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Abstract-In this paper, a design procedure which assumes 

general integer or noninteger order plant models ‘also can be 

unknown’ has been adopted to tune PID and fractional order 

PI (FOPI) controller. The design procedure depends on some 

specifications of frequency response of open loop system to 

ensure performance and robustness of step response of closed 

loop system. Firstly, the procedure is applied to integer order 

conventional PID (IOPID) controller, and then it has been 

extended to FOPI. Extensive simulation study has been made 

to investigate the performance of the obtained controllers, and 

also to compare between the two controllers. The simulation 

study has showed the validity and that the proposed 

controllers have good features in all of control demands, where 

it shows that these controllers have fast rise time with no 

overshoot and negligible steady state error. Also, it has showed 

that FOPI controller performs better than IOPID one. 

 

I. Introduction 

 

By fractional calculus, we mean the mathematics which 

deals with differential equations and integration with non-

integer orders, instead of integer orders as it is the case in 

the known or traditional calculus. Obviously, Fractional 

calculus gives more flexibility to describe dynamic systems. 

Also, it can give more flexibility in control design in many 

cases [1]. Fractional order PID (FOPID) controllers are the 

controllers in which the derivative and/or integration parts 

have non integer orders. While by IOPID we mean the well-

known classical PID.  

The fractional order calculus (FOC) is the extension for 

integer (traditional) calculus (IOC). In fact, it appeared 

nearly at the same time with the integer order or classical 

calculus. In other words, it has about 300 years history [1]. 

However,  because of its complexity, FOC has not been 

used in science and engineering applications until recently. 

Nowadays, and because of advances in computer 

programming, there are lots methods to approximate 

fractional derivative and integral. Consequently, FOC has 

been applied in many applications [2-6]. In control theory, it 

has been used as a modeler and also in controllers. It has 

been shown that fractional order system (FOS) could model 

many objects and phenomena more accurately than classical 

IOS [7,8]. Also, many design fractional order controllers to 

replace some known classical controllers have been 

proposed. It has been shown that enhancement can be 

obtained with these controllers. 

Among the most important FO controllers introduced in 

literature, are the FO PI/PID controllers [2,3] (often, known 

as PIτ and PIτDµ), the FO lead-lag compensator [4] and 

optimal fractional controllers [6]. 

The FOPID controller is an expansion to traditional PID 

controller. It has two more adjustable parameters, namely 

the power of integral and derivative parts of the controller. 

It has been shown by many designs that FOPID controller 

can gives better performance and robustness than the 

conventional IOPID [10]. Many design procedures for 

specific types of controlled plant models have been 

proposed for FOPID controllers [3,4]. 

In the present work, a design procedure based on frequency 

response parameters of controlled plant  has been adopted 

for FOPI controller. The proposed design procedure needs 

only the absolute and argument values of the controlled 

plant at a specific or selected frequency which represents 

the required cross over frequency for the overall system. 

These two values can be experimentally obtained by 

applying a sinusoidal signal with the required cross over 

frequency to the input of the pant, and getting the output, 

then calculating the gain and argument. So, in the proposed 

design method, no need for plant model to be known. The 

design procedure assumes general integer or noninteger 

order plant model. The procedure is firstly applied to IOPID 

controller, and then it has been extended for FOPI 

controller. 

 

II. Problem formulation 

 

Consider the unity feedback control system with C(s) is the 

transfer function (T.F.) of controller and P(s) the T.F. of the 

controlled plant. The controlled plant is a general single 

input single output (SISO) system which can be represented 

by the following general T.F.:- 

𝑃(𝑠) =
𝑘𝑝𝑁(𝑠)𝑒−𝑙𝑠

𝐷(𝑠)
… … … … … … … … … … … … … … . … (1) 

Where, Kp is the gain of the plant, l is the time delay. N(s) 

and D(s) are integer or fractional order polynomials of s. 

Our aim in this paper is to design or tune two types PI/PID 

controllers to control the previous plant for specified 

performance and robustness to gain loop variations. The 

first controller (C1) is a traditional IOPID, while the second 

one is a FOPI controller. 

The T.Fs. for the two controllers are listed below [2,11,12]:- 

𝐶1(𝑠) = 𝐾𝑐 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) … … … … … … … … … … . … . (2) 

𝐶2(𝑠) = 𝐾𝑐 (1 +
1

𝑇𝑖𝑠𝜏) … … … … … … … . … … … … … … … . (3) 

Where, Kc is the proportional gain, Ti and Td are integral 

time constant and derivative time constant, respectively, 𝜏 is 

a real number representing the order of the S-domain 

variable (s). 

