On s-coc-separation axioms

Raad Aziz Al-Abdulla

Hadeel Husham Al-Zubaidi

Department of Mathematics College of computer sciences and Mathematics University of Al-Qadisiya

Abstract

In this paper we introduced new type of separation axioms called s-coc-separation axioms and we introducedtypes of continuous functions and study the relation among them. We studied the definitions of s-coc-separation axioms, properties and relation among them.

Keywords

S-coc-open set, locally s-coc-closed set, s-coc-continuous function, s-coc'-continuous function, s-coc- T_i for i=1,2, s-coc-regular, s-coc-normal, s-coc*-regular, s-coc*-normal, locally s-coc-regular, locally s-coc*-normal.

Introduction

This paper consist of three sections . In section one we study definition of s-coc-open set and locally s-coc-closed set and study some properties . In section two study s-coc-continuous , s-coc'-continuous and we prove propositions . In section three we defined new types of s-coc-separation axioms and we introduced relation among them .

Definition: - (1.1) [5]

A subset A of a space (X,τ) is called a cocompact open set (coc-open-set) if every $x\in A$ there exists open set $U\subseteq X$ and compact subset K such that $x\in U-K\subseteq A$, the complement of coc-open set is called coc-closed set .

Definition :- (1.2) [7]

Asubset A of space X is called a semi open set (s-open) if and only if $A \subseteq \overline{A^{\circ}}$ and Ais called s-closed if and only if A^{c} s-open.

Proposition (1.1)[6]

For any subset A of space X the following statements are equivalent.

- 1) A is s-open set.
- 2) $\bar{A} = A^{\circ}$
- 3) There exists open set G such that $G \subseteq A \subseteq \overline{G}$

Remark (1.1) [7]

Every open set is semi-open .but the convers is not true

Proposition (1.2) [2]

For any subset A of a space X the following statements are equivalent

- 1. A is s-closed
- 2. $A^{\circ} = \overline{A}$
- 3. There exists closed set F in X such that $F^{\circ} \subseteq A \subseteq F$

Definition (1.3)

A subset A of a space (X, τ) is called semi-cocompact open set (s-coc-open-set) if for every $x \in A$ there exists s-open set $U \subseteq X$ and compact subset K such that $x \in U - K \subseteq A$, the complement of s-coc-open set is called s-coc-closed set.

Remark (1.2)

Every coc-open set is s-coc-open set .but the convers is not true for the following example :-

Example (1.1)

Consider the space $X = \{1,2,3,4,....\}$, $\tau = \{\emptyset, X, \{2\}, \{3\}, \{2,3\}\}$ topology on $X, A = \{1,2\}$ scoc-open set but not coc-open set.

Remark (1.3):-

- i- Every open set is s-coc-open set.
- ii- Every s-open set is s-coc-open set.

proof:

i. Let A open set. Then A s-open and K compact. Then for all $x \in A$ we have $x \in A - K \subseteq A$.

ii.Clear.

but the convers is not true for the following example:-

Let $X = \{1,2,3,4,\dots\}$, $\tau = \{\emptyset,X,\{2\}\}$. It is clear that $\{1\}$ s-coc-open set but not open and not s-open set .

Remark (1.4) :-

- 1. The intersection of open set and s-open is s-open [7].
- 2. The intersection of two s-coc-open is s-coc-open set .
- 3. The intersection of s-coc-open and coc-open set is s-coc-open
- 4. The union of s-coc-open is s-coc-open set
- 5. The intersection of s-coc-open sets and open set is s-coc-open

Proof: .

2. Let A and B s-coc-open sets. To prove $A \cap B$ is s-coc-open set. And let $A \cap B$ is not s-coc-open set. Then there exists $x \in A \cap B$ such that for all V_x s-open set and Kcompact $x \in V_x - K \not\subseteq A \cap B$. Then $x \in V_x - K \not\subseteq A$ or $x \in V_x - K \not\subseteq B$. Then Ais not s-coc or B is not s-coc-open set. This contradications ince A, B s-coc-open sets. Then $A \cap B$ is s-coc-open set.

- 3. Let A s-coc-open set and B coc-open set .sinceB coc-open then B s-coc-open. Then $A \cap B$ is s-coc-open set by (2)
- 4. $\{A_{\alpha}: \alpha \in \Lambda\}$ s-coc-open set .let $x \in \cup A_{\alpha}$.Then $x \in A_{\alpha}$ for some $\alpha \in \Lambda$.Thenthere exists U_{α} s-open set and K_{α} compact such that $x \in U_{\alpha} K_{\alpha} \subseteq A_{\alpha} \subseteq \cup A_{\alpha}$ then $x \in U_{\alpha} K_{\alpha} \subseteq \cup A_{\alpha}$, then $x \in U_{\alpha} K_{\alpha} \subseteq \cup A_{\alpha}$ then $x \in U_{\alpha} K_{\alpha} \subseteq \cup A_{\alpha}$.
- 5.Let A s-coc-open set and B open set .Then for all $x \in A$ there exists U s-open set and K compact such that $x \in U K \subseteq A$, since U s-open and B open ,then $A \cap B$ s-open by (1),then $x \in (U K) \cap B \subseteq A \cap B$ then $x \in U K^c \cap B \subseteq A \cap B$ then $x \in U \cap B$ then $x \in U$ then $x \in$

Remark (1.5):-

- 1. The coc-open sets forms topology on X denoted by τ^k [9]
- 2. The s-coc-open sets forms topology on X denoted by τ^{sk}
- 3. Every s-closed is s-coc -closed but the converse is not true for example

Example(1.2)

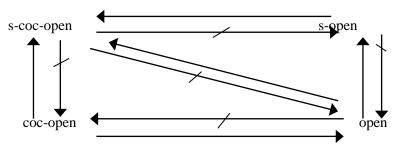
Let $X = \{1,2,3,4,\dots\}$, $\tau = \{\emptyset,X,\{2\},\{3\},\{2,3\}\}$ topology on X and $A = \{1,2\}$ s-coc-open set then $A^c = \{3,4,5,6,\dots\}$ s-closed but A^c not s-closed .

Proposition (1.3)

Let X and Y be topological spaces and $A \subseteq X$, $B \subseteq Y$ such that A s-coc-open set in X and B s-coc-open set in Y then $A \times B$ is s-coc-open subset in $X \times Y$.

Proof:-

Let(x,y) \in A \times B, then x \in A and y \in B. Since A is s-coc-open in X. Then for all x \in A there exists U s-open set and K_1 compact such that x \in U - $K_1 \subseteq$ A. Since B is s-coc-open in Y. Then for all y \in B there exists V s-open set and K_2 compact such that y \in V - $K_2 \subseteq$ B Since U and V are s-open sets, Then U \subseteq $\overline{U^\circ}$ and V \subseteq $\overline{V^\circ}$ then U \times V \subseteq $\overline{U^\circ} \times \overline{V^\circ} \subseteq$ $\overline{U^\circ} \times \overline{V^\circ} \subseteq$ $\overline{(U \times V)^\circ}$. Then U \times V \subseteq $\overline{(U \times V)^\circ}$, then U \times V s-open in X \times Y and $K_1 \times K_2$ compact in X \times Y. Then for all (x, y) \in A \times B there exists s-open U \times V = W and $K_1 \times K_2 =$ K compat such that (x, y) \in W - K \subseteq A \times B therefor A \times B s-coc-open in X \times Y.



Definition (1.4)

Let X be space and $A \subseteq X$. The intersection of all s-coc-closed setsX containing A called the s-coc-closure of A defined by $\overline{A}^{s-coc} = \cap \{B: B \text{ s-coc-closed in X and A} \subseteq B\}$

Definition (1.5)[5]

Let X be space and $A \subseteq X$. The intersection of all coc-closed sets X containing A called the coc-closure of A defined by $\overline{A}^{coc} = \cap \{B: B \text{ coc-closed in X and A} \subseteq B\}$

Proposition (1.4)

Let X be a topological space and $A \subseteq X$ then \overline{A}^{s-coc} is the smallest s-coc-closed set containing

Proof

Clear.

Proposition (1.5)[5]

Let X be a topological space and $A \subseteq X$, then $X \in \overline{A}^{coc}$ if and only if for each coc-open in X contained point x we have $U \cap A \neq \emptyset$.

Proposition (1.6)

Let X be a topological space and $A \subseteq X$, then $x \in \overline{A}^{s-coc}$ if and only if for each s-coc-open in X contained point x we have $U \cap A \neq \emptyset$.

Proof:

Assume that $x \in \overline{A}^{s-coc}$ and let U s-coc-open in X such that $x \in U$, and suppose $U \cap A \neq A$ ØthenA ⊆ U^c. Since *U* s-coc-open set in X and x ∈ U then U^c s-coc closed set in X and x ∉ U and \overline{A}^{s-coc} is smallest s-coc-closed contain A then \overline{A}^{s-coc} ⊆ U^c. Since U ∩ U^c = Ø and $x \in U$ then $x \notin U^c$ then $x \notin \overline{A}^{s-coc}$. Conversely:-

Let U s-coc-closed set in X such that $x \in U$ and $U \cap A \neq \emptyset$. To prove $X \in \overline{A}^{s-coc}$. Let $X \notin \overline{A}^{s-coc}$ then $X \in (\overline{A}^{s-coc})^c$, since \overline{A}^{s-coc} is s-coc-closed in X, $(\overline{A}^{s-coc})^c$ is s-coc-open in X and $\overline{A}^{s-coc} \cap (\overline{A}^{s-coc})^c = \emptyset$. Then $A \cap (\overline{A}^{s-coc})^c = \emptyset$, since $A \subseteq (\overline{A}^{s-coc})^c$. This is a contradiction since for every s-coc-open set *U* in X , U \cap A $\neq \emptyset$.

Proposition (1.7)

Let \overline{X} be a topological space and $A \subseteq B$ then

i-
$$(\overline{A}^{s-coc})^c$$
 is s-coc-closed set

ii- A is s-coc-closed if and only if
$$A = \overline{A}^{s-coc}$$

iii- $\overline{A}^{s-coc} = \overline{\overline{A}^{s-coc}}^{s-coc}$

$$\frac{1}{4}s - coc - \frac{1}{4}s - coc}s - coc$$

in-
$$A = A$$

iv- If $A \subseteq B$ then $\overline{A}^{s-coc} \subseteq \overline{B}^{s-coc}$
v- $\overline{A}^{s-coc} \subseteq \overline{A}$
vi- $\overline{A}^{s-coc} \subseteq \overline{A}^{coc}$

$$\begin{array}{ccc}
v - \overline{A}^{s-coc} & \subseteq \overline{A} \\
vi - \overline{A}^{s-coc} & \subseteq \overline{A}^{coc}
\end{array}$$

Proof:

- i- By definition of s-coc-closed set.
- ii- Let A is s-coc-closed in X . Since $A \subseteq \overline{A}^{s-coc}$ and \overline{A}^{s-coc} smallest s-coc-closed set containing A , then $\overline{A}^{s-coc} \subseteq A$ then $A = \overline{A}^{s-coc}$ conversely :-

Let $A = \overline{A}^{s-coc}$. Since \overline{A}^{s-coc} is s-coc-closed then A is s-coc-closed.

