Jordan Left Derivation and Jordan Left Centralizer of Skew Matrix Rings

A.H.Majeed* \& Rajaa .C.Shaheen**
*Department of Mathematics,College of Science,Baghdad University.
** Department of Mathematics, College of Education, Al-Qadisiyah University.

Abstract

In this paper, we determine the form of Jordan left derivation and Jordan Left Centralizers of a Skew matrix ring $M_{2}(R ; \sigma, q)$ over a ring R.

Keywords: Skew matrix ring, Jordan Left Centralizer, Jordan left derivation

1-Introduction

Let R be a ring . An additive mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is said to be a derivation (resp.,Jordan derivation)if $\mathrm{D}(\mathrm{xy})=\mathrm{D}(\mathrm{x}) \mathrm{y}+\mathrm{x} \mathrm{D}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ (if $\mathrm{D}\left(\mathrm{x}^{2}\right)=$ $\mathrm{D}(\mathrm{x}) \mathrm{x}+\mathrm{xD}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$. An additive mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is said to be a left derivation (resp.,Jordan left derivation)if $\mathrm{D}(\mathrm{xy})=\mathrm{xD}(\mathrm{y})+\mathrm{yD}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ (if $\mathrm{D}\left(\mathrm{x}^{2}\right)=2 \mathrm{xD}(\mathrm{x})$ for all $\mathrm{x} \in$ R.the concept of left derivation and Jordan left derivation were introduced by Bresar and Vukman in [1] .For result concerning Jordan left derivations we refer the readers to [$2,3,4,5$].An additive mapping $T: R \rightarrow R$ is called left centralizer(resp., Jordan left centralizer)if $T(x y)=T(x) y$ for all $x, y \in R$ (resp., $T\left(x^{2}\right)=T(x) x$.An additive mapping $T: R \rightarrow R$ is called a Jordan centralizer if T satisfies $T(x y+y x)=T(x) y+y T(x)=T(y) x+x T(y)$ for all $x, y \in R$. For result concerning left centralizer we refer the reader to [6,7,8].In [9],Hamaguchi ,give a necessary and sufficient condition for a given mapping J of a skew matrix ring $M_{2}(R ; \sigma, q)$ into itself to be a Jordan derivation also show that there are many Jordan derivations of $M_{2}(R ; \sigma, q)$ which are not derivations and refer to the properties of Jordan derivations of $M_{2}(R)$, and derivations of $M_{2}(R ; \sigma, q)$. Also the author consider invariant ideal with respect to these derivations .In this paper, we determine the form of Jordan left derivation and Jordan Left Centralizers of a Skew matrix ring $M_{2}(R ; \sigma, q)$ over a ring R.Now, we shall recall the definitions of Skew matrix ring which is basic in this paper .

Definition 1.1 :-[10] Skew Matrix ring

Let R be a ring , q an element in R and σ an endomorphism of R such that
$\sigma(\mathrm{q})=\mathrm{q}$ and $\sigma(\mathrm{r}) \mathrm{q}=\mathrm{qr} \forall \mathrm{r} \in$ R.Let $\mathrm{M}_{2}(\mathrm{R} ; \sigma, \mathrm{q})$ be the set of 2×2 matrices over R with usual addition and the following multiplication

$$
\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{cc}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} y_{1}+x_{2} y_{3} q & x_{1} y_{2}+x_{2} y_{4} \\
x_{3} \sigma\left(y_{1}\right)+x_{4} y_{3} & x_{3} \sigma\left(y_{2}\right) q+x_{4} y_{4}
\end{array}\right]
$$

$M_{2}(R ; \sigma, q)$ is called a skew matrix ring over R.
We should mentioned the reader that a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is denoted by $e_{11} a+$ $e_{12} b+e_{21} c+e_{22} d \quad$.

2-Jordan Left Derivation of Skew Matrix Rings

In this section, we shall determined the form of Jordan left derivation of skew matrix ring .Let \mathbf{J} be a Jordan left derivation of $\mathrm{M}_{2}(\mathrm{R} ; \sigma, q)$. First, we set

$$
\begin{aligned}
& J\left(e_{11} a\right)=\left[\begin{array}{ll}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right], J\left(e_{12} b\right)=\left[\begin{array}{ll}
h_{1}(b) & h_{2}(b) \\
h_{3}(b) & h_{4}(b)
\end{array}\right] \\
& J\left(e_{21} c\right)=\left[\begin{array}{ll}
l_{1}(c) & l_{2}(c) \\
l_{3}(c) & l_{4}(c)
\end{array}\right], J\left(e_{22} d\right)=\left[\begin{array}{ll}
g_{1}(d) & g_{2}(d) \\
g_{3}(d) & g_{4}(d)
\end{array}\right]
\end{aligned}
$$

Where $f_{i}, h_{i}, g_{i}, l_{i}: R \rightarrow R$ are additive mapping .
Lemma2.1:- For any $a \in R$

1. f_{1}, f_{2} are Jordan left derivations of R.
2. $\mathrm{f}_{3}\left(\mathrm{a}^{2}\right)=0$
3. $f_{4}\left(\mathrm{a}^{2}\right)=0$

