), there exists some 𝑛0 ∈ ℤ
+ such that  𝑁(𝑥𝑛 − 𝑥 , 𝜀) ≥ 1 − 𝛼 for all 𝑛 ≥ 𝑛0. 

In this case we write  𝑥𝑛
𝑤𝑓
→  𝑥. 

             (𝒊𝒊) strongly fuzzy convergent to 𝑥 ∈ 𝑋 if and only if , for every 𝛼 ∈ (0,1),  

there exists some 𝑛0 ∈ ℤ
+ such that   𝑁(𝑥𝑛 − 𝑥 , 𝑡) ≥ 1 − 𝛼  for all 𝑡 > 0. In this case 

we write  𝑥𝑛
𝑠𝑓
→  𝑥.   

Theorem (3.4) : If a sequence {𝑥𝑛} is 𝑠𝑓-convergent then it is 𝑤𝑓- convergent to  

the same limit, but not conversely. Therefore 𝑠𝑓-convergence implies 𝑤𝑓-

convergence. For converse, we have the following example. 

Example (3.5) : Let 𝑋 = ℂ and consider the fuzzy norm 

𝑁(𝑥, 𝑡) = {

𝑡 − |𝑥|

𝑡 + |𝑥|
𝑡 > |𝑥|

0 𝑡 ≤ |𝑥|

 

on  𝑋 . We can find  𝛼-norms  of 𝑁 since it satisfies (N.6) condition.                                    

Thus 𝑁(𝑥 , 𝑡) ≥ 𝛼 ⇔  
𝑡−|𝑥|

𝑡+|𝑥|
 ≥ 𝛼 ⟺ 

1+𝛼

1−𝛼
 |𝑥| ≤ 𝑡.                                                                    

This show that ‖𝑥‖𝛼 = inf { 𝑡 > 0 ∶ 𝑁(𝑥, 𝑡) ≥ 𝛼 } =
1+𝛼

1−𝛼
 |𝑥|. 
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We now show that the sequence { 𝑥𝑛 } = { 
1

𝑛
 } is 𝑤𝑓-convergent but not  𝑠𝑓-

convergent. Since each ‖. ‖𝛼 is equivalent to | . |, obviously, { 𝑥𝑛 } is 𝑤𝑓- convergent  

to 0. However, this convergence is not uniform in 𝛼. Indeed; for given 𝜀 > 0,   

‖𝑥𝑛‖𝛼 = 
1 + 𝛼

1 − 𝛼
 |𝑥𝑛| < 𝜀 ⟺ 

1 + 𝛼

(1 − 𝛼)𝜀
 < 𝑛. 

We cannot find desired  𝑛0  since  
1+𝛼

(1−𝛼)𝜀
 → ∞  𝑎𝑠  𝛼 → 1. 

Theorem (3.6) : Let {𝑥𝑛} and {𝑦𝑛} are sequences in a fuzzy normed space (𝑋, 𝑁,∗)  

and for all 𝛼1 ∈ (0,1) there exists 𝛼 ∈ (0,1) such that  𝛼 ∗ 𝛼 ≥ 𝛼1 

(1) The weak limit 𝑥 of {𝑥𝑛} is unique. 

(2) If 𝑥𝑛  
𝑤𝑓
→   𝑥  then 𝑐𝑥𝑛  

𝑤𝑓
→   𝑐𝑥   for all  𝑐 ∈ 𝐹/{0}.  

(3) If  𝑥𝑛 
𝑤𝑓
→   𝑥 , 𝑦𝑛  

𝑤𝑓
→   𝑦 , then 𝑥𝑛 + 𝑦𝑛  

𝑤𝑓
→   𝑥 + 𝑦.                                                    

Proof :  

(1) Let  {𝑥𝑛} be a sequence in 𝑋 such that 𝑥𝑛  
𝑤𝑓
→   𝑥 and  𝑥𝑛

𝑤𝑓
→  𝑦  as  𝑛 → ∞. Then for  

all 𝜀 , 𝜀1  > 0 such that  lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑥 , 𝜀1) = 1, lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑦 , 𝜀 − 𝜀1) = 1, 

𝑁(𝑥 − 𝑦 , 𝜀) ≥ 𝑁(𝑥𝑛 − 𝑥 , 𝜀1 ) ∗ 𝑁(𝑥𝑛 − 𝑦 , 𝜀 − 𝜀1 ).                                                       

Taking limit as  𝑛 → ∞ ∶  𝑁(𝑥 − 𝑦 , 𝜀) ≥ 1 ∗ 1 = 1. 

But   𝑁(𝑥 − 𝑦 , 𝜀) ≤ 1 ⟹ 𝑁(𝑥 − 𝑦 , 𝜀) = 1.  

Then by axiom ( N.2) 𝑥 − 𝑦 = 0 ⟹ 𝑥 = 𝑦. 

 (2) Since 𝑥𝑛
𝑤𝑓
→  𝑥 then for every 𝜀 > 0 and 𝛼 ∈ (0,1) there exists 𝑛0 ∈ ℤ

+ such that  

 𝑁(𝑥𝑛 − 𝑥 , 𝜀) ≥ 1 − 𝛼  for all 𝑛 ≥ 𝑛0. 

 Put  𝜀 =
𝜀1

|𝑐|
  such that 𝜀1 > 0, 𝑐 ∈ 𝐹/{0}.         