- iii- From (i) and (ii)
- iv- Let $A \subseteq B$. Since $B \subseteq \overline{B}$ then $A \subseteq \overline{A}^{s-coc}$. Since \overline{A}^{s-coc} smallest s-coc-closed set containing A then $\overline{A}^{s-coc} \subseteq \overline{B}^{s-coc}$
- v- Let $x \in \overline{A}^{s-coc}$ then for all s-coc-open set U such that $x \in U$ we have $U \cap A \neq \emptyset$. Then for all open set U such that $x \in U$ we have $U \cap A \neq \emptyset$ by proposition (1.5). Then $x \in \overline{A}$.
- vi- by proposition (1.6) and proposition (1.5).

Definition (1.6)

Let X be space and $A \subseteq X$. The union of all s-coc-open sets of X containing in A is called s-coc-Interior of A denoted by $A^{\circ s-coc} = \bigcup \{B: B \mid s - coc - open \text{ in X and } B \subseteq A\}$

Definition (1.7)[5]

Let X be space and $A \subseteq X$. The union of all coc-open sets of X containing in A is called coc-Interior of A denoted by

 $A^{\circ coc} = \cup \{B: B \ coc - open in X and B \subseteq A\}$

Proposition (1.8):-

Let X be a topological space and $A \subseteq X$, then $A^{\circ s-coc}$ is the largest s-coc-open set contain A

Proof:

Clear.

Proposition(1.9)

Let X be a topological space and $A \subseteq X$, then $x \in A^{\circ s-coc}$ if and only if there exists s-cocopen set V containing xsuch that $x \in V \subseteq A$.

Proof:

Let $x \in A^{\circ s-coc}$ then $x \in U$ such that U s-coc-open set and $x \in V \subseteq A$.

Conversely

Let there exists V s-coc-open set such that $x \in V \subseteq A$ then $x \in U \setminus V$, $V \subseteq A$ and V s-coc-open set then $x \in A^{\circ s-coc}$.

Proposition(1.10)[5]

Let X be a topological space and $A \subseteq X$, then $x \in A^{\circ coc}$ if and only if there exists coc-open set V containing x such that $x \in V \subseteq A$.

Proposition (1.11)

Let X be a topological space and $A \subseteq B \subseteq X$ then.

- 1. A°s-cocis s-coc-open set.
- 2. Ais s-coc-open if and only if $A = A^{\circ s-coc}$.
- 3. $A^{\circ} \subseteq A^{\circ s-coc}$.
- 4. $A^{\circ s-coc} = (A^{\circ s-coc})^{\circ s-coc}$.
- 5. if $A \subseteq B$ then $A^{\circ s-coc} \subseteq B^{\circ s-coc}$.
- 6. $A^{\circ coc} \subseteq A^{\circ s-coc}$

Proof:-

- 1. and 2. from definition (1.5)
- 3. Let $x \in A^{\circ s-coc}$ then there exists U open set such that $x \in U \subseteq A$ then U s-coc-open set then U s-coc-open set such that $x \in U \subseteq A$ thus $x \in A^{\circ s-coc}$
- 4.from (1) and (2).
- 5.Let $x \in A^{\circ s-coc}$ then there exists Vs-coc-open set such that $x \in V \subseteq A$ by proposition(1.9), since $A \subseteq B$ then $x \in V \subseteq B$. Then $x \in B^{\circ s-coc}$ by proposition(1.9). Thus $A^{\circ s-coc} \subseteq B^{\circ s-coc}$.
- 6. By proposition (1.10) and proposition (1.9)

Proposition (1.12)

Let *X* be a space and $A \subseteq X$, then $(A^c)^{\circ s-coc} = (\overline{A}^{s-coc})^c$

Proof

Let $x \in (A^c)^{\circ s-coc}$ and $x \notin (\overline{A}^{s-coc})^c$. Then $x \in \overline{A}^{s-coc}$. Then for all $x \in A$ there exists U scoc-open setsuch that $U \cap A \neq \emptyset$ by proposition (1.6). Since $(A^c)^{\circ s-coc}$ s-coc-open set then $(A^c)^{\circ s-coc} \cap A \neq \emptyset$. Then $(A^c)^{\circ s-coc} \subseteq A^c$ then $A \cap A^c \neq \emptyset$. This is contradiction Thus $x \in (\overline{A}^{s-coc})^c$. Then $(A^c)^{\circ s-coc} \subseteq (\overline{A}^{s-coc})^c$, let $x \in (\overline{A}^{s-coc})^c$ then $x \notin \overline{A}^{s-coc}$. Then there exists U s-coc-open set such that $U \cap A \neq \emptyset$. Then $U \subseteq A^c$ Therefore $U^{\circ s-coc} \subseteq (A^c)^{\circ s-coc}$. Thus $x \in (A^c)^{\circ s-coc}$ then $(A^c)^{\circ s-coc} = (\overline{A}^{s-coc})^c$.

Definition (1.8):-[1]

Let X be a space and B any subset of X, a neighborhood of B is any subset of X which contains an open set containing B. The neighborhoods of a subset $\{x\}$ is also neighborhood of the point x.

Remark (1.6)

The collection of all neighborhoods of the subset B of X are denoted by N(B). In particular the collection of all neighborhoods of x is denoted by N(x).

Definition (1.9)

Let X be a space and $B \subseteq X$, an s-coc-neighborhood of B is any subset of X which contains an s-coc-open set containing B. The s-coc-neighborhood of subset $\{x\}$ is also called s-cocneighborhood of the point x.

Remark (1.7)

The collection of all neighborhoods of the subset B of X are denoted by $N_{s-coc}(B)$ in particular the collection of all neighborhoods of x is denoted by $N_{s-coc}(x)$.

Proposition (1.13)

Let (X, τ) be a topological space and for each $\in X$, let $N_{s-coc}(x)$ be a collection of all s-cocneighborhoods of x then :-

- i. If $A \in N_{s-coc}(x)$ such that $A \subseteq B$ then $B \in N_{s-coc}(x)$
- ii. If $A, B \in N_{s-coc}(x)$ then $A \cap B \in N_{s-coc}(x)$ such that $A, B \subseteq X$
- iii. If $A_{\alpha} \in N_{s-coc}(x)$ then $\bigcup A_{\alpha} \in N_{s-coc}(x)$

Proof

- i- Since $A \in N_{s-coc}(x)$ then there exists U s-coc-open set such that $x \in U \subseteq A$, since $A \subseteq B$ then $x \in U \subseteq B$ hence $B \in N_{s-coc}(x)$.
- ii- Let $A, B \in N_{s-coc}(x)$ and $A \cap B \notin N_{s-coc}(x)$. Then $x \in A \cap B$ and for all U s-coc-open set such that $x \in U \not\subseteq A \cap B$, $x \in U \not\subseteq Aorx \in U \not\subseteq B$. Then $A \notin N_{s-coc}(x)orB \notin N_{s-coc}(x)$ this contradiction.
- iii- Since $A_{\alpha} \in N_{s-coc}(x)$ exists U_{α} s-coc-open set such that $x \in U_{\alpha} \subseteq A_{\alpha} \subseteq U$. Then $x \in U_{\alpha} \subseteq U$. Therefore $UA_{\alpha} \in N_{s-coc}(x)$.

Proposition (1.14)

Let (X, τ) be a space and $A \subseteq X$ then A s-coc-open set in X if and only if A is s-coc-neighborhood for all his points in A

Proof

Let A s-coc-open and $x \in A$. Since $x \in A \subseteq A$ then A is s-coc-neighborhood of x for all x hence A is s-coc-neighborhood for all his points

Conversely:

Let A is s-coc-neighborhood for all his points and $x \in A$. Then A is s-coc-neighborhood for x then there exists U_x s-coc-open set such that $x \in U_x \subseteq A$. Then $A = \bigcup \{x \colon x \in A\} \subseteq \{U_x \colon x \in U_x\} \subseteq A$. Then $A = \{U_x \colon x \in U_x\}$. Then A union of s-coc-open sets. Therefor A is s-coc-open set

Proposition (1.15)

If X is a discrete space then $N_{s-coc}(x) = \{A: x \in A\}$

Proof

Since τ discrete topologythen $\tau = \{A : x \in A\}$. Let $A \subseteq X$ and $x \in X$ either $x \in Aorx \notin A$ -if $x \notin A$ then Anot s-coc-neighborhood of x hence $A \notin N_{s-coc}(x)$

-if $x \in A$.Since $\{x\} \subseteq X$, and $\{x\}$ open set in X . Then $\{x\}$ s-coc-open set $x \in \{x\} \subseteq A$ then A s-coc-neighborhood of x then $A \in N_{s-coc}(x)$ hence $N_{s-coc}(x) = \{A: x \in A\}$

Remark (1.8)

Every neighborhood of x is s-coc-neighborhood of x. But the converse not true for example

Example (1.3)

Let $X = \{1,2,3,4\}$ and $\tau = \{\emptyset, X, \{4\}\}$, $A = \{1,2\}$ not neighborhood of x but s-cocneighborhood of x

Definition (1.10)[4]

Let (X, τ) be a topological space and A subset of X is called a locally closed set if $A = U \cap F$, where $U \in \tau$ and F closed in X.

Definition (1.11)

Let (X, τ) be a topological space and A subset of X is called a locally s-coc-closed set if $A = U \cap F$, where $U \in \tau$, F s-coc-closed in X

Proposition (1.16)

Every locally closed set is locally s-coc-closed.

Proof

Let A be locally closed then $A = U \cap F$ such that $U \in \tau$, F closed set. Since every closed is scoc-closed then A is locally s-coc-closed set. But the convers is not true for the following example.

Example (1.4)

Let $X = \{1,2,3,....\}$, $\tau = \{\emptyset, X, \{1,2,3\}\}$ and $A = \{1,2\}$. Since $A = \{1,2,3\} \cap \{1,2,5\}$ and $\{1,2,5\}$ s-coc-closed. Then A is locally s-coc-closed set. But there exist no F closed set such that $A = \{1,2,3\} \cap F$.

Proposition (1.17)

- i. The intersection of two locally s-coc-closed set is locally s-coc-closed set
- ii. The union of any family of locally s-coc-closed sets is locally s-coc-closed

Proof

- i. Let A,B are locally s-coc-closed sets. Then $A=U\cap F$, $B=V\cap L$, such that $U,V\in\tau$ and F,L are s-coc-closed sets in X. Then $F\cap L=M$ is s-coc-closed sets in X and $U\cap V\in\tau$. Then $A\cap B$ locally s-coc-closed sets.
- ii. Let $\{A_{\alpha}: \alpha \in \Lambda\}$ family of locally s-coc-closed sets . Then $\bigcup A_{\alpha} = \bigcup (U_{\alpha} \cap F_{\alpha}) = \bigcup U_{\alpha} \cap (\bigcup F_{\alpha}) = W_{\alpha} \cap L_{\alpha}$ Since $U_{\alpha} \in \tau$ then $\bigcup U_{\alpha} \in \tau$. Since F_{α} s-coc-closed set in X . Then $L_{\alpha} = \bigcup F_{\alpha}$ s-coc-closed set . Then $\bigcup A_{\alpha}$ locally s-coc-closed set .

