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Abstract : In this research, we have important results about finding the relationship between
the best approximation degree and the so called 7 — modulus ( or Sendov- Popov modulus ) of

order k in the space L, ,(I), p<I1, and the polynomial is copositive with the function f
at the points in an interval [ =[-b,b], and also found assessment between the best
approximation degree by algebraic polynomial of degree <k —1 , and the modulus of
smoothness of degree <k , to the function f e L, ,(1) N ANJ),p<l.

1.1. INTRODUCTION , DIFINITIONS AND MAIN RESULTS
The theory of Whitney is one of the achievements of scientist Hassler =~ Whitney in
approximation theory . The following theory called Whitney theorem , which provides the

following : (Let f €L, [a,b],0<p<oo, then there exists ¢, €II,_,a polynomial of

degree < k —1 ,such that
|/ = qull, oy S corn(f:b-ala.b]),

Whitney theorem was proved by Burkill [6] when (k =2, p =), Whitney ([6],[7]) when
(p=0o0), Brudnyi [12] when (1< p <o), Storozhenko [4] when (0< p<l1). In [9]
K.A.kopotun proved the Whitney theorem of type k-monotone functions . In(2003) E.S.

Bhaya [5] proved in theorem (2.1.1) the Whitney theorem of interpolators type for k-
monotone functions for K.A.Kopotun:

Theorem 1.1.1: Let mke N,m<k and feA* AW, (I).Then for any, n>k—1, there
exists a polynomial p, eIl such that :

1 =], etpioor, (F7 7.1, for =1,

The classical Whitney theorem establishes the equivalence between the modulus of
smoothnessw, (f,|I],1),and the error best approximation E,(f), of a function f:/—> R

by algebraic polynomials of degree <r—11in L, 1< p <o [5].

1.1.2.THE WEIGHTED QUASI NORMED SPACE
The weighted normed linear space L, ,(/),p <1 , which is the set of all functions f on

the interval I c R, I =[-b,b] , b is a positive integer and y is increasing function called
weight , hat is the weighted quasi normed space can be define in form
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And the (quasi) norm || /], .y <, where as always,
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1.1.4.THE SPACE L, ,(I), p<1
Let f function in L, (/), p<l quasi-normed spaces , where [ =[-b,b], be an

Lw’p(l)—{f,lec‘ﬁ—)iﬁz[j

1

P \p
dt| <o, p<l}.

JAU)
w(?)

I

7 \p
dt| ,tel ... (1.1.3

interval such that / < R and the function y is a positive , that is f(#)w(¢) >0 for every
f()20and tel.

The different structure of the spaces L 0 < p <1 and the numerous questions by others

v.p°
lead us to understand the need for the following few facts about L, , , p<1.

The study of approximation will be using polynomials, which will represented by the
symbol p . The polynomials used in our work differ in the form and according to the degree

of what we want to achieve in the proof . Let s >0 and let J, = {j, |, be the collections of

i

points, so that :

Ju=-b<j, <..<j <b=j,,wherefor s=0, J,=¢ . Weset pn(t):H(t—jl.).

i=l1

and we let A’(J,) be the set of functions f which change their sign exactly at the points
Jj, €J,, and we will write ' € A’ . Note that our assumption is equivalent to

SOOI, J,)=20, —=b<t<b.By([l1] )for 0<g< p.,and by the same method there exists
c(q) < oo, such that

u

L,,) < Hf L, () < c(q)HfHLw(l)-

We consider the space L

IA; =]

I

».p -consisting of all functions f* on an interval / for which

Mpdx<oo
(1) '

1.1.5. MODULUS OF SMOOTHNESS

The modulus of smoothness are intended for mathematicians working in approximation
theory, numerical analysis and real analysis. Measuring the smoothness of a function by
differentiability is too crude for many purposes in approximation theory. More subtle
measurement are provided by the modulus of smoothness. We will use modulus of
smoothness which are connected with difference of higher orders.

For every function f* we define the kth symmetric difference ([10]) of feL, (1) , is given

by
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k !
= K , 1s the binomial coefficient.
i) iW(k—-i)!