Proof:-Since

$$
\begin{gathered}
J\left(\mathrm{e}_{11} \mathrm{a}^{2}\right)=2 \mathrm{e}_{11} \mathrm{aj}\left(\mathrm{e}_{11} \mathrm{a}\right) \\
{\left[\begin{array}{cc}
\mathrm{f}_{1}\left(\mathrm{a}^{2}\right) & \mathrm{f}_{2}\left(\mathrm{a}^{2}\right) \\
\mathrm{f}_{3}\left(\mathrm{a}^{2}\right) & \mathrm{f}_{4}\left(\mathrm{a}^{2}\right)
\end{array}\right]=2\left[\begin{array}{cc}
\mathrm{a} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{f}_{1}(\mathrm{a}) & \mathrm{f}_{2}(\mathrm{a}) \\
\mathrm{f}_{3}(\mathrm{a}) & \mathrm{f}_{4}(\mathrm{a})
\end{array}\right]} \\
{\left[\begin{array}{cc}
\mathrm{f}_{1}\left(\mathrm{a}^{2}\right) & \mathrm{f}_{2}\left(\mathrm{a}^{2}\right) \\
\mathrm{f}_{3}\left(\mathrm{a}^{2}\right) & \mathrm{f}_{4}\left(\mathrm{a}^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
2 \mathrm{af}_{1}(\mathrm{a}) & 2 \mathrm{af}_{2}(\mathrm{a}) \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

Then $\mathrm{f}_{1}\left(\mathrm{a}^{2}\right)=2 a \mathrm{f}_{1}(\mathrm{a}), \mathrm{f}_{2}\left(\mathrm{a}^{2}\right)=2 a \mathrm{f}_{2}(\mathrm{a}), \mathrm{f}_{3}\left(\mathrm{a}^{2}\right)=0$ and $\mathrm{f}_{4}\left(\mathrm{a}^{2}\right)=0$.
So, we get the result .

Lemma2.2 :- For any d \in R.

1. $\mathrm{g}_{3}, \mathrm{~g}_{4}$ are Jordan left derivations of R .
2. $\mathrm{g}_{1}\left(\mathrm{~d}^{2}\right)=0$
3. $g_{2}\left(d^{2}\right)=0$

Proof:-Since

$$
\begin{gathered}
J\left(e_{22} \mathrm{~d}^{2}\right)=2 \mathrm{e}_{22} \mathrm{dJ}\left(\mathrm{e}_{22} \mathrm{~d}\right) \\
{\left[\begin{array}{ll}
\mathrm{g}_{1}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{2}\left(\mathrm{~d}^{2}\right) \\
\mathrm{g}_{3}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{4}\left(\mathrm{~d}^{2}\right)
\end{array}\right]=2\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right]\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]} \\
{\left[\begin{array}{ll}
\mathrm{g}_{1}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{2}\left(\mathrm{~d}^{2}\right) \\
\mathrm{g}_{3}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{4}\left(\mathrm{~d}^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
2 \mathrm{dg}_{3}(\mathrm{~d}) & 2 \mathrm{dg}_{4}(\mathrm{~d})
\end{array}\right]}
\end{gathered}
$$

Then $g_{3}\left(d^{2}\right)=2 \operatorname{dg}_{3}(\mathrm{~d}), \mathrm{g}_{4}\left(\mathrm{~d}^{2}\right)=2 \mathrm{dg}_{4}(\mathrm{~d}), \mathrm{g}_{1}\left(\mathrm{~d}^{2}\right)=0$ and $\mathrm{g}_{2}\left(\mathrm{~d}^{2}\right)=0$..
Lemma 2.3 :- For any $a, b \in R$

1. $\mathrm{h}_{1}(\mathrm{ab})=2 \mathrm{ah}_{1}(\mathrm{~b})+2 \mathrm{bf}_{3}(\mathrm{a}) \mathrm{q}$
2. $h_{2}(a b)=2 \mathrm{ah}_{2}(b)+2 \mathrm{bf}_{4}(a)$
3. $h_{3}(a b)=0$
4. $h_{4}(a b)=0$

Proof:- Since

$$
\begin{aligned}
& J\left(e_{12} a b\right)=J\left(e_{11}{\left.a e_{12} b+e_{12} b e_{11} a\right)}_{\left[\begin{array}{ll}
h_{1}(a b) & h_{2}(a b) \\
h_{3}(a b) & h_{4}(a b)
\end{array}\right] \quad}=2 e_{11} a J\left(e_{12} b\right)+2 e_{12} b J\left(e_{11} a\right)\right. \\
& \\
& =2\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
h_{1}(b) & h_{2}(b) \\
h_{3}(b) & h_{4}(b)
\end{array}\right]+2\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right] \\
&
\end{aligned} \quad=\left[\begin{array}{cc}
2 a h_{1}(b) & 2 a h_{2}(b) \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
2 b f_{3}(a) q & 2 b f_{4}(a) \\
0 & 0
\end{array}\right] .
$$

Then , we get the result .
Lemma 2.4 :-for any $\mathrm{c}, \mathrm{d} \in \mathrm{R}$