Proposition(1.18)

If X space and τ discrete topology on X then any subset of X is locally s-coc-closed set. **proof:**

Let $A \subseteq X$, since τ is discrete topology on X. Then A is open and closed set .Since $A = A \cap A$ then A is locally closed set .Then A is locally s-coc closed set byproposition (1.16).

2.On s-coc- continuous function

In this section, we introduce the definition of s-coc-continuous , remarks and propositions about this concept .

Definition (2.1)[1]

Let $f: X \to Y$ be a function of a space X in to a space Y. Then f is called a continuous function if $f^{-1}(A)$ is open set in X for every open set AinY

Theorem (2.1) [10]

Let $f: X \longrightarrow Y$ function of a space X in to a space Y then:

- i. f is a continuous function if and only if $f^{-1}(A)$ closed set in X.
- ii. *f* is a continuous function if and only if $f(\bar{A}) \subseteq \overline{f(A)}$ for every set AinY.
- iii. f is a continuous function if and only if $\overline{f^{-1}(A)} \subseteq f^{-1}(\overline{A})$ for every set AinY.
- iv. f is a continuous function if and only if $f^{-1}(A^\circ) \subseteq (f^{-1}(A))^\circ$ for every set AinY.

Definition (2.2)

Let $f: X \to Y$ be a function of a space X in to a space Y. f is called s-coc-continuous function if $f^{-1}(A)$ is s-coc-open set in X for every open set A in Y.

Definition (2.3) [5]

Let $f: X \to Y$ be a function of a space X in to a space Y. f is called coc-continuous function if $f^{-1}(A)$ is coc-open set in X for every open set A in Y.

Proposition (2.1)

- i. Every continuous is s-coc-continuous
- ii. Every coc-continuous is s-coc-continuous

Proof

- i. Let $f: X \to Y$ be continuous function and A open set in Y. Then $f^{-1}(A)$ is open set in X. Then $f^{-1}(A)$ is s-coc-open set in X. Then f is s-coc-continuous
- ii. Let $f: X \to Y$ coc-continuous function and A open set in Y then $f^{-1}(A)$ coc-open set in X. Then $f^{-1}(A)$ s-coc-open set in X then f is s-coc-continuous. But the convers of i. and ii. not hold for example

Example (2.1)

i. Let $X = \{1,2,3,4,...\}$, $\tau = \{\emptyset,X,\{2\}\}$ topology on X, $Y = \{a,b,c\}$, $\hat{\tau} = \{\emptyset,Y,\{a\}\}$ topology on and $f: X \longrightarrow Y$ defined by $f(x) = \{aifx \in \{1,3\} \}$. Then f not continuous but s-coc-continuous

ii. Let $X = \{1,2,3,4,\dots\}$, $\tau = \{\emptyset,X,\{2\}\}$ topology on X, $Y = \{a,b\}$, $\hat{\tau} = \{\emptyset,Y,\{a\}\}$ topology on Y and $f: X \to Y$ defined by $f(x) = \begin{cases} aif x = 1 \\ bif x \neq 1 \end{cases}$. Since $\{a\}$ is open set in Y and $\{a\} = \{a\}$ not coc-open set in Y. Then $\{a\} = \{a\}$ is not coc-continuous function. But $\{a\} = \{a\}$ s-coc-open set in Y. Then $\{a\} = \{a\}$ is not coc-continuous function.

Proposition (2.2)

Let $f: X \longrightarrow Y$ be a function of a space X in to a space Y then

- i. The constant function is s-coc-continuous
- ii. If (X,τ) discrete topology then f s-coc-continuous
- iii. If X finite set and τ any topology on X then f s-coc-continuous
- iv. If (Y,τ^*) indiscrete topology then f s-coc-continuous
- v. The identity function is s-coc-continuous
- vi. If $f:(R,U) \to (R,\tau)$ such that U usual topology on R and τ coeffinite topology such that f(x) = |x| for all $x \in R$ then f s-coc-continuous.

Proof clear

Proposition (2.3)

Let $f: X \longrightarrow Y$ be a function of a space X in to a space Y then the following statements are equivalent:-

- 1. f s-coc-continuous function.
- 2. $f^{-1}(A^{\circ}) \subseteq (f^{-1}(A))^{\circ s-coc}$ for every set A of Y.
- 3. $f^{-1}(A)$ s-coc-closed set in X for every closed set A in Y.
- 4. $f(\bar{A}^{s-coc}) \subseteq \overline{f(A)}$ for every set A of X.
- 5. $\overline{f^{-1}(A)}^{s-coc} \subseteq f^{-1}(\overline{A})$ for every set $A \circ fY$.

proof:

 $1 \rightarrow 2$

Let $A \subseteq Y$, since A° open set in Y. Then $f^{-1}(A^{\circ})$ s-coc-open set X. Thus $f^{-1}(A^{\circ}) = (f^{-1}(A^{\circ}))^{\circ s-coc} \subseteq (f^{-1}(A))^{\circ s-coc}$. Then $f^{-1}(A^{\circ}) \subseteq (f^{\circ}(A))^{\circ s-coc}$. $2 \longrightarrow 3$

Let $A \subseteq Y$ such that A closed set in Y. Then A^c open set then $A^c = (A^c)^\circ$ then $f^{-1}((A^c)^\circ \subseteq (f^{-1}(A^c))^{\circ s-coc}$. Then $f^{-1}(A^c) \subseteq (f^{-1}(A^c))^{\circ s-coc}$ then $(f^{-1}(A))^c \subseteq (f^{-1}(A)^c)^{\circ s-coc}$. Therefore $(f^{-1}(A))^c = (f^{-1}(A)^c)^{\circ s-coc}$. Hence $(f^{-1}(A))^c$ s-cocopen set in X. Then $f^{-1}(A)$ s-cocolosed set in X.

$$3 \longrightarrow 4$$

Let $A \subseteq X$. Then $\overline{f(A)}$ s-coc-closed set in Y. Then by (3) we have $f^{-1}(\overline{f(A)})$ s-coc-closed set in X containing A, thus $\overline{A}^{s-coc} \subseteq f^{-1}(\overline{f(A)})$ (since \overline{A}^{s-coc} intersection of all s-coc-closed set in X containing). Hence $f(\overline{(A)}^{s-coc}) \subseteq \overline{f(A)}$

$$4 \longrightarrow 5$$

Let $A\subseteq X$. Then $f^{-1}(A)\subseteq X$. Then by (4) we have $f(\overline{(f^{-1}(A))}^{s-coc})\subseteq \overline{f(f^{-1}(A))}$. Hence $\overline{f^{-1}(A)}^{s-coc}\subseteq f^{-1}(\bar{A})$.

$$5 \rightarrow 1$$

Let B open set in Y then B^c closed .Then $B^c = \overline{B^c}$. Hence $\overline{f^{-1}(B^c)}^{s-coc} \subseteq f^{-1}(\overline{B^c})$. Then $\overline{f^{-1}(B^c)}^{s-coc} \subseteq f^{-1}(B^c)$. Then $f^{-1}(B^c) = (f^{-1}(B))^c$ s-coc-closed set in X. Therefore $f^{-1}(B)$ s-coc-open set in X. Thus f s-coc-continuous function .

Remark(2.1)

From proposition (2.1) we have f s-coc-continuous if and only if the inverseimage of every closed set in Y is s-coc-closed set in X.

Definition (2.4)

Let $f: X \to Y$ be a function of a space X in to a space Y then f is called s-coc irresolute $(s-co\acute{c}-continuous)$ function if $f^{-1}(A)$ s-coc-open set in X for every s-coc-open set inY

Definition (2.5)[5]

Let $f: X \to Y$ be a function of a space X in to a space Y then f is called coc-irresolute $(co\acute{c}-continuous)$ function if $f^{-1}(A)$ coc-open set in X for every coc-open set inY.

Proposition (2.4)

Every *s*–*coć*–*continuous* function is s-coc-continuous function Proof:

Let $f:(X,\tau)\to (Y,\tau)$ s-coc-continuous and B open set in Y. Then B is s-coc-open set .Since fs-coc-continuousthen $f^{-1}(B)$ s-coc-open. Hence f s-coc-continuous function . But the invers is not true in general for the following example

Example(2.2)

Let
$$f: R \to Y$$
 function defined by $f(x) = \begin{cases} 1 & if x < 0 \\ 2 & if x = 0 \text{ and } U \text{ usual topology on } R, \tau \\ 3 & if x > 0 \end{cases}$

indiscrete topology on $Y=\{1,2,3\}$ then the only open sets in Y are Y and \emptyset , then $f^{-1}(\emptyset)=\emptyset$ $f^{-1}(Y)=\{f^{-1}(1),f^{-1}(2),f^{-1}(3)\}=\{(-\infty,0),\{0\},(0,\infty)\}=R$. Since R and \emptyset s-coc-open sets in R then $f^{-1}(\emptyset),f^{-1}(Y)$ s-coc-open in R. Then f s-coc-continuous function. But $\{2\}$ s-coc-open in Y and $f^{-1}(\{2\})=\{0\}$ is not s-coc-open set in R, $0\in\{0\}$. There is no s-open set U such that $0\in U$, and K compact such that $0\in U-K\subseteq\{0\}$. Then f is not s-coc-continuous function.

Proposition (2.5)

Let $f: X \to Ys$ -coć-continuous then $f^{-1}(A)$ s-coc-closed set in X for all A s-coc-closed set in Y proof

Then A^c s-coc-open in Y. Since fs-coc-continuous. Then $f^{-1}(A^c)$ is s-coc-open in X by definition (2.4) .Since $f^{-1}(A^c) = (f^{-1}(A))^c$. Then $(f^{-1}(A))^c$ s-coc-open set in X. Therefore $f^{-1}(A)$ s-coc-closed set in X for all A s-coc-closed set in Y.

Note that

i. $s-co\acute{c}-continuous$ is need not to be continuous function.

ii. continuous is need not to be $s-co\acute{c}$ -continuous function.

iii.s-coć-continuousis need not to be coć-continuous function.