The kth usual modulus of smoothness ([3]) of a function feL,  (I),defined by

A (f)

a)k(f,é,l)w,p:: sup

0<h<s

520 .. (116

b
Ll/l,p([)

o, (f,0,1), , = sup

0<h<s|| | ;
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(.](_l)k—i 2
—o \ ! A
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Ly ()
The so called 7 —modulus (or sendov-popov modulus) ([8]) an averaged modulus of
smoothness, defined for bounded measurable functions on / by:

Tk (f’ S, ])t//,p - Hwk (f"’ 5)Hl1,,p(1)
Where

a)k(f,t,c?)l/,:sup 7 yt—e t——,t+7

M) ], +k2h [ ks "ﬂm[_b,b]

w(y +7)

is the kth local modulus of smoothness ([1])of f .From the definition one can easily see

Tk(f9591)1//,oo :a)k(f9591);//,oo

A new way of measuring smoothness was introduced by Ditzian and Totik ([13]). The
Ditzian-Totik modulus of smoothness of f € L, ,(I) , p <1 which is defined for such an f

as follows:

[ =[-b,b] (117

O (f:8,1),., = SUp [Ny, (/)

‘LV,,,,m ’
After this introduction , the main results which wants to prove :

Theorem 1.1.8.(Whitney Theorem) Let felL, (/)N AN(J,), p<1l , and let
g, €, NA(J,), k>1, interpolate f at k-1 points in side J, where
J, = [—b+/,t|l|b—u|l] , then

1

Hf_gk—l (f)HLV,,p(l) = C(pak)wl?(fa ’I)(//,p



Theorem 1.1.9. Let felL, , (I)NA°(J,), p<l then there exist a polynomial
Py €, NA(J,), k>1 satisfy:

1

|/ =Pl o <CbITSNILD,,

1.2. NEW CHEBYSHEYV PARTITION

We have used in this paper the following notations , facts also the partition of period 7, ,
therefore we found new Chebyshev partition , which is take the form:

X, =acos?Z 5 @ =positive integer such that 1<a <o, 0<j<n ,toan interval /. Now we
n
1

2
n

hence

. t
denote [‘fz[XjH’Xj] hj=‘[]‘=X]—XJH » 0<j=n ’and An(t):?-k

oA, ()<h, <c,A (2) fortel;.

For J, = {jl,...,js Jo=—b<j,<.j, <b= jm} we denote by A°(J,) the set of all functions

fel,,()nA'(J,) has 0<s<o change sign & times in J_ [2],in particular if s =0, then
A =a'(s,) denotes the set of all nonnegative functions on [-b,b].

Let & =min|j, —j)| where jy==b and j,, =b.1f je(X,,,,X,;),i=1..s thenit
is convenient to denote ;' <x, . and j“V>x =, k>1suchthat j/<j'<..< JE
that 1s

k-1 k-1 Ji+ g it
jie('l'(‘})’ji(_))’ V:L...,k—z ’fiz[ji(‘})’ji(_)] ’ and Ji: lk_i > lk—ll ’

1<j<n,then c]hj < |€l.| = (k—1)|Jl.| < czhj , Where c is a positive number , i=1,...,s , and
there for , we get the following facts which we used to prove many results

|€i|z|Ji|zhj ~A,(t) also n‘ﬂi‘ ~nA, ()= @(t) forte, . (1.2.1

We would like to point out that the symbol ¢, , v=1,...,k—1, not represent a derivatives

but a symbol of a set of points that exist between X ;) and X meaning within an period

J@)+1>

¢, ,and ; _ U ;> we proved many results and theories on the period /,, and the fact that the

periods ¢, , i =1,...,s 1somorphic and have the same properties , so is the proof of these
results is true on the aggregate period / . In [5], recall that for any continuous function f on
[a,b] there exist an algebraic polynomial p, , of degree < k —1 interpolating f inside [a,b]
,such that

|f = Pl oy S P (f b= a[a,b]), (122

1.3.AUXILIARY RESULTS

Our aim in Auxiliary results is to present the following Lemma and demonstrate its , which
are important to complete the target which we want to reach it.



Lemma 13.1. Let J </, and feL, ({)nA(()),
P (f)ell, , NA(¢,) interpolate f at k—1
4 >0, we have two cases:

Jo+ i
Case (1): For &= k—11+y|J|<]“‘ K

p <1.Then there exist

, points in side J, , then for any constant

, we have

i O, iy < Coo 0l A,

1 5N]

. .(v)
~ g
Case (2): For b :‘]lk—‘]i—u|Jl.| > ;" we have

Hpk 1(f)H NG 1,+k1,(: v <C(p, ,U)HfH

k-1
b 1,+1§ )

]

Proof:

Case (1) :Let J, c /,, and suppose p, ,(f)= Zf(])H(t —J;), be alinear

i=1
0<j<n

polynomial of degree <k -1, interpolating f inside J, and belongs to A’(’,).Since

f(j;)=0 , Vi=l,..,s,and we now that p, ,(f) is nondecreasing for j, >¢., and hence
P (f)20 for j, >¢, (since f(¢,)20).