 

III. Design procedure 

 

The controller design is based on some constraints of the 

open loop system (C(s).P(s)) in frequency response. These 

constraints can ensure some specified specifications of the 

closed loop system. 
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The first condition is the phase margin constraint which can 

be demonstrated mathematically as follow [11]:- 

arg[𝐶(𝑗𝜔𝑐)𝑃(𝑗𝜔𝑐)] = −𝜋 + 𝜑𝑚 … … … … … … … … … . . . (4) 

Where, 𝜔𝑐 is the gain crossover frequency and 𝜑𝑚 is the 

desired phase margin. 

The relationship between phase margin and the transient 

response is well known. So, by this condition the step 

response performance can be determined. 

The second condition is the gain crossover frequency 

constraint [11,12]:- 

|𝐶(𝑗𝜔𝑐)𝑃(𝑗𝜔𝑐)| = 1 …………………………………….(5) 

 

The third condition is given by the following [12]:- 
𝑑 (arg[𝐶(𝑗𝜔)𝑃(𝑗𝜔)])

𝑑𝜔
| = 0 … … … … … … … … … … … . . … … . . (6) 

This constraint ensures that the phase plot is flat around the 

gain crossover frequency, which in turn ensures the 

robustness of the closed loop system to plant gain 

variations. 

 

IV. Controllers design 

 

4.1 IOPID controller 

Equation 2 describes the T.F. of IOPID controller. 

Replacing S by 𝑗𝜔 in Eq.2, then with some manipulation, 

the resultant equation can be rewritten as real and imaginary 

parts. Then, using the  resultant equation, the absolute and 

the argument of the controller equation can be easily 

obtained as demonstrated by the following equations:- 

|𝐶(𝑗𝜔)| =
𝑘𝑐√(𝑇𝑖𝜔)2 + (1 − 𝑇𝑑𝑇𝑖𝜔2)2

𝑇𝑖𝜔
… … … … … … . (7) 

arg[(𝑗𝜔)] = 𝑡𝑎𝑛−1 (
𝑇𝑖𝜔

(1 − 𝑇𝑑𝑇𝑖𝜔2)
) −

𝜋

2
… … … … … … . (8) 

 

Now, by constracting the three design conditions on this 

controller, one can obtain the following:- 

- Phase margin constraint:- 
⌊𝑐(𝑖𝜔𝑐)𝑃(𝑗𝜔𝑐) = ⌊𝐶(𝑗𝜔𝑐) + ⌊𝑃(𝜔𝑐) = − 𝜋 + 𝜑𝑚 ……..(9) 

  

Substituting Eq.8 in Eq.9 and rearranging the resulting 

equation, the following will result:- 
𝑇𝑖𝜔𝑐

1 − 𝑇𝑑𝑇𝑖𝜔𝑐
2

+ 𝑐1 = 0 … … … … … … … … … … … … … . . . (10) 

Where, 

𝑐1 = − tan{ 𝜑𝑚 −
𝜋

2
− arg[𝑃(𝑗𝜔𝑐)]} … … … … … … … … . . (11) 

 

-Gain crossover frequency constraint:- 

|𝐶(𝑗𝜔𝑐)𝑃(𝑗𝜔𝑐)| =
√(𝑇𝑖𝜔𝑐)2 + (1 − 𝑇𝑑𝑇𝑖𝜔𝑐

2)2

𝑇𝑖𝜔𝑐

. |𝑃(𝑗𝜔𝑐)| = 1 … … . (12) 

Eq.12 can be rearranged as follow:- 

𝑇𝑖
2𝜔𝑐

2

(𝑇𝑖𝜔𝑐)2 + (1 − 𝑇𝑑𝑇𝑖𝜔𝑐
2)2

= 𝑘𝑐
2𝑐2 … … … … … … … … (13) 

Where, 

𝑐2 = (|𝑃(𝑗𝜔𝑐)|)2 … … … … … … … … … … … … … … . … . (14) 
-Robustness constraint:- 

 
𝑑⌊𝑐(𝜔)𝑃(𝑗𝜔)

𝑑𝜔
|   =

𝑇𝑖(𝑇𝑖𝑇𝑑𝜔𝑐
2+1)