Examples (2.3)

- i. Let $f: X \to Y$, $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{3\}\}$ topologyon X and $Y = \{a,b\}$, $\dot{\tau} = \{\emptyset, Y, \{a\}\}$ topologyon Y, f(1) = f(3) = b, f(2) = a. It is clear that f is s-coć-continuous but not continuous.
- ii. Let $f:(Z,\tau) \to (Y,\dot{\tau})$, $Y=\{a,b,c\}$, $\dot{\tau}=\{\emptyset,Y\}$ topology on Y, $\tau=\{\emptyset,Z\} topology on \ Z \ \text{and} \ f(x)=\begin{cases} a & \text{if} \ x\in Z^+\\ b & \text{if} \ x\in Z^- \end{cases}. \text{ Then } f \text{ is continuous but not s-co\'c-continuous}.$
- iii. Let $X = \{x_1, x_2, x_3, ...\}$ and $Y = \{y_1, y_2, y_3, ...\}$, $\tau = \{\emptyset, X, \{x_2\}\}$ be topology on X, $\tau' = \{\emptyset, Y, \{y_1\}\}$ be topology on Y, let $f: (X, \tau) \to (Y, \tau)$ defined by $f(x_i) = y_i$ When i = 1, 2, 3, Since $\{y_1\}$ coc-open set in Y and $f^{-1}(\{y_1\}) = \{x_1\}$ is not cocopen set in X then f is not coc'-continuous. But τ'^{s-coc} is discrete topology on Y and τ^{s-coc} is discrete topology on Y then f is f is f is f is f in f is f is f in f is f in f is f in f is f in f in f is f in f in f is f in f

Proposition (2.6)

Let $f: X \to Y$ be a function of space X into space Y then the following statements are equivalent.

i. fiss-coć-continuous

ii.
$$f(\bar{A}^{s-coc}) \subseteq \overline{f(A)}^{s-coc}$$
 for every set $A \subseteq X$

iii.
$$\overline{f^{-1}(B)}^{s-coc} \subseteq f^{-1}(\overline{B}^{s-coc})$$
 for every set $B \subseteq Y$

proof:

$$i \rightarrow ii$$

 $\text{Let} A \subseteq X \text{then} f(A) \subseteq Y \text{and} \overline{f(A)}^{s-coc} \text{s-coc-closed} \qquad \text{set} \qquad \text{in} \qquad Y \qquad . \text{Since} \\ fiss-co\acute{c}-continuous . \qquad \text{Then} \ f^{-1}(\overline{f(A)}^{s-coc}) \text{s-coc-closed set} \ \text{in} \ X \ \text{by proposition}(2.1.5) \ . \\ \text{Since} f(A) \subseteq \overline{f(A)}^{s-coc} \text{then} f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)}^{s-coc}) \ . \\ \text{Then} A \subseteq f^{-1}(\overline{f(A)}^{s-coc}) \ . \\ \text{Since} f^{-1}(\overline{f(A)}^{s-coc}) \ \text{s-coc-closed} \ . \qquad \text{Then} \overline{A}^{s-coc} \subseteq f^{-1}(\overline{f(A)}^{s-coc}) \ . \\ \text{Then} \ f(\overline{A}^{s-coc}) \subseteq \overline{f(A)}^{s-coc} .$

$$ii \rightarrow iii$$

Let $(\bar{A}^{s-coc}) \subseteq \overline{f(A)}^{s-coc} \ \forall \ A \subseteq X$, $B \subseteq Y$, then $f^{-1}(B) \subseteq X$, $f(\overline{f^{-1}(B)}^{s-coc}) \subseteq \overline{f(f^{-1}(B))}^{s-coc}$. Since $f(f^{-1}(B)) \subseteq B$. Then $f(\overline{f^{-1}(B)}^{s-coc}) \subseteq \overline{B}^{s-coc}$. Hence $f^{-1}(B)^{s-coc} \subseteq f^{-1}(\overline{B}^{s-coc})$

$$iii \rightarrow i$$

Let B s-coc-closed set in Y then $B = \overline{B}^{s-coc}$. Since $\overline{f^{-1}(B)}^{s-coc} \subseteq f^{-1}(\overline{B}^{s-coc})$. Then $\overline{f^{-1}(B)}^{s-coc} \subseteq f^{-1}(B)$. Since $f^{-1}(B) \subseteq \overline{f^{-1}(B)}^{s-coc}$. Therefore $\overline{f^{-1}(B)}^{s-coc} = f^{-1}(B)$. Therefore $f^{-1}(B)$ s-coc-closed in X. Then iss - coc - continuous.

Not that

Acomposition of two s-coc-continuous function is not necessary be s-coc-continuous function as the following example.

Example (2.4)

Let X = R, $Y = \{1,2,3\}$, $W = \{a,b\}$, $\tau = \{\emptyset,R,R^-\}$ topology on R, $\dot{\tau} = \{\emptyset,Y,\{2,3\}\}$ topology on Y, $\tau^* = \{\emptyset,W,\{a\}\}$ be topology on W and $f\colon R \to Y$ defined by $f(x) = \{1 \text{ if } x = 0 \\ 2 \text{ if } x \in R^+, g\colon Y \to Z \text{ defined by } g(x) = \{a \text{ if } x \in \{1,2\} \\ b \text{ if } x = 3 \}$ are s-coc-continuous in Y, $G(x) = \{a \text{ if } x \in \{1,2\} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\ G(x) = \{a \text{ if } x \in \{1,2\} \} \\$

Proposition (2.7)

If $f: X \to Y$ s-coc-continuous and $g: Y \to W$ continuous then $g \circ f$ s-coc-continuous

proof:

Let B open set in W. Since g continuous, then $g^{-1}(B)$ open in Y. Since f s-coccontinuous then $f^{-1}(g^{-1}(B))$ s-coccontinuous in X. Then $(g \circ f)^{-1}(B)$ s-coccopen in X. Then $g \circ f: X \to Z$ s-coccontinuous

Proposition (2.8)

If $f: X \to Y$ and $g: Y \to Ws - co\acute{c} - continuous$ then $g \circ f$ is $s - co\acute{c} - continuous$.

Proposition (2.9)

Let $f: X \to Y$ be a function of space X into space Y then f is s-coć-continuous function if and only if the inverse image of every s-coc-closed in Y is s-coc-closed set in X

proof:

Let s-coć-continuous , let B s-coc-closed set in Y .Then B^c s-coc-open in Y Since s-coć-continuous , then $f^{-1}(B^c)$ s-coc-open in X . $f^{-1}(B^c) = f^{-1}(B - Y) = f^{-1}(Y) - f^{-1}(B) = X - f^{-1}(B) = (f^{-1}(B))^c$.Then $(f^{-1}(B))^c$ s-coc-open in X. Hence $f^{-1}(B)$ s-coc-closed in X

Conversely:

Let M s-coc-open in Y, then M^c s-coc-closed in Y. Then $f^{-1}(M^c)$ s-coc-closed in X, since $f^{-1}(M^c) = f^{-1}(Y - M) = f^{-1}(Y) - f^{-1}(M) = X - f^{-1}(M) = (f^{-1}(M))^c$. Therefore $f^{-1}(M^c) = (f^{-1}(M))^c$. Then $(f^{-1}(M))^c$ s-coc-closed in X hence $f^{-1}(M)$ s-coc-closed in X then f is g-coc-continuous.

Proposition (2.10)

If $f: X \to Y$ s-coc-continuous onto then for all $y \in Y$ and for all U nbd of y we get there exists A s-coc-open of $f^{-1}(y)$ such that $A \subseteq f^{-1}(U)$ and $f^{-1}(U)$ s-coc-nbd of $f^{-1}(y)$ Proof:

Let $y \in Y$ and U nbd of y. Then there exists B open set in Y such that $y \in B \subseteq U$. Since f onto then there exists $x \in X$ such that (x) = y. Then $x = f^{-1}(y)$. Since f s-coc-continuous then $f^{-1}(B)$ s-coc-open in X, $f^{-1}(y) \in f^{-1}(B) \subseteq f^{-1}(U)$. Let $A = f^{-1}(B)$ then $f^{-1}(y) \in A \subseteq f^{-1}(U)$ then $A \subseteq f^{-1}(U)$ and $f^{-1}(U)$ s-coc-nbd of $f^{-1}(y)$

Proposition (2.11)

If A is locally s-coc-closed set in Y and $f:(X,\tau) \to (Y,\tau)$ continuous and s-coć-continuous. Then $f^{-1}(A)$ is locally s-coc-closed set in X.

Proof:

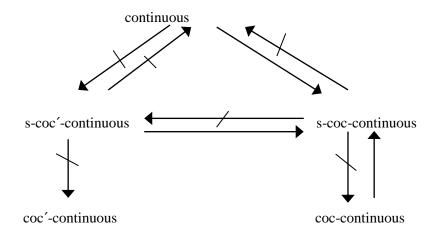
Since A is locally s-coc-closed set in Y. Then $A = U \cap F$ such that $U \in \mathcal{T}$ and F s-coc-closed set in Y. Since f is continuous. Then $f^{-1}(U)$ open set in X. Since f s-coc-continuous. Then $f^{-1}(F)$ is s-coc-closed set in X and $f^{-1}(A) = f^{-1}(U \cap F) = f^{-1}(U) \cap f^{-1}(F)$ then $f^{-1}(A)$ is locally s-coc-closed set in X.

Proposition (2.12)

If A is locally s-coc-closed set in Y and $f:(X,\tau)\to (Y,\tau)$ continuous. Then $f^{-1}(A)$ is locally s-coc-closed set in X

Proof:

Since A is locally s-coc-closed set in Y. Then $A = U \cap F$ such that $U \in \acute{\tau}$ and F s-coc-closed set in Y. Since f is continuous. Then $f^{-1}(U) \in \tau$ and $f^{-1}(F)$ is closed sets in X. Then $f^{-1}(F)$ is s-coc-closed set in X. Since $f^{-1}(A) = f^{-1}(U \cap F) = f^{-1}(U) \cap f^{-1}(F)$. Then $f^{-1}(A)$ is locally s-coc-closed set in X.



3.On s-coc-separation axioms

In this section we recall some definitions, examples, remarks and propositions about separation properties. by using s-coc-open sets and we prove some relation between them.

Definition (3.1) [3]

A space is called T_1 -space if and only if for each $x \neq y$ in X there exists open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Definition (3.2)

A space is called s-coc- T_1 -space if and only if for each $x \neq y$ in X there exists s-coc-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Remark (3.1)

Every T_1 -space is s-coc- T_1 -space but the convers is not true in general.

Example (3.1)

Let $X = \{1,2,3,4,...\}$, $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$ Topology on X. The s-coc-open sets discrete Topology then X is s-coc- T_1 -space but not T_1 -space.

Proposition (3.1)

Let X be a space , then X is s-coc-T₁-space if and only if $\{x\}$ s-coc-closed set for each $x \in X$.