1. $\mathrm{l}_{1}(\mathrm{dc})=0$

$$
\begin{aligned}
& \text { 2. } \mathrm{l}_{2}(\mathrm{dc})=0 \\
& \text { 3. } \mathrm{l}_{3}(\mathrm{dc})=2 \mathrm{dl}_{3}(\mathrm{c})+2 \mathrm{c} \sigma\left(\mathrm{~g}_{1}(\mathrm{~d})\right) \\
& \text { 4. } \mathrm{l}_{4}(\mathrm{dc})=2 \mathrm{dl}_{4}(\mathrm{c})+2 \mathrm{c} \sigma\left(\mathrm{~g}_{2}(\mathrm{~d})\right) \mathrm{q}
\end{aligned}
$$

Proof:-Since

$$
\begin{gathered}
\mathrm{J}\left(\mathrm{e}_{21} \mathrm{dc}\right)=\mathrm{J}\left(\mathrm{e}_{22} \mathrm{de}_{21} \mathrm{c}+\mathrm{e}_{21} \mathrm{ce}_{22} \mathrm{~d}\right) \\
{\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{dc}) & \mathrm{l}_{2}(\mathrm{dc}) \\
\mathrm{l}_{3}(\mathrm{dc}) & \mathrm{l}_{4}(\mathrm{dc})
\end{array}\right]=2 \mathrm{e}_{22} \mathrm{dJ}\left(\mathrm{e}_{21} \mathrm{c}\right)+2 \mathrm{e}_{21} \mathrm{cJ}\left(\mathrm{e}_{22} \mathrm{~d}\right)} \\
=\left[\begin{array}{cc}
0 & 0 \\
0 & 2 \mathrm{~d}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{c}) & \mathrm{l}_{2}(\mathrm{c}) \\
\mathrm{l}_{3}(\mathrm{c}) & \mathrm{l}_{4}(\mathrm{c})
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
2 \mathrm{c} & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right] \\
=\left[\begin{array}{cc}
0 & 0 \\
2 \mathrm{dl}_{3}(\mathrm{c}) & 2 \mathrm{dl}_{4}(\mathrm{c})
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
2 \mathrm{c} \mathrm{\sigma}\left(\mathrm{~g}_{1}(\mathrm{~d})\right) & 2 \mathrm{c} \mathrm{\sigma}\left(\mathrm{~g}_{2}(\mathrm{~d})\right) \mathrm{q}
\end{array}\right] \\
{\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{dc}) & \mathrm{l}_{2}(\mathrm{dc}) \\
\mathrm{l}_{3}(\mathrm{dc}) & \mathrm{l}_{4}(\mathrm{dc})
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
2 \mathrm{dl}_{3}(\mathrm{c})+2 \mathrm{c} \sigma\left(\mathrm{~g}_{1}(\mathrm{~d})\right) & 2 \mathrm{dl}_{4}(\mathrm{c})+2 \mathrm{c} \mathrm{\sigma}\left(\mathrm{~g}_{2}(\mathrm{~d})\right) \mathrm{q}
\end{array}\right] .}
\end{gathered}
$$

Then ,we get the result .
Theorem 2.5 :-Let R be a ring and J be a Jordan left derivation of $M_{2}(R ; \sigma, q)$. Then

$$
J\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
f_{1}(a)+h_{1}(b)+l_{1}(c)+g_{1}(d) & f_{2}(a)+h_{2}(b)+l_{2}(c)+g_{2}(d) \\
f_{3}(a)+h_{3}(b)+l_{3}(c)+g_{3}(d) & f_{4}(a)+h_{4}(b)+l_{4}(c)+g_{4}(d)
\end{array}\right],
$$

such that

1. $f_{3}\left(\mathrm{a}^{2}\right)=0, \mathrm{f}_{4}\left(\mathrm{a}^{2}\right)=0, \mathrm{f}_{1}, \mathrm{f}_{2}$ are Jordan left derivations of R .
2. $g_{1}\left(d^{2}\right)=0, g_{2}\left(d^{2}\right)=0 g_{3}$ and g_{4} are Jordan left derivations of R.
3. $h_{1}(a b)=2 a h_{1}(b)+2 b f_{3}(a) q, h_{2}(a b)=2 a h_{2}(b)+2 b f_{4}(a)$
$\mathrm{h}_{3}(\mathrm{ab})=0$ and $\mathrm{h}_{4}(\mathrm{ab})=0$
4. $\mathrm{l}_{1}(\mathrm{dc})=0, \mathrm{l}_{2}(\mathrm{dc})=0, \mathrm{l}_{3}(\mathrm{dc})=2 \mathrm{dl}_{3}(\mathrm{c})+2 \mathrm{c} \sigma\left(\mathrm{g}_{1}(\mathrm{~d})\right)$ and
$\mathrm{l}_{4}(\mathrm{dc})=2 \mathrm{dl}_{4}(\mathrm{c})+2 \mathrm{c} \sigma\left(\mathrm{g}_{2}(\mathrm{~d})\right) \mathrm{q}$.

