On Derivations of Period 2 On Near-Rings

Abdul Rahman H. Majeed, Enaam F. Adhab

Department of Mathematics , college of science , University of Baghdad . Baghdad , Iraq

Abstract

In this paper, we introduce the notion of mapping of period 2 on near-ring N. Also we investigate the existence and properties of derivations and generalized derivations of period 2 on near – rings.

AMS subject classification: 16W25, 16Y30.

Keywords: prime near-ring, semiprime near-ring, mapping of period 2 derivation and generalized derivation.

1. Introduction

A right near – ring (resp.left near ring) is a set N together with two binary operations (+) and (.) such that (i) (N,+) is a group (not necessarily abelian). (ii) (N,.) is a semi group. (iii) For all a,b,c \in N ; we have (a+b).c = a.c + b.c (resp. a.(b+c) = a.b + b.c. Through this paper, N will be a zero symmetric left near – ring (i.e., a left near-ring N satisfying the property 0.x=0 for all $x \in N$). we will denote the product of any two elements x and y in N ,i.e.; x.y by xy. The symbol Z will denote the multiplicative centre of N, that is Z={ $x \in N \mid xy = yx \text{ for all } y \in N$ }. N is called a prime near-ring if xNy = {0} implies either x = 0 or y = 0. It is called semiprime if xNx={0} implies x=0. Near-ring N is called n-torsion free if nx = 0 implies x=0. A nonempty subset U of N is called semigroup left ideal (resp. semigroup right ideal) if NU⊆U (resp.UN⊆U), If U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. A normal subgroup (I,+) of (N, +) is called a right ideal (resp. left ideal) of N if (x + i)y – xy ∈ I for all x, y ∈ N and i ∈ I (resp. xi ∈ I for all x∈N). I is called ideal of N if it is both a left ideal as well as a right ideal of N. For terminologies concerning near-rings, we refer to Pilz [6].

The concept of mapping of period 2 has already introduced in ring by Bell . H.E and Daif. M. N [2], in the present paper, motivated by this concept we define a mapping of period 2 on a near-ring N. A mapping of the near ring N into itself is of period 2 on N if $f^2(x) = x$ for all $x \in N$. Let U be a non empty subset of N, a mapping f:N \rightarrow N is of period 2 on U if $f^2(x) = x$ for all $x \in U$.

An additive mapping d:N \rightarrow N is said to be derivation of N if d(xy) = xd(y) + d(x)y, or equivalently, as noted in ([1], lemma 4) that d(xy) = d(x)y + xd(y) for all x,y \in N. The concept of derivation has been generalized in several ways by various authors. the notion of generalized derivation has been already introduced and study in near-rings by

Öznur Gölbasi [5]. An additive mapping $f:N \rightarrow N$ is called a right generalized derivation with associated derivation d if f(xy) = f(x)y + xd(y), for all $x, y \in N$ and f is called a left generalized derivation with associated derivation d if f(xy) = d(x)y + xf(y), for all $x, y \in N$. f is called a generalized derivation with associated derivation d if it is both a right as well as a left generalized derivation with associated derivation d.

Many authors studied the relationship between structure of near – ring N and the behaviour of special mapping on N (see [1],[3],[4],[5],[7] for reference where further references can be found). In the year 2014 Bell. H. E and Daif. M. N. in [2] studied the existence and properties of derivations and generalized derivations of period 2 on prime and semiprime rings. Motivated by these works, we have extended these results in the setting of derivations and generalized derivations of period 2 on certain subset of prime and semiprime near-ring.

2. Preliminaries

The following lemmas are essential for developing the proofs of our main results. .

Lemma 2.1.[7] Let N be near-ring and d be arbitrary derivation of N, then

(i) (xd(y) + d(x)y)z = xd(y)z + d(x)yz;

(ii) (d(x)y + xd(y))z = d(x)yz + xd(y)z; for all x, y, z \in N.

Lemma 2.2.[5] Let N be prime near-ring admitting a derivation d and $a \in N$, if ad(N) = 0, then a = 0.

Lemma 2.3.[1] Let N be a prime near-ring. If U is non-zero semigroup right ideal (resp, semigroup left ideal) and x is an element of N such that $Ux = \{0\}$ (resp, $xU = \{0\}$), then x = 0.

Lemma 2.4.[5] Let N be a 2–torsion free prime near-ring and d is derivation of N if $d^2=0$, then d=0.