Proof

Let X is s-coc- T_1 -space and $y \in X$ such that $y \notin \{x\}$. Then $y \neq x$, since X is s-coc- T_1 -space, then there exists s-coc-open set V such that $y \in V$, $y \notin \{x\}$ and $x \notin V$, $x \in \{x\}$. Then $V \cap \{x\} = \emptyset$ then $(V - y) \cap \{x\} = \emptyset$, then $y \notin \{x\}'^{s-coc}$ hence $\{x\}'^{s-coc} \subseteq \{x\}$. Then $\{x\}$ s-coc-closed by proposition (1.1.14) (2). Conversely:

Let $\{x\}$ s-coc-closed $\forall x \in X$ then $\{x\}^c$ s-coc-open set ,let $x \neq y$ in X then $y \in \{x\}^c$, $x \notin \{x\}^c$. Then $\{x\}^c = X - \{x\}$ since $\{y\}$ s-coc-closed then $\{y\}^c$ s-coc-open $\{y\}^c = X - \{y\}$ and $y \notin \{y\}^c$, $x \in \{y\}^c$. Hence X is s-coc- T_1 -space .

Definition (3.3) [1]

Let $f: X \to Y$ be a function of space X into space Y then :-

- i- f is called open function if f(A) is open set in Y for every open set A in X.
- ii- f is called closed function if f(A) is closed set in Y for every closed set A in X.

Definition (3.4)

A function $f:(X,\tau) \to (Y,\tau)$ is called

- i- super s-coc-open if f(U) is open in Y for each U s-coc-open in X.
- ii- super s-coc-closed if f(U) is closed in Y for each U s-coc-closed in X.

Proposition (3.2)

If X is s-coc- T_1 -space and $f: X \to Y$ super s-coc-open bijective then Y is T_1 -space.

Proof

Let $x, y \in Y$ such that $x \neq y$ since f onto then there exist $a, b \in X$ such that f(a) = x, f(b) = y. Then $a \neq b$ since X is s-coc-T₁. Then there exists U, V s-coc-open sets such that $(a \in U, b \notin U)$ and $(a \notin V, b \in V)$. Since f super s-coc-open then f(U), f(V) open in f(u), f(u) is f(u) and f(u) is f(u) and f(u) is f(u). Thus f(u) is f(u).

Definition (3.5) [5]

Let $f: X \longrightarrow Y$ be a function of space X into space Y then :

- i- f is called coc-closed function if f(A) is coc-closed set in Y for every closed set A in X.
- ii- f is called coc-open function if f(A) is coc-open set in Y for every open set A in X.

Proposition (3.3)

Let $f: X \to Y$ onto s-coc-open function. If X is T_1 -space then Y is s-coc- T_1 -space.

Proof

Let $y_1, y_2 \in Y \ni y_1 \neq y_2$. Since $f: X \to Y$ onto function, then there exists $x_1, x_2 \in X$ such that $(x_1) = y_1$, $f(x_2) = y_2$, Then $x_1 \neq x_2$. Since X is T_1 -space then there exists U, V open sets in X such that $(x_1 \in U, x_2 \notin U)$ and $(x_2 \in V, x_1 \notin V)$. Since f s-coc-open function. Then f(U), f(V) s-coc-open sets in Y. Since $x_1 \in U$ then $f(x_1) \in f(U)$ and $x_1 \notin V$ then $(x_1) \notin f(V)$. Since $x_2 \in U$ then $f(x_2) \notin f(U)$ and $x_2 \notin V$ then $f(x_2) \in f(V)$. Then Y is s-coc- T_1 -space.

Proposition (3.4)

Let $f: X \to Y$ one-to-one s-coc-continuous function. If Y is T_1 -space then X is s-coc- T_1 – space.

Proof:

Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$. Since $f: X \to Y$ one-to-one function and $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$. Since Y is T_1 -space then there exists U, V open sets in Y such that $(f(x_1) \in U, f(x_2) \notin U)$ and $(f(x_2) \in V, f(x_1) \notin V)$. Since f s-coc-continues function then $f^{-1}(U), f^{-1}(V)$ s-coc-open sets in X. Since $f(x_1) \in U$ then $x_1 \in f^{-1}(U)$ and $f(x_2) \notin U$ then $x_2 \notin f^{-1}(U)$. Since $f(x_2) \in V$ then $x_2 \in f^{-1}(V)$ and $f(x_1) \notin V$ then $x_1 \notin f^{-1}(V)$ hence X is s-coc- T_1 -space

Definition (3.6)

Let $f: X \to Y$ be a function of space X into space Y then:

- 1) f is called s-coc-closed function if f(A) is s-coc-closed set in Y for every closed set A in X.
- 2) f is called s-coc-open function if f(A) is s-coc-open set in Y for every open set A in X.

Definition (3.7)[5]

Let $f: X \to Y$ be a function of space X into space Y then:

- i. f is called coć-closed function if f(A) is coc-closed set in Y for all coc-closed A in X.
- ii. fi s called coć-open function if f(A) is coc-open set in Y for all coc-open A in X.

Definition (3.8)

Let $f: X \to Y$ be a function of space X into space Y then:

- 1) f is called s-coć-closed function if f(A) is s-coc-closed set in Y for all s-coc-closed set A in X.
- 2) f is called s-coć-open function if f(A) is s-coc-open set in Y for all s-coc-open set A in X.

Definition (3.9)

Let X and Y are spaces. Then a function $f: X \to Y$ is called s-coc-homeomorphism if

- 1. *f* bijective
- 2. f s-coc-continuous
- 3. *f* s-coc-closed (s-coc-open)

It is clear that every homeomorphism is s-coc-homeomorphism .

Definition (3.10)

Let X and Y are spaces, then a function $f: X \longrightarrow Y$ is called s-coć-homeomorphism if:

- 1. f bijective
- 2. f s-coć-continuous
- 3. *f* s-coć-closed (s-coc-open)

It is clear that every homeomorphism is s-coć-homeomorphism

Theorem (3.1)

Let X and Y be s-coć-homeomorphism space then X s-coc- T_1 -space iff Y is s-coc- T_1 -space.

Proof:Clear

Definition (3.11) [3]

A space is called T_2 -space (Hausdorff) if and only if for each $x \neq y$ in X there exists disjoint open sets U and V such that $x \in U$, $y \in V$.

Definition (3.12)

A space is called s-coc- T_2 -space (s-coc-Hausdorff) if and only if for each $x \neq y$ in X there exists U and V disjoint s-coc-open sets such that $x \in U$, $y \in V$.

Remark (3.2)

It is clear that every T₂-space is s-coc-T₂-space but the converse is not true for example

Example (3.2)

Let $X = \{1,2,3,4,...\}$, $\tau = \{\emptyset, X, \{1\}\}$ Topology on $X.\tau^{sk}$ discrete Topology. Then X is s-coc- T_2 -space but not T_2 -space.

Proposition (3.5)

Let $f: X \to Y$ be bijective s-coc-open function. If X is T_2 -space then Y is s-coc- T_2 -space.

Let $y_1, y_2 \in Y \ni y_1 \neq y_2$. Since $f: X \to Y$ bijective function, then there exists $x_1, x_2 \in X$ such that $f(x_1) = y_1$, $f(x_2) = y_2$, Then $x_1 \neq x_2$ since f s-coc-open function, Since X is T_2 -space and $x_1 \neq x_2$ then there exists U, V open sets in X such that $x_1 \in U, x_2 \in V$ and $U \cap V = \emptyset$. Since f s-coc-open then f(U), f(V) s-coc-open sets in Y. Since $x_1 \in U$ then $f(x_1) \in f(U)$ and $x_1 \notin V$ then $f(x_1) \notin f(V)$ and $f(U) \cap f(V) = f(U \cap V) = \emptyset$. Hence Y is s-coc- T_2 -space

Remark (3.3)

Every is $s\text{-}coc\text{-}T_2$ space is $s\text{-}coc\text{-}T_1space$. But the converse is not true for the following example .

Example (3.3)

Let X=R and τ coffinite Topology on R then τ^{sk} coffinite Topology, let $x\neq y$. Since $x\notin R-\{x\}$, $x\in R-\{y\}$ and $y\in R-\{x\}$, $y\notin R-\{y\}$. Since $R-\{x\}$, $R-\{y\}$ open sets then for all $\neq y$ in R, $R-\{x\}$, $R-\{y\}$ are s-coc-open sets. Then R is s-coc-T₁-space. Since $3\neq 4$ and there is no disjoint s-coc-open sets U,V such that $3\in U,4\in V$. Thus (R,τ) is not s-coc-T₂-space.

Proposition (3.6)

If X is s-coc- T_2 -space and $f: X \to Y$ super s-coc-open bijective then Y is T_2 -space.

Proof

Let $x,y\in Y$ such that $x\neq y$. Since f onto then there exist $a,b\in X$ such that f(a)=x, f(b)=y and $a\neq b$. Since X is s-coc-T₂. Then there exists U,V s-coc-open sets such that $a\in U,b\in V$. Since f super s-coc-open then f(U), f(V) open sets in Y. Since $U\cap V=\emptyset$ then $f(U)\cap f(V)=f(U\cap V)=\emptyset$. Thus f(U), f(V) disjoint sets. Then $f(a)\in f(U)$ and $f(b)\in f(V)$. Then for all f(a)=x, $f(b)=y\in Y$ such that $x\neq y$. There exists disjoint open sets in Y such that $x\in f(U)$, $y\in f(V)$. Thus Y is Y-space.

Proposition (3.7)

Let $f: X \to Y$ one-to-one s-coc-continuous function. If Y is T_2 -space then X is s-coc- T_2 -space.

Proof

Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$. Since $f: X \to Y$ one-to-one function and $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ in Y. Since Y is T_2 -space then $\exists U, V$ open sets in such that $(x_1 \in U, x_2 \in V)$ and $U \cap V = \emptyset$. Since f s-coc-continuous function then $f^{-1}(U), f^{-1}(V)$ s-coc-open sets in X, since $f(x_1) \in U$ then $x_1 \in f^{-1}(U)$. Since $f(x_2) \in V$ then $x_2 \in f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$ hence X is s-coc- T_2 -space.

Theorem (3.2)

Let X and Y be s-coć-homeomorphism space then X s-coc- T_2 -space if and only if Y is s-coc- T_2 -space.

Proof

Let X,Y be s-coc'-homeomorphism ,let X s-coc- T_2 -space .Let $y_1,y_2 \in Y$ such that $y_1 \neq y_2$. Since f onto function .Then there exist $x_1,x_2 \in X$ such that $f(x_1) = y_1, f(x_2) = y_2$ since X is s-coc- T_2 -space ,Then there exists U,V s-coc-open sets in X such that $f(x_1) \in U$, $f(x_2) \in Y$ and $f(x_2) \in Y$ and $f(x_2) \in Y$ shen $f(x_2) \in Y$ then $f(x_2) \in Y$ then $f(x_2) \in Y$ then $f(x_2) \in Y$ then $f(x_2) \in Y$ shen $f(x_2) \in Y$ shen

Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$. Since f one-to-one function and $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$. Since Y is T_2 -space then there exists U, V s-coc open sets in Y such that $(x_1 \in U, x_2 \in V)$ and $U \cap V = \emptyset$. Since f s-coc-continuous function then $f^{-1}(U), f^{-1}(V)$ s-cocopen sets in X. Since $f(x_1) \in U$ then $x_1 \in f^{-1}(U)$. Since $f(x_2) \in V$ then $x_2 \in f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ hence X is s-coc- T_2 -space.