Proof:-Since J $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=J\left(e_{11} a\right)+J\left(e_{12} b\right)+J\left(e_{21} c\right)+J\left(e_{22} d\right)$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\mathrm{f}_{1}(\mathrm{a}) & \mathrm{f}_{2}(\mathrm{a}) \\
\mathrm{f}_{3}(\mathrm{a}) & \mathrm{f}_{4}(\mathrm{a})
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{h}_{1}(\mathrm{~b}) & \mathrm{h}_{2}(\mathrm{~b}) \\
\mathrm{h}_{3}(\mathrm{~b}) & \mathrm{h}_{4}(\mathrm{~b})
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{c}) & \mathrm{l}_{2}(\mathrm{c}) \\
\mathrm{l}_{3}(\mathrm{c}) & \mathrm{l}_{4}(\mathrm{c})
\end{array}\right]+ \\
& {\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]} \\
& =\left[\begin{array}{ll}
\mathrm{f}_{1}(\mathrm{a})+\mathrm{h}_{1}(\mathrm{~b})+\mathrm{l}_{1}(\mathrm{c})+\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{f}_{2}(\mathrm{a})+\mathrm{h}_{2}(\mathrm{~b})+\mathrm{l}_{2}(\mathrm{c})+\mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{f}_{3}(\mathrm{a})+\mathrm{h}_{3}(\mathrm{~b})+\mathrm{l}_{3}(\mathrm{c})+\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{f}_{4}(\mathrm{a})+\mathrm{h}_{4}(\mathrm{~b})+\mathrm{l}_{4}(\mathrm{c})+\mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]
\end{aligned}
$$

By[Lemma 2.1], [Lemma 2.2], [Lemma 2.3]and [Lemma 2.4] we get the result

3-Jordan Left Centralizer of Skew Matrix Rings

In this section ,we shall determined the form of Jordan left centralizer of skew matrix ring. Let J be a Jordan Left Centralizer of $M_{2}(R ; \sigma, q)$.First ,we set

$$
\begin{aligned}
J\left(e_{11} a\right) & =\left[\begin{array}{ll}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right], J\left(e_{12} b\right)=\left[\begin{array}{ll}
h_{1}(b) & h_{2}(b) \\
h_{3}(b) & h_{4}(b)
\end{array}\right] \\
J\left(e_{21} c\right) & =\left[\begin{array}{ll}
l_{1}(c) & l_{2}(c) \\
l_{3}(c) & l_{4}(c)
\end{array}\right], J\left(e_{22} d\right)=\left[\begin{array}{ll}
g_{1}(d) & g_{2}(d) \\
g_{3}(d) & g_{4}(d)
\end{array}\right]
\end{aligned}
$$

Where $f_{i}, h_{i}, g_{i}, l_{i}: R \rightarrow R$ are additive mapping.
Lemma 3.1 :- For any $a \in R$

1. f_{1} is Jordan left centralizer of R.
2. $f_{2}\left(a^{2}\right)=0$
3. $f_{3}\left(a^{2}\right)=f_{3}(a) \sigma(a)$
4. $f_{4}\left(\mathrm{a}^{2}\right)=0$.

Proof:- Since

$$
\begin{gathered}
J\left(e_{11} a^{2}\right)=J\left(e_{11} a\right) e_{11} a \\
{\left[\begin{array}{cc}
f_{1}\left(a^{2}\right) & f_{2}\left(a^{2}\right) \\
f_{3}\left(a^{2}\right) & f_{4}\left(a^{2}\right)
\end{array}\right]\left[\begin{array}{ll}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right]\left[\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cc}
f_{1}\left(a^{2}\right) & f_{2}\left(a^{2}\right) \\
f_{3}\left(a^{2}\right) & f_{4}\left(a^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
f_{1}(a) a & 0 \\
f_{3}(a) \sigma(a) & 0
\end{array}\right]}
\end{gathered}
$$

Then $f_{1}\left(a^{2}\right)=f_{1}(a) a, f_{2}\left(a^{2}\right)=0, f_{3}\left(a^{2}\right)=f_{3}(a) \sigma(a)$ and $f_{4}\left(a^{2}\right)=0$.
So ,we get the result .
Lemma3.2 :- For any $d \in R$

1. $\mathrm{g}_{2}, \mathrm{~g}_{4}$ are Jordan left centralizers of R .
2. $g_{1}\left(d^{2}\right)=0$
3. $g_{3}\left(\mathrm{~d}^{2}\right)=0$

Proof:-Since

$$
\mathrm{J}\left(\mathrm{e}_{22} \mathrm{~d}^{2}\right)=\mathrm{J}\left(\mathrm{e}_{22} \mathrm{~d}\right) \mathrm{e}_{22} \mathrm{~d}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{g}_{1}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{2}\left(\mathrm{~d}^{2}\right) \\
\mathrm{g}_{3}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{4}\left(\mathrm{~d}^{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\mathrm{g}_{1}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{2}\left(\mathrm{~d}^{2}\right) \\
\mathrm{g}_{3}\left(\mathrm{~d}^{2}\right) & \mathrm{g}_{4}\left(\mathrm{~d}^{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
0 & \mathrm{~g}_{2}(\mathrm{~d}) \mathrm{d} \\
0 & \mathrm{~g}_{4}(\mathrm{~d}) \mathrm{d}
\end{array}\right]}
\end{aligned}
$$