(1−𝑇𝑖𝑇𝑑𝜔𝑐
2)2+𝑇𝑖

2𝜔𝑐
2 + 𝑐3 = 0 … … … … (15) 

Where, 

𝑐3 =
𝑑{arg[𝑃(𝑗𝜔)]}

𝑑𝜔
|                 𝜔 = 𝜔𝑐  … … … … … … … … … . . … . (16) 

Now, we have three nonlinear equations, namely Eq.10, 13 

and 15 and three design parameters (kc, Ti and Td) which we 

try to find. These equations can be solved numerically or by 

using optimization techniques. Matlab “which is the 

software used in this work” provides some functions for that 

purpose, such as fsolve which provide numerical solver for 

nonlinear equations and fminunc function which provides 

optimization tool for unconstrained nonlinear equations. To 

use these functions in Matlab, the system representing the 

problem to be solved should be formed as a nonlinear 

equations. Then, these functions can be used to solve the 

formulated system of equations by calling one of these 

functions by its name in Matlab workspace and passing the 

system of equations and an initial condition as arguments 

for the function. 

When using these functions or any other optimization or 

numerical technique, some difficulty may be faced to select 

initial values, namely the starting point. To overcome this 

problem, we suggest here alternative graphical procedure. 

The detail of this procedure is as follow:- 

Given the plant model, c1, c2 and c3 can be found. If the 

plant model is not available, these parameters can be found 

experimentally as explained previously. Now, from Eq.10 

plot Td w.r.t Ti and from 15 also plot the same graph on the 

same plot. Then, Ti and Td can be found from the 

intersection point of the two curves. From Eq.13 kc can be 

calculated. 

To explain the procedure, let us take the following T.F. as a 

plant model to be controlled:- 

 

𝑝(𝑠) =
10𝑒−𝑙𝑠

3𝑠2 + 0.5𝑠 + 1
… … … … … … … … … … … … . . … (17) 

Which is one of the models used in simulation study. 

Now, replacing s by 𝑗𝜔, the absolute and argument values 

can be obtained. Also, the derivative of the argument is 

required. Now, selecting a suitable values for 𝜔𝑐 and 𝜑𝑚 

“say 0.9rad/s and π/2.8 rad respectively”, then by replacing 

𝜔 in equetions 11, 14 and 16 with selected 𝜔𝑐 value, c1, c2 

and c3 can be obtained. 

Now, rearrange Eq.10 for Td as illustrated bellow:- 

𝑇𝑑

=
𝑐1 + 𝜔𝑐𝑇𝑖

𝑐1𝑇𝑖𝜔𝑐
2

… … … … … … … … … … … … … … … … . . , 𝑙. (18) 

This equation have been used to obtain a plot for Td w.r.t Ti 

by changing Ti from 0 to 50 with 0.01 step and finding Td 

from the equation. Matlab programing has been used for 

that purpose using m-file utility. 

Equation 15 can be rewritten as a second order 

homogeneous polynomial in Td as  illustrated bellow:- 

(𝑐2𝑇𝑖
2𝜔𝑐

4)𝑇𝑑
2 + (𝑇𝑖

2𝜔𝑐
2 − 2𝑐2 𝑇𝑖𝜔𝑐

2)𝑇𝑑 + (𝑐2𝑇𝑖
2𝜔𝑐

2 + 𝑇𝑖

+ 𝑐2) = 0 … … … . (19) 

Numerical solution have been used to find the roots of this 

equation where Ti have been changed from 0 to 50 with 0.01 

step, for each step the roots (Td ) of this equation is 

obtained. If the two roots obtained are positive integer, then 

we should apply the procedure for both, if one of the two 

roots is negative or complex, then it neglected. After 

choosing one of the two roots, the sets of this root (Td 

values) are ploted w.r.t the corresponding values of Ti on 

the same plot obtained from Eq.18. Fig.1 shows this plot for 

our example.  

 

𝜔 = 𝜔𝑐 

𝜔 = 𝜔𝑐 
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   Fig. 1 Ti versus Td plot. 

 

The intersection point of the two curves will represent the 

solution. This point has been found to be Ti=1.85 and 

Td=0.423. Now, from Eq.13 Kc can be found, and it is equal 

to 0.719. 