Definition (3.13) [8]

A space X is said to be regular space if and only if for each $x \in X$ and C closed subset such that $x \notin C$ there exist disjoint open sets U, V such that $x \in U$ and $C \subseteq V$.

Definition (3.14)

A space X is said to be s-coc-regular space if and only if for each $x \in X$ and B closed subset of X such that $x \notin B$ there exist disjoint s-coc-open sets U, V such that $x \in U$ and $B \subseteq V$.

Remark (3.4)

Every regular space is s-coc-regular but the convers is not true.

Example (3.4)

Let $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{2,3\}\}$. X s-coc-regular (Since s-coc-open sets is discrete) and $F = \{1\}$ closed set and $2 \notin \{1\} = F$ there exists no open sets U, V such that $2 \in U = \{2,3\}$, $F \subseteq V = X$ and $U \cap V \neq \emptyset$. Then X is not regular.

Proposition (3.8)

If $f: X \to Y$ homeomorphism and s-coć- homeomorphism. Then X is s-coc-regular if and only if Y is s-coc-regular

Proof

Let Y is s-coc-regular. To prove X s-coc-regular, let $x \in X$ and F closed set in X such that $x \notin F$. Then $f(x) \notin f(F)$ since f is (closed) function then f(F) closed set in Y. Since Y is s-coc-regular then there exists U, V disjoint s-coc-open sets such that $f(x) \in U$, $f(F) \subseteq V$.

Since f s-coć-continuous then $f^{-1}(U)$, $f^{-1}(V)$ s-coc-open sets in X.Since $f^{-1}(\emptyset) = f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$. Then $f^{-1}(U)$, $f^{-1}(V)$ disjoint sets in X. Then $f^{-1}(f(x)) \in f^{-1}(U)$, $f^{-1}(f(F)) \subseteq f^{-1}(V)$. Since f bijective then $f^{-1}(U)$, $f \subseteq f^{-1}(V)$. Then X is s-cocregular.

Conversely:

Let X s-coc-regular . To prove Y is s-coc-regular ,let $y \in Y$ and F closed set in Y such that $y \notin F$. Since f onto then there exists $x \in X$ such that f(x) = y. Then $x = f^{-1}(y)$. Since f continuous then $f^{-1}(F)$ closed set in X and $x \notin f^{-1}(F)$. Since X s-coc-regular then there exists U, V disjoint s-coc-open sets such that $x \in U$, $f^{-1}(F) \subseteq V$. Since f s-coć-continuous then f(U), f(V) s-coc-open sets in Y . Since $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$. Then f(U), f(V) disjoint sets in X and $y = f(x) \in f(U)$, $f(f^{-1}(F)) \subseteq f(V)$. Since f bijective then $y \in f(U)$, $F \subseteq f(V)$. Then Y is s-coc-regular.

Proposition (3.9)

A space X is s-coc-regular space if and only if for every $x \in X$ and every open set U in X such that $x \in U$ there exist s-coc-open set W such that $x \in W \subseteq \overline{W}^{s-coc} \subseteq U$.

Proof

Let X s-coc-regular space and $x \in X$, U open set in X such that $x \in U$, Then U^c closed set in X and $x \notin U^c$ then there exist disjoint s-coc-open sets W, V such that $x \in W, U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{s-coc} \subseteq \overline{V^c}^{s-coc} \subseteq V$. Conversely

Let $x \in X$ and F closed set in X such that $x \notin F$ then F^c open set in X and $x \in F^c$, then there exist s-coc-open sets W such that $x \in W \subseteq \overline{W}^{s-coc} \subseteq F^c$. Then $x \in W, F \subseteq \left(\overline{W}^{s-coc}\right)^c$ are disjoint s-coc-open sets. Then X s-coc-regular space

Proposition (3.10)

If $f: X \to Y$ onto , continuous , s-coc-open function and X regular space then Y s-cocregular.

Proof

Let $y \in Y$ and C closed set such that $y \notin C$. Since f onto then there is $x \in X$ such that f(x) = y. Since f continuous and C closed set in Y. Then $f^{-1}(C)$ closed in X and $x = f^{-1}(y) \notin f^{-1}(C)$. Since X regular space then there is U, V open disjoint sets such that $x \in U$ and $f^{-1}(C) \subseteq V$. Since f s-coc-open then f(U), f(V) s-coc-open sets and disjoint. Then $y = f(x) \in f(U)$ and $C \subseteq f(V)$. Thus Y s-coc-regular space

Proposition (3.11)

If $f: X \to Y$ closed bijective, s-coc-continuous and if Y regularthen X s-coc-regular. **Proof**

Let $x \in X$ and F closed set in X such that $x \notin F$. Since f closed function then f(F) closed set in f such that $f(x) \notin f(F)$. Since f regular space then there is f0, f0 open disjoint sets such that $f(F) \subseteq V$ and $f(F) \subseteq U$. Since f s-coc-continuous then $f^{-1}(U)$, $f^{-1}(V)$ s-cocopen sets and disjoint and $f^{-1}(f(F)) \subseteq f^{-1}(V)$, $f^{-1}(f(F)) \subseteq f^{-1}(U)$. Since f bijective then $f^{-1}(f(F)) = F$ and $f^{-1}(f(F)) = X$. Since $f^{-1}(U) \cap f^{-1}(U) \cap f^{-1}(U) = f^{-1}(U)$

Not that

- i. If X is s-coc- T_1 -space then X need not to be s-coc-regular.
- ii. If X is s-coc-regular then X need not to be s-coc- T_1 .

Example (3.5)

- i. Let X = R and τ coffinite Topology on R. Since $3 \in R$ and $\{1\}$ closed set such that $3 \notin \{1\}$ and there is no disjoint s-coc-open sets U, V such that $3 \in U, \{1\} \in V$ then R is not s-coc-regular. But R is s-coc- T_1
- ii. Let $X = \{1,2,3,4,...\}$ and $\tau = \{\emptyset,X\}$. Since there is no closed set C such that $x \notin C$ where $x \in X$ then X is s-coc-regular .Since $\tau^{sk} = \{\emptyset,X\}$ and $1,2 \in X$ and $1 \neq 2$. There is no U,V s-coc-open sets such that $1 \in U,1 \notin V$ and $2 \notin U$, $2 \in V$. Then X is not s-coc- T_1 space.

Proposition (3.12)

If $f: X \longrightarrow Y$ super s-coc function, continuous, onto and X s-coc-regular then Y is regular.

Let $y \in Y$ and B closed set in Y such that $y \notin B$. Since f continues then $f^{-1}(B)$ closed in X. Since f onto then there is $x \in X$ such that f(x) = y and $x \notin f^{-1}(B)$. Since X is s-cocregular then there exists U, V disjoint s-coc-open sets in X such that $x \in U$ and $f^{-1}(B) \subseteq V$. Since f super s-coc-open then f(U), f(V) open in Y. Thus $y = f(x) \in f(U)$ and $B \subseteq f(V)$. Then Y is regular space.

Definition (3.15) [11]

A space X is normal if and only if when every A and B are disjoint closed subsets in X, there exist disjoint open sets U, V with $A \subseteq U$ and $B \subseteq V$.

Definition (3.16)

A space X is called s-coc-normal space if and only if when every disjoint closed sets C_1 , C_2 there exist disjoint s-coc-open sets V_1 , V_2 such that $C_1 \subseteq V_1$ and $C_2 \subseteq V_2$.

Remark (3.5)

It is clear that every normal space is s-coc-normal space. but the converse is not true.

Example (3.6)

Let $X = \{1,2,3,4\}$, $\tau = \{\emptyset,X,\{1,2,3\},\{1,3,4\},\{1,3\}$. The closed sets in X are $\{\emptyset,X,\{4\},\{2\},\{2,4\}\}$ and τ^{sk} is discrete Topology then X is s-coc-normal. But not normal since $\{2\},\{4\}$ disjoint closed sets and there exists no disjoint open sets $V_1,V_2\ni\{2\}\subseteq V_1,\{4\}\subseteq V_2$.

Remark (3.6)

- 1. If X is s-coc- T_1 -space then X need not to be s-coc-normal.
- 2. If *X* is s-coc-normal then *X* need not to be s-coc-regular.
- 3. If X is s-coc-normal then X need not to be s-coc- T_1 .

Example (3.7)

- 1. Let X = R, τ coffinite Topology on R. Since $\{1\}, \{2\}$ disjoint closed sets and there is no s-coc-open sets U, V such that $\{1\} \subseteq U, \{2\} \subseteq V$ then R is not s-coc-normal But (X, τ) is s-coc- T_1 by example (3.1.3).
- 2. Let X = Z and $\tau = \{\emptyset, Z, Z_{\circ}, Z_{\circ}^+, Z_{\circ}^-\}$. Since Z_e closed set and $1 \notin Z_e$, there is no disjoint s-coc-open sets U, V such that $1 \in U$ and $Z_e \subseteq V$ then Z is not s-coc-regular. But the closed sets are $Z_e, (Z_{\circ}^-)^c = \{Z_e, Z_{\circ}^+\}, (Z_{\circ}^+)^c = \{Z_e, Z_{\circ}^-\}, \emptyset, Z_e, \text{ and } Z \text{ are not disjoint closed sets then } Z \text{ is s-coc-normal.}$
- 3. Let $X = \{1,2,3,4,...\}$, $\tau = \{\emptyset,X\}$ then $\tau^{sk} = \{\emptyset,X\}$. Since there is no C_1 , C_2 dis joint closed sets then X is s-coc-normal. If each $x,y \in X$ such that $x \neq y$ since there exists no s-coc-open sets U,V such that $x \in U, x \notin V$ and $y \notin U, y \in V$ then X is not s-coc- T_1 space.

Proposition (3.13)

If $f: X \to Y$ homeomorphism and s-coć- homeomorphism .Then X is s-coc-normal if and only if Y s-coc-normal

Proof

To prove X s-coc-normal let Y be s-coc-normal, let A, B disjoint closed sets in X .Since f closed function, then f (A), f (B) disjoint closed sets in Y . Since Y s-coc-normal then there exists U, V disjoint s-coc-open set in Y such that $f(A) \subseteq U$, $f(B) \subseteq V$. Since f s-coć-continuous then $f^{-1}(U)$, $f^{-1}(V)$ disjoint s-coc-open sets in X such that $f^{-1}(f(A)) \subseteq f^{-1}(U)$, $f^{-1}(f(B)) \subseteq f^{-1}(V)$. Since f one to one then $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$. Then X s-coc-normal .