Then $g_{1}\left(\mathrm{~d}^{2}\right)=0, \mathrm{~g}_{3}\left(\mathrm{~d}^{2}\right)=0 \& \mathrm{~g}_{2}, \mathrm{~g}_{4}$ are Jordan left centralizers of R .
Lemma3.3 :- For any $a, b \in R$

1. $\mathrm{h}_{1}(\mathrm{ab})=\mathrm{h}_{1}(\mathrm{~b}) \mathrm{a}$
2. $h_{2}(a b)=f_{1}(a) b$
3. $h_{3}(a b)=h_{3}(b) \sigma(a)$
4. $h_{4}(a b)=f_{3}(a) \sigma(b) q$

Proof:-Since $J\left(e_{12} a b\right)=J\left(e_{11} a e_{12} b+e_{12} b_{11} a\right)$

$$
\begin{aligned}
{\left[\begin{array}{ll}
h_{1}(a b) & h_{2}(a b) \\
h_{3}(a b) & h_{4}(a b)
\end{array}\right] } & =J\left(e_{11} a\right) e_{12} b+J\left(e_{12} b\right) e_{11} a \\
& =\left[\begin{array}{cc}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right]\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
h_{1}(b) & h_{2}(b) \\
h_{3}(b) & h_{4}(b)
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & f_{1}(a) b \\
0 & f_{3}(a) \sigma(b) q
\end{array}\right]+\left[\begin{array}{cc}
h_{1}(b) a & 0 \\
h_{3}(b) \sigma(a) & 0
\end{array}\right] \\
{\left[\begin{array}{ll}
h_{1}(a b) & h_{2}(a b) \\
h_{3}(a b) & h_{4}(a b)
\end{array}\right] } & =\left[\begin{array}{cc}
h_{1}(b) a & f_{1}(a) b \\
h_{3}(b) \sigma(a) & f_{3}(a) \sigma(b) q
\end{array}\right]
\end{aligned}
$$

then $h_{1}(a b)=h_{1}(b) a, h_{2}(a b)=f_{1}(a) b, h_{3}(a b)=h_{3}(b) \sigma(a)$ and
$h_{4}(a b)=f_{3}(a) \sigma(b) q$, so, we get the result .
Lemma 3.4 :-For any $\mathrm{c}, \mathrm{d} \in \mathrm{R}$

1. $\mathrm{l}_{1}(\mathrm{dc})=\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq}$
2. $l_{2}(d c)=l_{2}(c) d$
3. $\mathrm{l}_{3}(\mathrm{dc})=\mathrm{g}_{4}(\mathrm{~d}) \mathrm{c}$
4. $\mathrm{l}_{4}(\mathrm{dc})=\mathrm{l}_{4}(\mathrm{c}) \mathrm{d}$

Proof:-Since

$$
\mathrm{J}\left(\mathrm{e}_{21} \mathrm{dc}\right)=\mathrm{J}\left(\mathrm{e}_{22} \mathrm{de}_{21} \mathrm{c}+\mathrm{e}_{21} \mathrm{ce}_{22} \mathrm{~d}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1_{1}(d c) & l_{2}(d c) \\
l_{3}(d c) & 1_{4}(d c)
\end{array}\right]=J\left(e_{22} d\right) e_{21} c+J\left(e_{21} c\right) e_{22} d} \\
& =\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
\mathrm{c} & 0
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{c}) & \mathrm{l}_{2}(\mathrm{c}) \\
\mathrm{l}_{3}(\mathrm{c}) & 1_{4}(\mathrm{c})
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & \mathrm{~d}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq} & 0 \\
\mathrm{~g}_{4}(\mathrm{~d}) \mathrm{c} & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & \mathrm{l}_{2}(\mathrm{c}) \mathrm{d} \\
0 & \mathrm{l}_{4}(\mathrm{c}) \mathrm{d}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq} & \mathrm{l}_{2}(\mathrm{c}) \mathrm{d} \\
\mathrm{~g}_{4}(\mathrm{~d}) \mathrm{c} & \mathrm{l}_{4}(\mathrm{c}) \mathrm{d}
\end{array}\right] \\
& 1_{1}(\mathrm{dc})=\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq} \quad, \mathrm{l}_{2}(\mathrm{dc})=\mathrm{l}_{2}(\mathrm{c}) \mathrm{d} \\
& \mathrm{l}_{3}(\mathrm{dc})=\mathrm{g}_{4}(\mathrm{~d}) \mathrm{c}, \mathrm{l}_{4}(\mathrm{dc})=\mathrm{l}_{4}(\mathrm{c}) \mathrm{d}
\end{aligned}
$$

Theorem 3.5:- Let R be a ring and J be a Jordan left centralizer of $M_{2}(R ; \sigma, q)$ Then

$$
J\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
f_{1}(a)+h_{1}(b)+l_{1}(c)+g_{1}(d) & f_{2}(a)+h_{2}(b)+l_{2}(c)+g_{2}(d) \\
f_{3}(a)+h_{3}(b)+l_{3}(c)+g_{3}(d) & f_{4}(a)+h_{4}(b)+l_{4}(c)+g_{4}(d)
\end{array}\right]
$$