4.2 FOPI controller 
 Equation 3 describes the T.F. of this controller. Using the 

following relation[12]:- 

𝑗𝜏 = cos (
𝜋𝜏

2
) + 𝑗 sin (

𝜋𝜏

2
) …………………….………(20) 

The angle and gain of Eq.3 can be easily obtained, and these 

are constructed in equations bellow:- 

arg[𝐶(𝑗𝜔)] = − (
𝜋𝜏

2
) + tan−1 [

𝑇𝑖𝜔
𝜏 𝑠𝑖𝑛 (

𝜋𝜏
2

)

1 + 𝑇𝑖𝜔𝜏 𝑐𝑜𝑠 (
𝜋𝜏
2

)
] . . . (21) 

|𝐶(𝑗𝜔)| =
𝑘𝑐

𝑇𝑖𝑤𝜏
√1 + 2𝑇𝑖𝜔

𝜏 cos (
𝜋𝜏

2
) + 𝑇𝑖

2𝜔2𝜏  … … . (22) 

Then, the three design constraint can be easily obtained as 

follow:- 

-Phase margin constraint 

Using Eq.9, substituting Eq.21 and rearranging, the 

following can be obtained:- 

𝑇𝑖𝜔𝑐
𝜏 sin (

𝜋𝜏
2

)

1 + 𝑇𝑖𝜔𝑐
𝜏 cos (

𝜋𝜏
2

)
= 𝐶1(𝜏) … … … … … … … … … … … (23) 

Where, 

𝐶1(𝜏) = tan{
𝜋𝜏

2
− 𝜋 + 𝜑𝑚 − arg[𝑃(𝑗𝜔𝑐)]} 

 -gain crossover frequency 

Using Eq.5, substituting Eq.22 and rearranging, the 

following can be obtained:- 

𝑇𝑖
2𝜔𝑐

2𝜏

1 + 2𝑇𝑖𝜔𝑐
𝜏 cos (

𝜋𝜏
2

) + 𝑇𝑖
2𝜔𝑐

2𝜏
= 𝑘𝑐2𝐶2 … … … … … (24) 

Where, C2 is as described by Eq.14. 

 

-Robustness constraint 

Using Eq.6, getting the derivative of Eq.21, the following 

can be obtained:- 

𝜏𝑇𝑖𝜔𝑐
𝜏 sin (

𝜋𝜏
2

)

𝜔𝑐[𝜔𝑐
2𝜏 cos (

𝜋𝜏
2

) + 1]
+ 𝐶3 = 0 … … … … … … … … . (25) 

Where, C3 is as described by Eq.16. 

Now, as for IOPID controller we have three equations and 

three design parameters. The same procedure suggested for 

IOPID to solve these equations can be applied here. The 

procedure can be applied as follow:- From Eq.23 plot Ti 

w.r.t τ and from 25 also plot the same graph on the same 

plot. Then, Ti and τ can be found from the intersection point 

of the two curves. From Eq.24, kc can be calculated.  

V. Simulation study 
 

In this section, the validity and performance of the obtained 

tuning method have been investigated by an extensive 

simulation study made by Matlab, where m-file tool has 

been used to solve the nonlinear equations using the 

described method while Simulink utility has been used to 

simulate the systems. Four different process models have 

been chosen to be used as the controlled processes. 

1- First order plus delay time (FOPDT) 

The FOPDT is a model used widely to approximate high 

order process by a first order model with delay time. The 

general T.F. for FOPDT is:- 

𝑝(𝑠) =
𝐾𝑝𝑒−𝑙𝑠

𝑇𝑠 + 1
 

Where 𝐾𝑝 is the process gain, T is the time constant and 𝑙 

the dead time. 

This model has been used with Kp=10, T=5 and l=0.5. These 

values are arbitrary selected. 

 

For integer order PID controller, we have selected 𝜔𝑐=0.9 

rad/sec. and φm=π/2.3rad, and for FOPI 𝜔𝑐=0.9 rad/sec. and 

φm=π/4rad. 𝜔𝑐 and φm  has been suitably selected to ensure 

good performance for the overall system. 

 Now, by applying the procedure described in 4.1 and 4.2, 

the parameters for the two controllers can be obtained. For 

IOPID controllers, the controller parameters are kc=0.213, 

Ti=3.54 and Td=0.377, while for FOPI kc=0.138, Ti=1.256 

and τ=0.77. 

Fig.2 shows the step response for the two systems. 