Conversely:

Let X s-coc-normal , to prove Y s-coc-normal , let A, B disjoint closed sets in Y . Since f continuous then $f^{-1}(A), f^{-1}(B)$ disjoint sets in X Since X s-coc-normal then there exists disjoint s-coc-open sets U, V such that $f^{-1}(A) \subseteq U, f^{-1}(B) \subseteq V$. Since f s-coć-open then f(U), f(V) disjoint s-coc-open sets in Y such that $f(f^{-1}(A)) \subseteq f(U), f(f^{-1}(B)) \subseteq f(V)$. Since f bijective then $A \subseteq f(U), B \subseteq f(V)$. Then Y s-coc-normal

Proposition (3.14)

If X s-coc-normal and $f: X \to Y$ super s-coc-open, continuous and one to one then Y is normal.

Proof

Let F_1 , F_2 disjoint closed sets in Y. Since f continuous then $f^{-1}(F_1)$, $f^{-1}(F_2)$ closed sets in X. Since $F_1 \cap F_2 = \emptyset$ then $f^{-1}(F_1) \cap f^{-1}(F_2) = f^{-1}(F_1 \cap F_2) = \emptyset$. Then $f^{-1}(F_1) \cap f^{-1}(F_2)$ disjoint sets in X. Since X s-coc-normal then there exist disjoint s-coc-open sets U, V such that $f^{-1}(F_1) \subseteq U$ and $f^{-1}(F_2) \subseteq V$. Since f super s-coc-open then f(U) and f(V) open sets in Y. Since $U \cap V = \emptyset$ then $f(U) \cap f(V) = f(U \cap V) = \emptyset$. Since f one to one then $f(f^{-1}(F_1)) = F_1$ and $f(f^{-1}(F_2)) = F_2$. Then $F_1 \subseteq f(U)$ and $F_2 \subseteq f(V)$. Then Y is normal space.

Proposition (3.15)

Let $f: X \longrightarrow Y$ continuous and s-coc-open function if X normal then Y s-coc-normal .

Proof

Let A_1 , A_2 disjoint closed sets in Y then $f^{-1}(A_1)$, $f^{-1}(A_2)$ closed disjoint sets in X. Since X normal then there is U,V open disjoint sets such that $f^{-1}(A_1) \subseteq U$ and $f^{-1}(A_2) \subseteq V$. Since f s-coc-open then f(U) and f(V) s-coc-open sets in Y and disjoint such that $A_1 \subseteq f(U)$ and $A_2 \subseteq f(V)$ then Y is s-coc-normal space.

Proposition (3.16)

Let $f: X \to Y$ s-coc-continuous and closed function, if Y normal space then X s-coc-normal

Proof

Let A_1 , A_2 disjoint closed sets in X. Since f closed function then $f(A_1)$, $f(A_2)$ closed disjoint sets in Y. Since Y normal space then there is U, V open disjoint sets such that $f(A_1) \subseteq U$ and $f(A_2) \subseteq V$. Since f s-coc-continuous then $f^{-1}(U)$, $f^{-1}(V)$ disjoint s-coc-open sets then $A_1 \subseteq f^{-1}(U)$ and $A_2 \subseteq f^{-1}(V)$ Thus X is s-coc-normal space.

Proposition (3.17)

A space X is s-coc-normal space if and only if for every closed set $D \in X$ and each open set U in X such that $D \subseteq U$ there exist s-coc-open set V such that $\subseteq V \subseteq \overline{V}^{s-coc} \subseteq U$.

Proof

Let X s-coc-normal and let $D \in X$ closed set and U open set in X such that $D \subseteq U$ then D, U^c disjoint closed sets. Since X is s-coc-normal space then there exist disjoint s-coc-open sets V, W such that $D \subseteq V$, $U^c \subseteq W$ then $D \subseteq V \subseteq \overline{V}^{s-coc} \subseteq \overline{W^c}^{s-coc} \subseteq W^c \subseteq U$. Then $D \subseteq V \subseteq \overline{V}^{s-coc} \subseteq U$.

Conversely:

Let D_1, D_2 disjoint closed sets in X then D_2^c open set in X and $D_1 \subseteq D_2^c$. Then there exists s-coc-open set V such that $D_1 \subseteq V \subseteq \overline{V}^{s-coc} \subseteq D_2^c$ then $D_1 \subseteq V, D_2 \subseteq \overline{V}^{s-coc}$. Since $V, (\overline{V}^{s-coc})^c$ are disjoint s-coc-open sets hence X s-coc-normal space.

Proposition (3.18)

If X s-coc-normal space and T_1 -space, then X s-coc-regular space.

Proof

Let $x \in X$ and W closed set in X such that $x \in W$. Then $\{x\}$ closed subset of X. Since X is T_1 -space—then $\{x\} \subseteq W$. Since X s-coc-normal space. Thus there exists s-coc-open set V such that $\{x\} \subseteq V \subseteq \overline{V}^{s-coc} \subseteq W$ by proposition (3.17). So that $x \in V \subseteq \overline{V}^{s-coc} \subseteq W$. Therefore X s-coc-regular space by proposition (3.9).

Definition (3.17)

A space X is said to be s-coc*-regular if for all $x \in X$ and all F s-coc-closed set such that $x \notin F$ there exist two disjoint s-coc-open sets U, V such that $x \in U$, $F \subseteq V$.

Proposition (3.19)

Every s-coc*-regular is s-coc-regular

Proof

Let F is closed set in Xand $x \notin F$. Then F is s-coc-closed set, since X is s-coc*-regular. Then there exist two disjoint s-coc-regular sets U, V such that $x \in U, F \subseteq V$. Then Xs-coc-regular.

Proposition (3.20)

If $f: X \to Y$ onto super s-coc-open continuous and X is s-coc*-regular then Y is regular

Proof

Let $y \in Y$, F closed set in Y such that $y \notin F$. Since f continuous then $f^{-1}(F)$ closed in X. Since f onto then there exists $x \in X$ such that f(x) = y. Then $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Since X s-coc*-regular then there exist U, V disjoint s-coc-open sets such that $x \in U, f^{-1}(F) \subseteq V$. Since f is super s-coc-open then f(U), f(V) disjoint open sets in Y, and $f(x) \in f(U), F \subseteq f(V)$ Then Y is regular

Proposition (3.21)

Let X s-co c^* -regular and $f: X \to Y$ onto, s-coc-continuous and s-coc-open. Then Y is s-coc-regular.

Proof

Let $y \in Y$, F closed set in Y such that $y \notin F$. Since f onto then there exists $x \in X$ such that f(x) = y. Then $x = f^{-1}(y)$. Since f continuous then $f^{-1}(F)$ closed set in f and f since f solutions. Since f continuous then $f^{-1}(F)$ closed set in f and f since f solutions. Since f solutions for f solutions for f solutions for f solutions. Then f solutions for f solutions. Then f solutions for f solutions fo

Proposition (3.22)

A space *X* is s-co*c**-regular if and only if for all $x \in X$ and all *U* s-coc-open set such that $x \in U$ there exists W s-coc-open set such that $x \in W \subseteq \overline{W}^{s-coc} \subseteq U$

Proof

Let X is $s\text{-co}c^*$ -regular, $x \in X$ and U s-coc-open set such that $x \in U$. Then U^c s-coc-closed set and $x \notin U^c$. Since X is $s\text{-co}c^*$ -regular then there exist disjoint s-coc-open sets V, W such that $x \in W$, $U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{s-coc} \subseteq \overline{V^c}^{s-coc} \subseteq V^c = U$. Conversely

Let for all $x \in X, U$ s-coc-open set such that $x \notin U$. Such that W s-coc-open set such that $x \in W \subseteq \overline{W}^{s-coc} \subseteq U$. Let $x \in X$, F s-coc-closed set in X such that $x \notin F$. Then F^c s-cocopen set and $x \in F^c$. Then $x \in W \subseteq \overline{W}^{s-coc} \subseteq F^c$. Then $x \in W, F \subseteq \left(\overline{W}^{s-coc}\right)^c$. Since \overline{W}^{s-coc} s-coc-closed set, then $\left(\overline{W}^{s-coc}\right)^c$ s-coc-open set and W, $\left(\overline{W}^{s-coc}\right)^c$ disjoint. Then X s-coc*-regular.

Proposition (3.23)

If $f: X \to Y$ s-coć-homeomorphism. Then Y s-coc*-regular if and only if X is s-coc*-regular

Proof

Let X is $s\text{-co}c^*$ -regular and $y \in Y$ and F s-coc-closed set in Y such that $y \notin F$. Since f onto then there exists $x \in X$ such that f(x) = y. Then $x = f^{-1}(y)$. Since f s-cof-continuous then $f^{-1}(F)$ closed set in f and f are f and f and f and f and f are f and f and f and f are f and f and f are f and f and f and f and f are f and f are f and f and f are f are f and f are f and f are f are f and f are f and f are f are f are f are f and f are f a

Let Y s-coc*-regular and $x \in X$, F s-coc-closed set in X such that $x \notin F$ then $y = f(x) \notin f(F)$. Since f s-coć-closed then f(F) s-coc-open in Y and $y \notin f(F)$. Since Y s-coc*-regular then there exist U, V disjoint s-coc-open sets such that $y \in U$, $f(F) \subseteq V$

Since f s-coc'-continuous then $f^{-1}(U)$, $f^{-1}(V)$ disjoint s-coc-open sets in X such that $= f^{-1}(y) \in f^{-1}(U)$, $f^{-1}(f(F)) \subseteq f^{-1}(V)$. Since f one to one then $F \subseteq f^{-1}(f(F))$. Then X s-coc*-regular

Definition (3.18)

A space X is said to be s-coc*-normal if for all $x \in X$ and all A, B disjoint s-coc-closed sets in X there exist U, V disjoint s-coc-open sets such that $A \subseteq U$, $B \subseteq V$

Proposition (3.24)

Every s-coc*-normal is s-coc-normal

Proof

Let A, B disjoint closed sets in X. Then A, B are disjoint s-coc-closed sets in X. Since X s-co c^* -regular then there exist U, V disjoint s-coc-open sets such that $A \subseteq U, B \subseteq V$. Then X s-coc-normal

Proposition (3.25)

A space X is s-coc-normal if and only if for all s-coc-closed set $D \subseteq X$ and all U s-coc-open set in X such that $D \subseteq U$ there exists V s-coc-open sets such that $D \subseteq V \subseteq \overline{V}^{s-coc} \subseteq U$.

Proof

Let X s-co c^* -normal and $D \subseteq X$ such that D s-coc-closed and U s-coc-open in X such that $D \subseteq U$. Then D, U^c disjoint s-coc-closed sets. Since X s-co c^* -normal then there exist W, V disjoint s-coc-open sets such that $D \subseteq V, U^c \subseteq W$. Then $D \subseteq V \subseteq \overline{V}^{s-coc} \subseteq \overline{W^c}^{s-coc} \subseteq U$ Conversely

Let D_1, D_2 disjoint s-coc-closed sets in X.Then D_2^c open set and $D_1 \subseteq D_2^c$. Then there exists s-coc-open set V. Such that $D \subseteq V \subseteq \overline{V}^{s-coc} \subseteq D_2^c$. Then $D \subseteq V$, $D_2^c \subseteq (\overline{V}^{s-coc})^c$. Since $V, (\overline{V}^{s-coc})^c$ are disjoint s-coc-open sets. Then X s-co c^* -normal.