𝑁(𝑐𝑥𝑛 − 𝑐𝑥 , 𝜀1 ) = 𝑁 (𝑥𝑛 − 𝑥 ,
𝜀1

|𝑐|
 ) = 𝑁(𝑥𝑛 − 𝑥 , 𝜀) ≥ 1 − 𝛼.  

Then 𝑐𝑥𝑛
𝑤𝑓
→  𝑐𝑥. 

(3) For each 𝛼1 ∈ (0,1) there exists 𝛼 ∈ (0,1) such that  

(1 − 𝛼) ∗ (1 − 𝛼) ≥ (1 − 𝛼1).  
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Since 𝑥𝑛  
𝑤𝑓
→  𝑥 then for every 𝜀 > 0 and 𝛼 ∈ (0,1) there exists 

𝑛1 ∈ ℤ
+ , 𝑁 (𝑥𝑛 − 𝑥 ,

𝜀

2
 )  ≥ 1 − 𝛼    for all 𝑛 ≥ 𝑛1. 

Since 𝑦𝑛  
𝑤𝑓
→  𝑦 then for every 𝜀 > 0 and 𝛼 ∈ (0,1) there exists 𝑛2 ∈ ℤ

+ Such 

that   𝑁 (𝑦𝑛 − 𝑦 ,
𝜀

2
 ) ≥ 1 − 𝛼 for all 𝑛 ≥ 𝑛2. 

Take  𝑛0 = min { 𝑛1 , 𝑛2 } and for all 𝜀 > 0, there exists 𝑛0 ∈ ℤ
+ such that: 

𝑁((𝑥𝑛 + 𝑦𝑛  ) − (𝑥 + 𝑦), 𝜀 ) = 𝑁((𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦) , 𝜀 )  ≥ 

𝑁 (𝑥𝑛 − 𝑥 ,
𝜀

2
 ) ∗ 𝑁 (𝑦𝑛 − 𝑦 ,

𝜀

2
 )  > (1 − 𝛼) ∗ (1 − 𝛼)  ≥ (1 − 𝛼1) 

for all  𝑛 ≥ 𝑛0 . Then  𝑥𝑛 + 𝑦𝑛  
𝑤𝑓
→  𝑥 + 𝑦. 

Proposition (3.7) : [8] Let (𝑋, 𝑁,∗) be a fuzzy normed space satisfying ( N.8 ) and  

{𝑥𝑛} be a sequence in 𝑋. Then lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑥 , 𝑡) = 1   if and only if  

 lim
𝑛→∞

‖𝑥𝑛 − 𝑥‖𝛼 = 0 for all 𝛼 ∈ (0,1). 

Theorem (3.8) : Let {𝑥𝑛} be a sequence in fuzzy normed space (𝑋, 𝑁,∗) satisfying       

( N.8 ). Then:  

(1) 𝑥𝑛  
𝑤𝑓
→  𝑥 if and only if for each 𝛼 ∈ (0,1), lim

𝑛→∞
‖𝑥𝑛 − 𝑥‖𝛼 = 0. 

(2) 𝑥𝑛
𝑤𝑓
→  𝑥 if and only if  lim

𝑛→∞
‖𝑥𝑛 − 𝑥‖𝛼 = 0  uniformly in 𝛼 where   

‖. ‖𝛼  are  𝛼-normes of  𝑁. 

Proof :  

(1)  Let 𝑥𝑛  
𝑤𝑓
→  𝑥 ⟹ ∀  𝛼 ∈ (0,1)  and  𝜀 > 0, there exists some 𝐾 ∈ ℤ+ such that  

𝑁(𝑥𝑛 − 𝑥 , 𝜀 ) ≥ 1 − 𝛼  for all  𝑛 ≥ 𝐾.    

Since ‖𝑥𝑛 − 𝑥‖𝛼 = inf  { 𝑡 > 0 ∶ 𝑁(𝑥𝑛 − 𝑥 , 𝑡 ) ≥ 𝛼 }  by ( N.8 ) 

 lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑥 , 𝑡 ) = 1 and by proposition (3.7) we obtain 

 lim
𝑛→∞

‖𝑥𝑛 − 𝑥‖𝛼 = 0. 

(2) Let 𝑥𝑛  
𝑠𝑓
→  𝑥 ⟹ ∀ 𝛼 ∈ (0,1),  there exists  some 𝐾 ∈ ℤ+ such that 
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 𝑁(𝑥𝑛 − 𝑥 , 𝑡 ) ≥ 1 − 𝛼  for all  𝑡 > 0. 

 Since ‖𝑥𝑛 − 𝑥‖𝛼 = inf  { 𝑡 > 0 ∶ 𝑁(𝑥𝑛 − 𝑥 , 𝑡 ) ≥ 𝛼 }  by ( N.8 ) 

 lim
𝑛→∞

𝑁(𝑥𝑛 − 𝑥 , 𝑡 ) = 1 and by proposition (3.7) we obtain 

 lim
𝑛→∞

‖𝑥𝑛 − 𝑥‖𝛼 = 0. 

 

بابيةبعض النتائج عن التقارب الضبابي القوي والضعيف في الفضاءات المعيارية الض  

 الخلاصة

    ياري الضبابيثم عرفنا الفضاء المعدرسنا المعيار الضبابي والفضاء المعياري الضبابي  في هذا البحث         

 بعد ذلك  ةبابيالض  المعيارية  في الفضاءات  للمتتابعات ف والضعي  القوي  التقارب الضبابي  مفهوم  درسناو

 برهنا بعض النتائج الأساسية للتقارب الضبابي في تلك الفضاءات.
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