Thus f—p, ,(f)=0, changes signinside /,. In particular f — p, ,(f) =0 for

(k1)

: (k-1) - (k1)
Ji+Ji

G >T,hence P (NS for J kill < kill +ul < i
then for any constant g > 0 such that :
; (k1)
E:%+u|J|<]“‘ " we have
Hpk 1(f)” ft+ft(A ])’ < C(p tu)HfH ft+ft(A ])’ al -
-1
(k=1)

Since |J1~| ~ {%,E } , we conclude that

Hpk 1(f)” /,+J, it o <C(p, H)Hf” J,+J, VAV .. (1.3.2

Case (2): By the same method in case (1) and in particular /' —p, () =0



. . (v) . . (v)
T+ -+ 7.
for j < Jlk_J - hence p, ()3 for 7 <= pl| <2 then for any

constant u > 0,such that

. .(v)
szz Jl

_ ()
o1 u|Ji|>]i , we have

Hpk—l (f)HLw,p[g’j",jw] < C(Paﬂ)HfHLV,,,,[E,j’:ﬁ”]

Jl +Jl
k-1

I i, <C(p, 1)) T i (133

Since |J | ~ , we conclude that

From the above cases and since J, super set in the interpolate set of J, and by (1.3.2) and
(1.3.3) then obtain

o, o, <Colf], -

Lemma 134. Let felL, (/,)NA’(¢;,) , then there exist p, (f)ell,, NA"(/,)
interpolate f at k£ —1 points inside /,, such that

|7 =P (D, ., <Clp (135

Proof:
For an interval J, , such that

2

L G L %D (D) (v
J, = Ji*Ji ,‘] J , we have |J | Y
k-1 k-1 k-1

k-1 k-1
Since ¢, =(k—1)J, , which means ¢, consists of k—1 interval J, with (k—1)|Jl.| =

k > 4, therefore let
+J1(k ! j'(k—])
k-1 7

(v) Jit ji(V)
k-1

It is sufficient to prove (1.3.5) for the interval /,
Jclk=-1)J, =0, ,k>4.

. . (v) . . (k-1)
A+ A+
we denote  /,\J, _—( {jf“), Ji T ] u(‘jl J: ,jf"‘”} ) .

VAR also |J,|~ . (1.3.6

, from the fact (1.2.1) assume



Now ,since felL,, (¢ )NA(¢,),s0 by Lemma (1.3.1) there exist p, ,(f) interpolate f

at k points inside J,, hence we get from

lpa (P, = S, 0

. ! + (V)
since (1.3.6) are satisfy then we get , where J, :{ j ,‘] Ji and

k-1
" i+ (k=1)
Ji = (‘]lk;l’]l(k 1) , that

| O, (= C@mlf,,

|2 (D, (=@l ],

;) (k1)
And from the fact that £, \J, = ( {]f”),‘] k+ ‘]1 ] u(%,]f’“”} ), we get

POl 0y = CPA, 10

Now , applied the same relation in (1.2.2) , for an interval J, , we get

If =P, o) SCPIOL NI,
since |/,| >0 , then we get

1f =D, o) SCOOE SN,
since J, = (k—1)J, = {, , then we get

1f = PrCO,, o) SCRROOEL N LD, .

Lemma 1.3.7. Let feL, (/)N A°(f)), p<1 , then there exist a polynomial
q,,(f)ell, ,nA’(¢,) interpolate f at k—1 the points inside /,, such that

)

N7

|f =i (O, o, <CCp.

Proof:
By using Lemma (1.3.4), there exist a polynomial ¢, , of degree <k —1 copositive with f

in /, and interpolate f at the points inside ¢,, hence we have from (1.3.4)



I =acil, ., <Clp.0af(f.

Ei

:Ei)y/,p

‘f —q, ‘ < C(p)Hf s Hg,,,,(f,)

then we get

‘f_qk—l‘ <C(p, by (f,

Ei

:Ei)y/,p

Now by take L, ,(¢,)-norm of both sides we obtain

Hf ~ Gk

1

oo SC@Rlr L,

By 7 -modulus (or Sendove Popov modulus) with weight v, for f on ¢ .» we get

| =ail, ., <Clpbr (1,

:Ei)y/,p

1.4. PROOF OF THEOREM 1.1.8

Let u>0 be a fixed and let /¢,, i=1..,s be an interval of Ilength
0, =7% " =Y, k>1,v=1..,k—-2 inthe center of / =[~b,b], that is

dis(¢,,—b) =dis(/,,b), then by (1.3.4) there exist a linear polynomial qZ_l ell, ;| copositive

and interpolate f at k£ points inside ¢, NJ, , hence we get

1

[f=aiil,, ., <CRel (S JILD),, (14l

I

Also by (1.3.4) there exist a linear polynomial 4, , =h, (f)ell, , copositive and

. . . 1
interpolate f at k points in side J, , where ng{b—,u|[|,b—%y|l|} ,/,t<§ and

b—%u\l\ <b, then

”f_hm (f)”Lw(l) - Hf_q;:*' Hia ~hey (f)HLw(”