Proposition (3.26)

If $X \operatorname{s-co} c^*$ -normal and $\operatorname{s-coc-} T_1$. Then $X \operatorname{s-co} c^*$ -regular.

Proof

Let $x \in X$ and W s-coc-open set such that $x \in W$. Since X is s-coc- T_1 then $\{x\}$ s-coc-closed set by proposition (3.1) .Then $\{x\} \subseteq W$. Since X s-coc*-normal then there exists V s-coc-open set, such that $\{x\} \subseteq V \subseteq \overline{V}^{s-coc} \subseteq W$. Then X s-coc*-regular by proposition (3.22)

Proposition (3.27)

If $f: X \to Y$ onto super s-coc-open, continuous and X s-coc*-normal, then Y is normal

Proof

Let A, B disjoint closed sets in Y. Since f continuous then $f^{-1}(A), f^{-1}(B)$ disjoint closed sets in X. Since X s-co c^* -normal then there exists two disjoint s-coc-open sets U, V such that $f^{-1}(A) \subseteq U, f^{-1}(B) \subseteq V$. Since f super s-coc-open then f(U), f(V) disjoint open sets in Y and $f(f^{-1}(A)) \subseteq f(U), f(f^{-1}(B)) \subseteq f(V)$. Since f onto then $A \subseteq f(U), B \subseteq f(V)$. Then Y is normal

Proposition (3.28)

Let X s-co c^* -normal and $f: X \to Y$ bijective s-coc-continuous and s-co \acute{c} -open, then Y is s-coc-normal

Proof

Let A, B disjoint closed sets in Y. Since f continuous then $f^{-1}(A), f^{-1}(B)$ disjoint closed sets in X. Since X s-co c^* -normal then there exists two disjoint s-coc-open sets U, V such that $f^{-1}(A) \subseteq U, f^{-1}(B) \subseteq V$. Since f s-coc-open then f(U), f(V) disjoint s-coc-open sets in Y and $(f^{-1}(A)) \subseteq f(U), f(f^{-1}(B)) \subseteq f(V)$. Since f bijective then $A \subseteq f(U), B \subseteq f(V)$. Then Y is s-coc-normal

Proposition (3.29)

If $f: X \to Y$ s-coć-homeomorphism. Then Y is s-coc*-normal if and only if X s-coc*-normal

Proof

Let X s-co c^* -normal and A, B disjoint s-coc-closed sets in Y. Since f s-cof-continuous then $f^{-1}(A)$, $f^{-1}(B)$ disjoint s-coc-closed sets in X. Since f s-cof-normal then there exists two disjoint s-coc-open sets f such that $f^{-1}(A) \subseteq f$ such tha

Let Y is $s\text{-co}c^*$ -normal and A,B disjoint s-coc-closed sets in X. Since f $s\text{-co}\acute{c}$ -open then f(A), f(B) disjoint s-coc-closed sets in Y. Since Y is $s\text{-co}c^*$ -normal then there exists two disjoint s-coc-open sets U,V in Y such that $f(A) \subseteq U, f(B) \subseteq V$. Since f $s\text{-co}\acute{c}$ -continuous then $f^{-1}(U), f^{-1}(V)$ are disjoint s-coc-open sets in X such that $f^{-1}(f(A)) \subseteq f^{-1}(U), f^{-1}(f(B)) \subseteq f^{-1}(V)$. Since f onto then $A \subseteq f^{-1}(U), B \subseteq f^{-1}(V)$. Then $X s\text{-co}c^*$ -normal space

Definition (3.19)

A space *X* is said to be locally s-coc-regular if for all $x \in X$ and all *F* locally closed set such that $x \notin F$ there exists *A*, *B* disjoint s-coc-open sets such that $x \in A$, $F \subseteq B$

Definition (3.20)

A space *X* is said to be locally s-co c^* -regular if for all $x \in X$ and all *F* locally s-coc-closed set such that $x \notin F$ there exists disjoint s-coc-open sets U, V such that $\in U, F \subseteq V$.

Proposition (3.30)

Every locallys- coc^* -regular is s- coc^* -regular

Proof

Let $x \in X$, X locallys-co c^* -regular, let A is s-coc-closed set in X such that $x \notin A$. Since $A = X \cap A$ and $X \in \tau$ thus A is locally s-coc-closed set. Since X locally s-co c^* -regular then there exists U, V disjoint s-coc-open sets such that $x \in U, A \subseteq V$. Then X is s-co c^* -regular

Remark (3.7)

Every locally s-coc*-regular is s-coc regular

Definition (3.21)

A space X is said to be locally s-coc-normal if for every all A, B disjoint locally closed sets there exists U, V disjoint s-coc-open sets such that $A \subseteq U, B \subseteq V$

Definition (3.22)

A space X is said to be locally s-coc*-normalif for every all A, B disjoint locally s-cocclosed sets there exists U, V disjoint s-coc-open sets such that $A \subseteq U, B \subseteq V$

Proposition (3.31)

Every locally $s-coc^*$ -normal is $s-coc^*$ -normal

Proof

Let A, B are disjoint s-coc-closed sets in X. Since $A = X \cap A$, $B = X \cap B$ and $X \in \tau$, thus A, B are disjoint locally s-coc-closed sets .Since X is locally s-co c^* -normal . Then there exists disjoint s-coc-open sets U, V such that $A \subseteq U$, $A \subseteq V$.Therefore $A \subseteq V$ is s-co C^* -normal .

Remark (3.8)

Every locally $s-coc^*$ -normal is $s-coc^*$ -normal.

Proposition (3.32)

Every locally s-co c^* -regular is locally s-coc-regular

Proof

Let X is locally s-coc*-regular, let F locally closed set in X and $x \notin F$ then by proposition (1.16) we get F is locally s-coc-closed set. Since X is s-coc*-regular then there exists U, V disjoint s-coc-open sets such that $x \in U, F \subseteq V$. Then X is locally s-coc-regular

Proposition (3.33)

If X locally $s\text{-}coc^*$ -regular and $f\colon X\to Y$ continuous and s-coc-homeomorphism , then Y is locally $s\text{-}coc^*$ -regular

Proof

Let $y \in Y$, A locally s-coc-closed set in Y such that $y \notin A$. Since f onto then there exists $x \in X$ such that f(x) = y. Then $x = f^{-1}(y)$. Since f continuous and s-co \acute{c} -continuous then $f^{-1}(A)$ locally s-coc-closed set in X by proposition (2.11) and $x \notin f^{-1}(A)$ in X. Since X locally s-coc*-regular then there exists U, V disjoint s-coc-open sets such that $x \in U, f^{-1}(A) \subseteq V$. Since f s -co \acute{c} -open then f(U), f(V) disjoint s-coc-open sets in Y and $y = f(x) \in f(U), f(f^{-1}(A)) \subseteq f(V)$. Since f onto then $y \in f(U), A \subseteq f(V)$. Then Y is locally s-coc*-regular

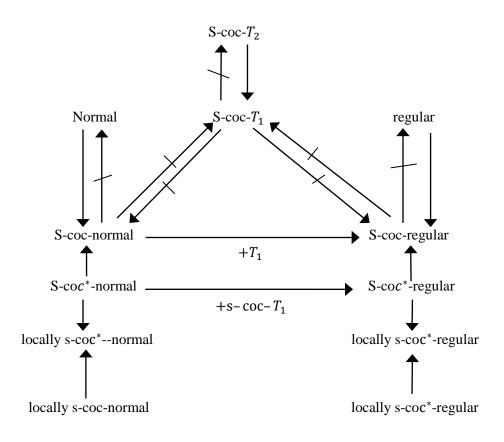
Proposition (3.34)

Every locally s-co c^* -normal is locally s-coc-normal **Proof** by proposition (2.16).

Proposition (3.35)

If X locally s-co c^* -normal and $f: X \to Y$ continuous and s-coc-homeomorphism . Then Y is locally s-co c^* -normal

Let A,B disjoint locally s-coc-closed sets in . Since f continuous, s-co \acute{c} -continuous then $f^{-1}(A),f^{-1}(B)$ locally s-coc-closed set in X by proposition (2.11) .Since X locally s-co c^* -normal then there exists disjoint s-coc-open sets U,V such that $f^{-1}(A) \subseteq U,f^{-1}(B) \subseteq V$. Since f s-co \acute{c} -open then f(U),f(V) disjoint s-coc-open sets in Y and $(f^{-1}(A)) \subseteq f(U),f(f^{-1}(B)) \subseteq f(V)$. Since f onto then $A \subseteq f(U),B \subseteq f(V)$ Then Y is locally s-co c^* -normal



Reference

- [1] N. Bourbaki, Elements of Mathematics "General topology" Chapter 1-4, Spring Vorlog, Belin, Heidelberg, New-York, London, Paris, Tokyo 2 nd Edition (1989).
- [2] S.G.Crossley and S.K.Hildebr and "On Semi Closure" TaxasJ.Sci., 22, (1971).
- [3] M. C. Gemignani , "Elementary Topology" Reading Mass.Addison-wesley Publishing Co.Inc. , 1967 .
- [4] E. Hatir and T.Noiri , Decomposition of Continuity and Complete Continuity , Acta Math Hunger , 133(4)(2006) 281-287 .
- [5] F. H. Jasim "On Compactness Via Cocompact open sets" M.SC. Thesis University of Al-Qadisiya ,college of Mathematics and computer science , 2014.
- [6] N.Levine "Semi-open sets and Semi Continuity in Topological space "Amer Math. Monthy ,70, (1963).
- [7]A.G.Naoum and R.A.H.Al-Abdulla "On paracompact space using semi-open sets "Al-Qadisiya jmournalfor computer Since and Mathematics, Vol 2, No. 1 (2010).
- [8] N.J.Pervin, "Foundation of General Topology" Academic Press, New York, 1964.
- [9] S.Alghour and S.Samarah "Cocompact open sets and Continuity" Abstract and applied analysis , Volume 2012 , Article ID 548612 , 9 Pages , 2012 .
- [10] J.N.Sharma "Topology", published by Krishna Prakasha Mandir, Meerut (U.P) Printed at Manoj printers, Meerut (1977).
- [11] S. Willarad ,General Topology , Addison Wesley Publishing Company Reading Mass 1970

حول بديهيات الفصل من النمط هديل هشام الزبيدي رعد عزيز العبد الله جامعة القادسية / كلية علوم الحاسوب وتكنولوجيا المعلومات

المستخلص

في هذا البحث قدمنا نوع جديد من بديهيات الفصل اسميناها s-coc-separation axioms. لقد ظهرت خلال البحث مفاهيم جديدة منها التي تم شرحها ضمن المجموعات المفتوحة من النمط s-coc لقد تناولنا انواع من الدوال المستمرة ووضحنا العلاقة بينها وتناولنا تعاريف بديهيات الفصل من النمط s-coc ووضحنا خواصها و العلاقات بينها