Lemma 2.5.[7] Let N be a near-ring. If N admits a derivation d, then $d(Z) \subseteq Z$.

Lemma 2.6.[5] Let N be a near-ring

(i) Let f be a right generalized derivation of N with associated derivation d. Then f(xy) = xd(y) + f(x)y for all x, $y \in N$.

(ii) Let f be a left generalized derivation of N with associated derivation d. Then f(xy) = xf(y) + d(x)y for all x , y \in N.

Lemma 2.7.[5] Let N be a near-ring.

(i) Let f be a right generalized derivation of N with associated derivation d. Then (f(x)y + xd(y))z = f(x)yz + xd(y)z for all x,y,z \in N.

(ii) Let f be a left generalized derivation of N with associated derivation d. Then (d(x)y + xf(y))z = f(x)yz + xd(y)z for all x,y,z \in N.

Lemma 2.8. Let N be near-ring admitting a derivation d of N then

2(d(x)y + xd(y))z = 2d(x)yz + 2xd(y)z.

Proof. By Lemma 2.1(ii) we have

2(d(x)y + xd(y))z = 2(d(x)yz + xd(y)z)= d(x)yz + xd(y)z + d(x)yz + xd(y)z = d(x)yz + (xd(y) + d(x)y)z + xd(y)z = d(x)yz + (d(x)y + xd(y))z + xd(y)z = d(x)yz + d(x)yz + xd(y)z + xd(y)z = 2d(x)yz + 2xd(y)z.

Lemma 2.9. Let N be near – ring admitting a generalized derivation f with associated derivation d then $f(Z) \subseteq Z$.

Proof. Let $z \in Z$, $x \in N$, then f(zx) = f(xz); hence zd(x) + f(z)x = d(x)z + xf(z), therefore f(z)x = xf(z) for all $x \in N$, we conclude that $f(Z) \subseteq Z$.

3. Main Result

In this section we study derivation and generalized derivation when they are of period two.

If we consider f is a derivation of period 2, its clear that f is bijective, so there exists no $x \neq 0$ such that d(x) = 0, it follows that the near-ring with 1 admits no derivation which is of period 2 on N. We will show that a semiprime near-ring N admits no derivation of period 2 on N.

Theorem 3.1. Let N be semiprime near ring and U is anon zero semigroup left ideal of N. Then N admits no derivation such that d is of period 2 on U.

Proof. Suppose that there exist derivation d on N such that $d^2(x) = x$ for all $x \in U$. For all x, $y \in U$, $d(x)y \in U$ and the condition $d(x)y = d^2(d(x)y) = d(d^2(x)y + d(x)d(y)) = d(xy + d(x)d(y)) = d(xy) + d(d(x)d(y)) = d(x)y + xd(y) + d^2(x)d(y) + d(x)d^2(y) = d(x)y + 2xd(y) + d(x)y$ yeilds

 $d(x)y + 2xd(y) = 0 \quad \text{for all } x, y \in U.$ (1)

Since $xy = d^2(xy) = d(d(xy)) = d(d(x)y + xd(y)) = d^2(x)y + d(x)d(y) + d(x)d(y) + xd^2(y) = xy + d(x)d(y) + d(x)d(y) + xy$, so we get

xy + 2d(x)d(y) = 0 for all x, $y \in U$ (2)

Replacing x by rx, where $r \in N$, in (2) we obtain 0 = rxy + 2d(rx)d(y) = rxy + 2(rd(x) + d(r)x)d(y). Using Lemma 2.8 in previous relation we get

$$rxy + 2rd(x)d(y) + 2d(r)xd(y) = 0.$$
 i.e.;

0 = rxy + rd(x)d(y) + rd(x)d(y) + 2d(r)xd(y) = r(xy + 2d(x)d(y)) + 2d(r)xd(y)

Using (2) in previous relation implies

 $2d(\mathbf{r})\mathbf{x}d(\mathbf{y}) = 0$ for all \mathbf{x} , $\mathbf{y} \in \mathbf{U}$ and $\mathbf{r} \in \mathbf{N}$. (3)

Substituting yr for r in (3), we get 0 = 2d(yr)xd(y) = 2(d(y)r + yd(r))xd(y), by lemma 2.8 we get 2d(y)rxd(y) + 2yd(r)xd(y) = 0, using (3) in previous relation implies 2d(y)rxd(y) = 0, hence 2xd(y)rxd(y) = 0. Semiprimeness of N yields 2xd(y) = 0 for all x, y ϵ U, then relation (1) can be reduced to d(x)y = 0 for all x, y ϵ U. Therefore $d(d(x)y) = d^2(x)y + d(x)d(y) = xy + d(x)d(y) = 0$ for all x, y ϵ U. Which together with (2) yields xy = 0 for all x, y ϵ U, therefore xU=0 for all $x \epsilon$ U, by Lemma 2.3 we obtain x = 0 for all $x \epsilon$ U, so we get a contradiction.