<cplf-aif, ,+clai-rao,
=cplf -ai|, ,+ @t -al,
< C(p)‘ f- qZ—lH[w'pu) + C(p)Hhk—l (f =i )HLW(JC)




where J. =[b—pll|,b] , and|J,|=|J.| , since we have from an interval J, and J. that

b—u|1| Sb—%ym , hence

If = O, oy sC@f =aia], , +C@ha(f=ai)]

Ly p (D) Ly ,(Jg)
by lemma (1.3.1) , we get
1f = b, < CD|f —aial,, +CDNF =g, |
by lemma (1.3.7) and inequality (1.4.1) we get
|f =k (D, , < Cp.R)af (flILD),, (142

also there exist a linear polynomial g, , €1, |, copositive and interpolate f at k points in
side J, , where —b+u|l| >—p also b—u|l| < b, hence

Hf ~ 8k HLV/,p(/) - Hf ~ha (D + 0, ()= 8 (f)HLw,p(’)
<CP|f ~hal,, o+ CPNgis =ha (O,
= C(p)Hf - hk—l HLV/J?(]) + C(p)Hgk_l (f B hk_l )HLW,p([)

< C(P)Hf - hk—l le,p(’) + C(p)Hgk—l (f - hk—l )HLV,,p(J,\,)

where J, =[-b+u

1},b] , and |JA| ~ |Jk| , since we have from an interval J, and J, that

—b+u|l| < b—u|l| , hence
”f B gkfl(f)”vap(l) = C(p)”f _hkflanvp([) + C(p)”gkfl(f_ hkfl)”LW'P(JA)

by lemma (1.3.1) , we get

Hf 8k HLW(I) < C(p)Hf =y HLW(I) + C(p)Hf =y HLV,,p(JA)
and by lemma (1.3.7) and inequality (1.4.2) we get

£ =2erDl,, ) <cobof (£ 1

0D, , ..(143

(1.4.3) means there exist a polynomial copositive and interpolate f in an interval J, , such
that —b+ u|l | < b and satisfy the Whitney theorem .



And by the same method in the above we can get the same result for an interval J, such
that —b<b—pll| .
Hence the result is true for 7. If g =0 then the inequality (1.4.3) is not true.

1.5. PROOF OF THEOREM 1.1.9
By using lemma (1.3.4) there exist a polynomial g e IT, , "A’(J,) of degree <k -1, and
let g¢” best approximationto f on I =[-b,b] , and let

f()-g" () 5 J
T <E (f.I)y, s
g ()~ f() E J
l//(l) > k—l(f: s)l,/,p
g ()
w(?)

S (x)
v ()

+Ek71 (f"]s)u/,p >

Let feL,, (I)NA°(J,), p<]1, then for k >1 there exist a polynomial p, , €I1, , of
degree <k —1, such that

p0=594E (r0),,>L9,
w () ’

40
when f(#) >0 and since ¥ (¢ + kh) nondecresing then % >0 , hence
7
0)
m—i_Ek—l(f’Js)u/,p >0,
t
and when f(¢) <0, then A0, <0 | hence
w(t)

*

g (@)
w(1)

+E\(f,J,),, <0 , this implies that p,_, (1) € A’(J,) and

since p,, €I, , then we get p,  (t)ell, , NA’(J,), this meaning p, , copositive with
f at every points in an interval I .
Now ,

SO, gy O
Pia(t) W(t)+ (s s),,,,p>w(t)

Since p, ,(t) 2p"‘—‘(t) , then
40)

S @) > P (D) _ S @
y(@) w@® w(@)

Pia()-



) SO _g 0 SO
v(@) w@ w@® y@)

+E(f.,)

P(O-f©) _g" O~

< +E,,(f,J,
w(t) (1) ()
P (O- @) g O-fol
',f w (o) dtg',f o | BT,
that 1s
«||P
lf=pli, o <l -2, +e@ESI,
Since |f - g’ =E,(f.J,),, - then

Ly, (1)

p

L, ,I) '

P x
|f =Pl sCp|f -~
By (1.3.4) there exist a polynomial g, ,.(f) such that

k>1

9

g*(t)‘zl. = Qk—l(f:t)‘zl. =4, (ot Jisees Jy)

0,

where ¢, , , be a linear polynomial of degree < k —1, interpolate f at the points { J; }f:]
inside ¢,, where |¢,[=(k—1)|J,
(1.3.7) we have

,and ¢, €Il, , NA’(¢,) thenby using lemma

lf =al,, o, SCoR (L)L, ,

lf-¢l, , sCwhm(rlele,,
then

lr-g, , =cwrmsliln,,
hence

Hf _pk_]HLl//,p([) < C(p7 k)Tk(fD [)[)y/,p .
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