2- Second order plus delay time (SOPDT)  

This model is also used to approximate high order 

processes. The general T.F. for this model is shown below:- 

𝑝(𝑠) =
𝐾𝑝𝑒−𝑙𝑠

𝑡2𝑠2 + 𝑡1𝑠 + 1
 

The used model have been chosen with the following 

parameters:- Kp=10, t1=0.5 sec., t2=3 sec. and l=0.5.  

Selecting 𝜔𝑐=0.9 rad/sec. and φm=π/2.8 rad for IOPID, 

𝜔𝑐=0.9 rad/sec. and φm=π/2.8 for FOPI and applying the 

solution procedures, the controller parameters have been 

obtained:- kc=0.719, Ti=1.85 and Td=0.423 for IOPID, 

kc=0.054, Ti=1.225 and τ=0.93 for FOPI 

Fig.3 shows the step response for the two systems. 

3- In this part of simulation study, two general T.Fs. have 

been selected. The two equations below describe these 

T.Fs.:- 

𝑃1(𝑠) =
10

(0.2𝑠 + 1)(0.3𝑠 + 1)(0.5𝑠 + 1)(0.7𝑠 + 1)
 

𝑃2(𝑠) =
10(0.8𝑠 + 1)(0.4𝑠 + 1)

(0.2𝑠 + 1)(0.3𝑠 + 1)(0.5𝑠 + 1)(0.7𝑠 + 1)
 

 

For P1, we have selected 𝜔𝑐=0.9 and φm=π/4.2 for IOPID 

and 𝜔𝑐=1.1 and φm=π/12 for FOPI. For P2, 𝜔𝑐=2 and 

φm=π/3 for IOPID, 𝜔𝑐=2 and φm=π/4.2 for FOPI. Using 

similar procedure, the controller parameters have been 

obtained:- 

P1: kc=0.0266, Ti=0.97, Td=0.787 for IOPID, kc=0.043, 

Ti=1.446 and τ=1.02 for FOPI. 

P2: kc=0.06, Ti=0.7, Td=0.147 for IOPID, kc=0.049, 

Ti=0.575 and τ=0.95 for FOPI. 
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Figs.4 and 5 show the step response for the two T.Fs. 

To study the robustness of the proposed controllers, FOPDT 

and SOPDT models have been simulated with different 

values of plant gain (Kp). The nominal value for Kp which 

was used to obtain the controllers parameters for both plants 

is 10. Then Kp has been changed to the values 4, 8, 10,12 

14, 16, and for each value the system is  

simulated with the same controller. 

Fig 6 and 7 show the step response for all of these values of 

Kp for FOPDT model and for IOPID and FOPI controllers 

respectively. Fig.8 and 9 show the step response  for all of 

Kp values for SOPDT model and for IOPID and FOPI 

controllers respectively. 

 
Fig. 2 step response for FOPDT. 

 

 
Fig. 4 step response for P1. 

 

 
Fig. 5 step response for P2. 

 

 
Fig. 6 step response for FOPDT for different values of Kp  

with IOPID controller. 

 

 
Fig. 7 step response for FOPDT for different values of Kp  

with FOPI controller. 
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Fig. 3 step response for SOPDT. 
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Fig. 8 step response for SOPDT for different values of Kp 

with IOPID controller. 

 

Fig. 9 step response for SOPDT for different values of Kp 

with FOPI controller. 

 

VI. Conclusion 

 

In this work, a design procedure based on some frequency 

response specifications for open loop system has been used 

to obtain the parameters of IOPID and FOPI controllers. 

The design procedure assumes general plant model which 

can be unknown, because the procedure gives the set of 

solution equations in terms of some frequency response 

parameters which can be obtained experimentally.  

Simulation study using four different controlled plant model 

has showed that the method gives good results for both 

controllers, where as it is clear from the Figs, the response 

of all simulated cases have fast transient with nearly no 

overshoot and negligible steady state error. 

If these results are used to compare the two controllers 

performance, then it is clear that the two controllers are 

nearly give identical performances with a small superiority 

for FOIP controller as it is clear from fig.4. 

Simulation study included investigating the robustness of 

the proposed controllers to the gain variation. It has showed 

as it can be noted from Figs that the two controllers have 

good robustness and that IOPID controller performs better 

than FOPI. 

Extending the method for other types of FOPI and FOPID 

controllers is our suggestion for future works. 
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