Such that

1. f_{1} is Jordan left centralizer of $\mathrm{R}, \mathrm{f}_{2}\left(\mathrm{a}^{2}\right)=0, \mathrm{f}_{3}\left(\mathrm{a}^{2}\right)=\mathrm{f}_{3}(\mathrm{a}) \sigma(\mathrm{a}) \operatorname{andf}_{4}\left(\mathrm{a}^{2}\right)=0$.
2. $\mathrm{g}_{2}, \mathrm{~g}_{4}$ are Jordan left centralizers of $\mathrm{R}, \mathrm{g}_{1}\left(\mathrm{~d}^{2}\right)=0$ and $\mathrm{g}_{3}\left(\mathrm{~d}^{2}\right)=0$.
3. $\mathrm{h}_{1}(\mathrm{ab})=\mathrm{h}_{1}(\mathrm{~b}) \mathrm{a}, \mathrm{h}_{2}(\mathrm{ab})=\mathrm{f}_{1}(\mathrm{a}) \mathrm{b}, \mathrm{h}_{3}(\mathrm{ab})=\mathrm{h}_{3}(\mathrm{~b}) \sigma(\mathrm{a})$ and $\mathrm{h}_{4}(\mathrm{ab})=$ $\mathrm{f}_{3}(\mathrm{a}) \sigma(\mathrm{b}) q$
4. $\mathrm{l}_{1}(\mathrm{dc})=\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq}, \mathrm{l}_{2}(\mathrm{dc})=\mathrm{l}_{2}(\mathrm{c}) \mathrm{d}, \mathrm{l}_{3}(\mathrm{dc})=\mathrm{g}_{4}(\mathrm{~d}) \mathrm{c}$ and $\mathrm{l}_{4}(\mathrm{dc})=\mathrm{l}_{4}(\mathrm{c}) \mathrm{d}$.

Proof:- Since J $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=J\left(e_{11} a\right)+J\left(e_{12} b\right)+J\left(e_{21} c\right)+J\left(e_{22} d\right)$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
f_{1}(a) & f_{2}(a) \\
f_{3}(a) & f_{4}(a)
\end{array}\right]+\left[\begin{array}{ll}
h_{1}(b) & h_{2}(b) \\
h_{3}(b) & h_{4}(b)
\end{array}\right]+\left[\begin{array}{ll}
l_{1}(c) & l_{2}(c) \\
l_{3}(c) & l_{4}(c)
\end{array}\right]+\left[\begin{array}{ll}
g_{1}(d) & g_{2}(d) \\
g_{3}(d) & g_{4}(d)
\end{array}\right] \\
& =\left[\begin{array}{ll}
f_{1}(a)+h_{1}(b)+l_{1}(c)+g_{1}(d) & f_{2}(a)+h_{2}(b)+l_{2}(c)+g_{2}(d) \\
f_{3}(a)+h_{3}(b)+l_{3}(c)+g_{3}(d) & f_{4}(a)+h_{4}(b)+l_{4}(c)+g_{4}(d)
\end{array}\right]
\end{aligned}
$$

Also, by [Lemma 3.1],[Lemma 3.2],[Lemma 3.3] and [Lemma 3.4], we get the result.

Theorem 3.6 :-Let R be a ring with identity and J a Jordan Left centralizer of $\mathrm{M}_{2}(\mathrm{R} ; \sigma, \mathrm{q})$.Then there exist $\mathrm{f}_{2}, \mathrm{f}_{4}, \mathrm{~g}_{1}, \mathrm{~g}_{3}: \mathrm{R} \rightarrow \mathrm{R}$ and $\propto, \beta, \alpha, \dot{\beta}, \lambda, \dot{\lambda}, \varepsilon, \dot{\varepsilon} \in R$.

Such that

$$
\begin{aligned}
J\left(e_{11} a\right) & =\left[\begin{array}{cc}
\varepsilon a & f_{2}(a) \\
\beta \sigma(a) & f_{4}(a)
\end{array}\right], J\left(e_{12} b\right)=\left[\begin{array}{cc}
\alpha^{\prime} b & \varepsilon b \\
\hat{\beta} \sigma(b) & \beta \sigma(b)
\end{array}\right] \\
J\left(e_{21} c\right) & =\left[\begin{array}{cc}
\alpha c q & \lambda^{\prime} c \\
\lambda c & \varepsilon^{\prime} c
\end{array}\right], J\left(e_{22} d\right)=\left[\begin{array}{cc}
g_{1}(d) & \alpha d \\
g_{3}(d) & \lambda d
\end{array}\right]
\end{aligned}
$$

and $J\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\varepsilon a+\dot{\alpha} b+\alpha c q+\mathrm{g}_{1}(\mathrm{~d}) & f_{2}(a)+\varepsilon b+\dot{\lambda} c+\alpha d \\ \beta \sigma(a)+\dot{\beta} \sigma(b)+\lambda c+\mathrm{g}_{3}(\mathrm{~d}) & f_{4}(a)+\beta \sigma(b) q+\dot{\varepsilon} c+\lambda d\end{array}\right]$
Proof:-From [Lemma 3.1,3]

$$
\mathrm{f}_{3}\left(\mathrm{a}^{2}\right)=\mathrm{f}_{3}(\mathrm{a}) \sigma(\mathrm{a})
$$