Corollary 3.1. A semiprime near – ring N admits no derivation of period 2 on N.

Any near- ring admits a right generalized derivation of period 2 namely, the identity map and its negative. Moreover, if N has 1 and $c \in N$ such that $c^2=1$ then f(x) = cx define a right generalized derivation of period 2 on N. Now we show that in many prime near-rings there are no other possibilities.

Theorem 3.2. Let N be a 2-torsion free prime near-ring. Let f be a right generalized derivation on N with associated derivation d. If f is of period 2, then $d(Z) = \{0\}$.

Proof. For all $x, y \in N$, we have

 $\begin{aligned} xy &= f^2(xy) = f(f(x)y + xd(y)) = f(f(x)y) + f(xd(y)) = f^2(x)y + f(x)d(y) + f(x)d(y) + xd^2(y) = xy + 2f(x)d(y) + xd^2(y). \ i.e.; \end{aligned}$

 $2f(x)d(y) + xd^{2}(y) = 0 \text{ for all } x, y \in \mathbb{N}$ (4)

Replacing x by f(x) in (4) yields

 $2xd(y) + f(x)d^{2}(y) = 0 \text{ for all } x, y \in N$ (5)

Letting $z \in Z$ and $x \in N$ and replacing x by xz in (5), we get $2xzd(y) + f(xz)d^2(y) = 0$, by Lemma 2.7, proceeding relation takes the form

 $2xzd(y) + f(x)zd^{2}(y) + xd(z)d^{2}(y) = 0$. But $z \in Z$, hence we get

 $0 = 2zxd(y) + zf(x)d^{2}(y) + xd(z)d^{2}(y) = z(2xd(y) + f(x)d^{2}(y)) + xd(z)d^{2}(y)$, using (5) in previous relation we get x d(z)d²(y) = 0, by Lemma 2.5 we conclude that d(z)xd²(y) = 0 for all x, y \in N and z \in Z. i.e.; d(z) N d²(y) = {0 }, primness of N yields

that either d(z) = 0 or $d^2(y) = 0$, if $d(z) \neq 0$ then $d^2(y) = 0$ then by Lemma 2.4 we conclude that d = 0. Thus $d(Z) = \{0\}$.

Theorem 3.3. let N be a 2-torsion free prime near-ring with 1. If a right generalized derivation f associated with d given by f(x) = x + d(x) (resp f(x) = -x + d(x)) for all $x \in N$, of period 2 on N then f is the identity map (resp , the negative of the identity map) on N.

Proof. Consider the case f(x) = x + d(x) for all $x \in N$. If f is of period 2, we have

$$x = f^{2}(x) = f(f(x) = f(x + d(x)) = x + d(x) + d(x) + d^{2}(x)$$
. i.e.;

 $2d(x) + d^{2}(x) = 0$ for all $x \in N$

(7)

replacing x by xy in(6), we get

$$0 = 2d(xy) + d^{2}(xy)$$

= 2(d(x)y + xd(y)) + d(xd(y) + d(x)y)
= 2d(x)y + 2xd(y) + xd^{2}(y) + d(x)d(y) + d(x)d(y) + d^{2}(x)y
= 2d(x)y + x(2d(y) + d²(y)) + 2d(x)d(y) + d^{2}(x)y

for all x , y \in N. Using (6) in previous relation implies

 $2d(x)y + 2d(x)d(y) + d^{2}(x)y = 0$

since $1 \in N$, hence $1 \in Z$ and by Theorem 2.3 we conclude that d(1) = 0, by lemma 2.7(i) we have (f(x)y + xd(y)z = f(x)yz + xd(y)z (8)

Take x = 1 in (8) we get (f(1)y + d(y))z = f(1)yz + d(y)z; hence we get the partial distributive law (y + d(y))z = yz + d(y)z (9)

replacing y by d(y) in (9), we obtain

$$(d(y) + d2(y))z = d(y)z + d2(y)z$$
(10)

Frome relation (7) we obtain $d(x)y + 2d(x)d(y) = -d(x)y - d^2(x)y$, using (10) in previous relation implies $d(x)y + 2d(x)d(y) = -(d(x) + d^2(x))y$, using (6) in previous relation, we get d(x)y + 2d(x)d(y) = d(x)y. i.e.; 2d(x)d(y) = 0 for all x, y \in N, since N is 2-torsion free then d(x)d(y) = 0 for all x, y \in N, then d(x) d(N) = 0 for all x \in N. By lemma 2.2, we conclude that d(x) = 0 for all x \in N. Thus f is the identity map on N

A similar argument works if $f(x) = -x + d(x) \forall x \in N$.