Replace a by a+b

$$
\begin{gathered}
f_{3}\left(a^{2}+a b+b a+b^{2}\right)=f_{3}(a+b) \sigma(a+b) \\
f_{3}(a b+b a)=f_{3}(a) \sigma(b)+f_{3}(b) \sigma(a)
\end{gathered}
$$

Replace b by 1 ,since R has identity

$$
\begin{gathered}
f_{3}(2 a)=f_{3}(a) \sigma(1)+f_{3}(1) \sigma(a) \\
f_{3}(2 a)=f_{3}(a)+f_{3}(1) \sigma(a)
\end{gathered}
$$

Then

$$
\mathrm{f}_{3}(\mathrm{a})=\mathrm{f}_{3}(1) \sigma(\mathrm{a})
$$

Now,Let $\beta=\mathrm{f}_{3}(1)$.Then

$$
\mathrm{f}_{3}(\mathrm{a})=\beta \sigma(\mathrm{a})
$$

But $g_{2}\left(\mathrm{~d}^{2}\right)=\mathrm{g}_{2}(\mathrm{~d}) \mathrm{d}$

$$
\begin{aligned}
\mathrm{g}_{2}\left((\mathrm{~d}+\mathrm{c})^{2}\right) & =\mathrm{g}_{2}(\mathrm{~d}+\mathrm{c})(\mathrm{d}+\mathrm{c}) \\
\mathrm{g}_{2}(\mathrm{dc}+\mathrm{cd}) & =\mathrm{g}_{2}(\mathrm{~d}) \mathrm{c}+\mathrm{g}_{2}(\mathrm{c}) \mathrm{d}
\end{aligned}
$$

Replace c by 1

$$
\begin{gathered}
\mathrm{g}_{2}(2 \mathrm{~d})=\mathrm{g}_{2}(\mathrm{~d})+\mathrm{g}_{2}(1) \mathrm{d} \\
\mathrm{~g}_{2}(\mathrm{~d})=\mathrm{g}_{2}(1) \mathrm{d}
\end{gathered}
$$

Let $\propto=g_{2}(1)$,Then

$$
\mathrm{g}_{2}(\mathrm{~d})=\propto \mathrm{d}
$$

and since $g_{4}\left(d^{2}\right)=g_{4}(d) d$
By the same way, we have

$$
\mathrm{g}_{4}(\mathrm{~d})=\lambda \mathrm{d} \text {, where } \lambda=\mathrm{g}_{4}(1)
$$

Also ,from [Lemma 3.1,1]

$$
\mathrm{f}_{1}\left(\mathrm{a}^{2}\right)=\mathrm{f}_{1}(\mathrm{a}) a
$$

Then

$$
\mathrm{f}_{1}(\mathrm{a})=\varepsilon a \text {,where } \varepsilon=\mathrm{f}_{1}(1)
$$

By[Lemma 3.3,1], $h_{1}(a b)=h_{1}(b) a$
Replace by by ,to get

$$
h_{1}(a)=h_{1}(1) a, \text { let } \alpha=h_{1}(1)
$$

Then

$$
h_{1}(a)=\dot{\alpha} a,
$$

since $h_{2}(a b)=f_{1}(a) b$
If $\mathrm{b}=1$ then

$$
h_{2}(a)=f_{1}(a)=\varepsilon a, \text { and } h_{3}(a)=h_{3}(1) \sigma(a), \text { let } \beta^{\prime}=h_{3}(1)
$$

Then

$$
h_{3}(a)=\dot{\beta} \sigma(a)
$$

And since $h_{4}(a b)=f_{3}(a) \sigma(b) q$
Replace a by 1

$$
h_{4}(b)=f_{3}(1) \sigma(b) q
$$

Since $\beta=\mathrm{f}_{3}(1)$ then

$$
\mathrm{h}_{4}(\mathrm{~b})=\beta \sigma(\mathrm{b}) \mathrm{q}
$$

Now ,by [Lemma 3.4,1]

$$
\mathrm{l}_{1}(\mathrm{dc})=\mathrm{g}_{2}(\mathrm{~d}) \mathrm{cq}
$$

$1_{1}(d c)=\alpha d c q$, Replace c by 1

$$
1_{1}(\mathrm{~d})=\alpha \mathrm{dq}
$$

Since $l_{2}(d c)=l_{2}(c) d$, Replace c by 1

$$
l_{2}(\mathrm{~d})=\mathrm{l}_{2}(1) \mathrm{d}, \text { let } \hat{\lambda}=\mathrm{l}_{2}(1)
$$

$\mathrm{l}_{2}(\mathrm{~d})=\hat{\lambda} \mathrm{d}$, and since $\mathrm{l}_{3}(\mathrm{dc})=\mathrm{g}_{4}(\mathrm{~d}) \mathrm{c}$,
Then

$$
1_{3}(\mathrm{dc})=\lambda \mathrm{dc} .
$$

Replace c by 1 ,to get

$$
\mathrm{l}_{3}(\mathrm{~d})=\lambda \mathrm{d}
$$

Now , since $1_{4}(d c)=1_{4}(c) d$, Replace c by 1 ,to get

$$
1_{4}(\mathrm{~d})=1_{4}(1) \mathrm{d}, \text { Let } \varepsilon=1_{4}(1)
$$

Then

$$
1_{4}(\mathrm{~d})=\varepsilon \varepsilon^{\mathrm{d}},
$$

and since

$$
J\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=J\left(e_{11} a\right)+J\left(e_{12} b\right)+J\left(e_{21} c\right)+J\left(e_{22} d\right)
$$

$$
\begin{aligned}
& \quad=\left[\begin{array}{ll}
\mathrm{f}_{1}(\mathrm{a}) & \mathrm{f}_{2}(\mathrm{a}) \\
\mathrm{f}_{3}(a) & \mathrm{f}_{4}(\mathrm{a})
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{h}_{1}(\mathrm{~b}) & \mathrm{h}_{2}(\mathrm{~b}) \\
\mathrm{h}_{3}(\mathrm{~b}) & h_{4}(\mathrm{~b})
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{l}_{1}(\mathrm{c}) & \mathrm{l}_{2}(\mathrm{c}) \\
\mathrm{l}_{3}(\mathrm{c}) & \mathrm{l}_{4}(\mathrm{c})
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{g}_{4}(\mathrm{~d})
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathrm{f}_{1}(\mathrm{a})+\mathrm{h}_{1}(\mathrm{~b})+\mathrm{l}_{1}(\mathrm{c})+\mathrm{g}_{1}(\mathrm{~d}) & \mathrm{f}_{2}(\mathrm{a})+\mathrm{h}_{2}(\mathrm{~b})+\mathrm{l}_{2}(\mathrm{c})+\mathrm{g}_{2}(\mathrm{~d}) \\
\mathrm{f}_{3}(\mathrm{a})+\mathrm{h}_{3}(\mathrm{~b})+\mathrm{l}_{3}(\mathrm{c})+\mathrm{g}_{3}(\mathrm{~d}) & \mathrm{f}_{4}(\mathrm{a})+\mathrm{h}_{4}(\mathrm{~b})+\mathrm{l}_{4}(\mathrm{c})+\mathrm{g}_{4}(\mathrm{~d})
\end{array}\right]
\end{aligned}
$$

Then $J\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\varepsilon a+\dot{\alpha} b+\alpha c q+\mathrm{g}_{1}(\mathrm{~d}) & f_{2}(a)+\varepsilon b+\dot{\lambda} c+\alpha d \\ \beta \sigma(a)+\dot{\beta} \sigma(b)+\lambda c+\mathrm{g}_{3}(\mathrm{~d}) & f_{4}(a)+\beta \sigma(b) q+\dot{\varepsilon} c+\lambda d\end{array}\right]$

References

[1]M.Bresar and J.Vukman ,On Left Derivations and Related Mappings ,Proc.Amer. Math. Soc.110(1990),no.1,7-16.
[2]Q.Deng,On Jordan Left Derivations,Math.J.Okayama univ.34(1992)145-147.
[3]K.W.Jun and b.D.kim,Anote on Jordan Left Derivations,Bull.Korean Math.Soc. 33(1996),no.2,221-228.
[4]J.Vukman,Jordan Left Derivations on Semiprime Rings,math.J.Okayama Univ. 39(1997)1-6.
[5]J.Vukman,On Left Jordan Derivations of Rings and Banach Algebras,Aequationes math.75(2008),no.3,260-266.
[6]J.Vukman,An Identity Related to Centralizers in Semiprime Rings, Comment .Math . Univ. Carolinae 40(1999),447-456.
[7] J. Vukman, Centralizers of Semi-Prime Rings, Comment.Math.Univ.Carolinae 42(2001),237-245.
[8]B.Zalar,On Centralizers of Semi Prime Rings ,Comment.Math.Univ.Carolinae 32(1991),609-614.
[9]N. Hamaguchi ,Jordan Derivations of a Skew Matrix Ring ,Mathematical Journal of Okayama University ,V42,(2000)19-27.
[10]K.Oshiro,Theories of Harada in Artinian Rings and Applications to Classical Artinian Rings, International Symposium on ring theory, Birkhauer ,to appear .

اشتقاق جوردان اليساري وتطبيق جوردان المركزي اليساري على حلقات المصفوفات التخالفية
عبد الرحمن حميا مجيد * رجاء جفات شاهين ** *جامعة بغداد ،كلية العلوم ،قسم الرياضيات . ** جامعة القادسية ،كلية التربية ،قسم الرياضيات.

الخلاصة :في هذا البحث حددنا شكل اشتقاق جوردان اليساري وتطبيق جوردان المركزي اليساري على حلقة المصفوفات M (R; σ, q على الحلقة R.