Theorem 3.4 Let N be a 2-torsion free prime near-ring with 1. N has no nonzero divisors. If f is a right generalized derivation on N of period 2, then f is the identity map or its negative.

Proof. Note that
$$f(x) = f(1.x) = f(1)x + d(x)$$
 for all $x \in N$. (11)

For all $x, y \in N$, we have

 $\begin{aligned} xy &= f^2(xy) = f(f(x)y + xd(y)) = f(f(x)y) + f(xd(y)) = f^2(x)y + f(x)d(y) + f(x)d(y) + xd^2(y) = xy + 2f(x)d(y) + xd^2(y). \ i.e.; \end{aligned}$

 $2f(x)d(y) + xd^{2}(y) = 0 \text{ for all } x, y \in \mathbb{N}$ (12)

Replacing x by f(x) in (4) yields

 $2xd(y) + f(x)d^{2}(y) = 0 \text{ for all } x, y \in \mathbb{N}$ (13)

Taking x = 1 in (12) and (13). we have

 $2f(1)d(y) + d^2(y) = 0$ and $2d(y)+f(1) d^2(y)=0$ for all $x \in N$. It follows that $2d(y) - 2d(y)f(1)^2 = 0$, that is $2d(y)(1 - f(1)^2) = 0$, since N is 2-torsion free then $d(y)(1 - f(1)^2) = 0$. But N has no nonzero divisor if $d \neq 0$, we obtain $0 = 1 - f(1)^2 = 1 - f(1) + f(1) + f(1)(1 - f(1)) = (1 - f(1)) + (1 - f(1))f(1) = (1 - f(1))(1 + f(1))$, since N has no nonzero divisor then we get either f(1) = 1 or f(1) = -1, from (11) we have f(x) = x + d(x) or f(x) = -x + d(x). So by Theorem 3.3 this would imply d = 0, thus we get

f(x) = f(1)x for all $x \in N$.

Since f is of period 2 then $x = f^2(1)x = x f^2(1)$ and $x(1 - f^2(1)) = 0$ for all $x \in N$. Thus we conclude that f(1) = 1 or f(1) = -1, by (12) we find that f is the identity map or its negative.

References

[1] Bell. H. E. On Derivations in Near-Ring II, Kluwer Academic. Publisheres. Dordrecht, vol.426, 1997, 191 - 197.

[2] Bell. H. E. and Daif. M. N. On Maps of Period 2 on Prime and Semiprime Rings. Hindawi Publishing Corporation. V.2014 (2014). 1-5.

[3] Bell. H. E. and Mason. G. On derivations in near-rings and rings. Math.J. okayama Univ. 34(1992). 135 – 144.

[4] Bell. H. E. and Mason. G. on derivations in near-rings, near-rings and near fields. (G.Betsch, ed.) North – Holland. Amsterdam (1987). 31 – 35.

[5] Golbasi. O. Some Results on Near-Rings with Generalized Derivations Commun. Fac. Sci. Univ. Ank (2005). 21 - 26.

[6] Pilz. G. Near – Rings. North Holland Publishing Company Amsterdam. New York. Oxford. (1983).

[7] Wang. X. K. Derivations in prime near – rings. Proceedings of American Mathematical Society . 121 . No. 2. (1994). 361 – 366 .

الاشتقاقات ذات الدورة 2 على الحلقات المقتربة

Abstract

.

In this paper , we introduce the notion of mapping of period 2 on near-ring N and investigate the existence and properities of derivations and generalized derivations of period 2 on near – rings.

المستخلص:

قدمنا في هذا البحث تعريفا للدوال ذات الدورة 2 على الحلقات المقتربة وقمنا بدراسة وجود وخواص الاشتقاقات والاشتقاقات المعممة عندما تكون من الدوال ذات الدورة 2.