On a Q- Smarandache Implicative Ideal with Respect to an Element of a Q-Smarandache BH-algebra

Q-سمرندش الاستناجية بالنسبة الى عنصر في جبر -BH سمرندش المثالية

Assist.prof. Husein Hadi Abbass

University of Kufa
Faculty of Education for Girls
Department of Mathematics
husseinh.abbas@uokufa.edu.iq

Hayder Kareem Gatea

University of Kufa
Faculty of Education for Girls
Department of Mathematics
haidarkarime@gmail.com

بحث مستل

Abstract

In this paper, we define the concept of a Q-Smarandache implicative ideal with respect to an element of a Q-Smarandache BH-algebra. We state and prove some theorems which determine the relationships among this notion and other types of ideals of a Q-Smarandache BH-algebra.

الخلاصة

عرفنا في هذا البحث مفهوم(المثالية -Q سمرندش الاستناجية بالنسيه لعنصر في جبر- BH سمرندش-Q, وأعطينا وبرهنا بعض المبرهنات التي تحدد العلاقة بين هذا المفهوم مع بعض أنواع المثاليات في جبر - BH سمرندش-Q).

1. INTRODUCTION

The notion of BCK-algebra and BCI-algebra was formulated first in 1966 by Y.Imai and K.Iseki as a generalization of the concept of set-theoretic difference and propositional calculus [4]. In 1983, Q.P.Hu and X.Li introduced the ntion of BCH-algebra which are generalization of BCK\BCI -algebra [5]. In 1998, Y. B. Jun, E. H. Roh and H.S. Kim introduced the notion of BH-algebra, which is a generalization of BCH-algebra [7]. In 2009, A.B.Saeid and A.Namdar introduced the notion of a Q-Smarandache BCH-algebra and Q-Smarandache ideal of a Q-Smarandache BCH-algebra, these notion were generalized to BH-algebra in 2012 by H.H.Abass and S.J.Mohammed[2]. In 2014, H. H. Abbass and S. A. Neamah introduced the notion of an implicative ideal with respect to an element of a BH-algebra[1]. In this paper, a new type of a Q-Smarandache ideal of Q-Smarandache BH- algebra, namely a Q-Smarandache implicative ideal with respect to an element is introduced some related properties investigated.

2. PRELIMINARIES

In this section, we review some basic concepts about a BCK-algebra, BCI- algebra,BCH-algebra, BH-algebra, Smarandache BH-algebra, (ideal, positive implicative and implicative ideal with respect to an element) of a BH-algebra and Q-Smarandach ideal of a Q-Smaradache BH-algebra, with some theorems and propositions .

Definition (2.1):[8]

A BCI-algebra is an algebra (X,*,0), where X is a nonempty set, "*" is a binary operation and 0 is a constant, satisfying the following axioms:

- i. $((x^*y)^*(x^*z))^*(z^*y) = 0$, for all $x, y, z \in X$.
- ii. $(x^*(x^*y))^*y = 0$, for all $x, y \in X$.
- iii. x * x = 0, for all $x \in X$.
- iv. x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

Definition (2.2):[4]

A BCK-algebra is a BCI-algebra satisfying the axiom: 0 * x = 0, for all $x \in X$.

Definition(2.3):[5]

A **BCH-algebra** is an algebra (X,*,0), where X is a nonempty set,"*" is a binary operation and 0 is a constant, satisfying the following axioms:

- i. x * x = 0, $\forall x \in X$.
- ii. x * y = 0 and y * x = 0 imply x = y, $\forall x, y \in X$.
- iii. $(x * y) * z = (x * z) * y, \forall x, y, z \in X.$

Definition (2.4):[7]

A **BH-algebra** is a nonempty set X with a constant 0 and a binary operation"*" satisfying the following conditions:

- i. $x*x=0, \forall x \in X$.
- ii. x*y=0 and y*x=0 imply $x=y, \forall x, y \in X$.
- iii. $x*0 = x, \forall x \in X$.

Definition (2.5):[3]

A **bounded BCK-algebra** satisfying the identity $x * (y * x) = x, \forall x, y \in X$.

Definition (2.6):[7]

Let I be a nonempty subset of a BH-algebra X. Then I is called an **ideal** of X if it satisfies:

- i. 0∈I
- ii. $x^*y \in I$ and $y \in I$ imply $x \in I$.

Definition (2.7):[1]

A nonempty subset I of a BH-algebra X is called an implicative ideal with respect to an element b of a BH-Algebra (or briefly b-implicative ideal), $b \in X$. if

- i. 0∈I.
- ii. $((x^*(y^*x))^*z)^*b \in I$ and $z \in I$ imply $x \in I$, $\forall x, y, z \in X$.

Definition(2.8):[6]

A BH-algebra (X,*,0) is said to be **a positive implicative** if it satisfies for all x,y and $z \in X$, (x*z)*(y*z)=(x*y)*z.

Definition(2.9):[2]

A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X such that :

- $i.0 \in Q$ and $|Q| \ge 2$.
- ii. Q is a BCK-algebra under the operation of X.

Definition(2.10):[2]

Let X be a Smarandache BH-algebra. A nonempty subset I of X is called a **Smarandache ideal of** X related to Q (or briefly, Q-Smarandache ideal of X) if it satisfies:

i.0 ∈ I.

ii. $\forall y \in I \text{ and } x^*y \in I \Rightarrow x \in I, \forall x \in Q$.

Proposition(2.11):[2]

Let $\{I_i, i \in \lambda\}$ be a family of Q-Smarandache ideals of a Smarandache BH-algebra X. Then $\bigcap_{i \in \lambda} I_i$ is

a Q-Smarandache ideal of X.

Proposition (2.12): [2]

Let $\{I_i, i \in \lambda\}$ be a chain of a Q-Smarandache ideals of a Smarandache BH-algebra X. Then $\bigcup_{i \in I} I_i$

is a Q-Smarandache ideal of X.

Proposition (2.13) :[2]

Let X be a Smarandache BH-algebra. Then every ideal of X is a Q-Smarandache ideal of X.

Theorem (2.14):[2]

Let Q_1 and Q_2 be BCK-algebras contained in a Smarandache BH- algebra X and $Q_1 \subseteq Q_2$. Then every Smarandache ideal of X related to Q_2 is a Smarandache ideal of X related to Q_1 .

3. THE MAIN RESULTS

In this section, we introduce the concept of a **Q-Smarandache implicative ideal** of a Q-Smarandache BH-algebra. Also, we state and prove some theorems and examples about these concepts.

Definition (3.1):

Let I be a Q-Smarandach ideal of a Q-Smarandache BH-algebra X and $b \in X$. Then I is called a Q-Smarandache implicative ideal with respect to b (denoted by a Q - Smarandache bimplicative ideal) if:

 $((x^*(y^*x))^*z)^*b \in I \text{ and } z \in I \text{ imply } x \in I, \forall x,y \in Q.$

Example (3.2):

Consider the Q-Saramdache BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation "*" defined by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	2
3	3	3	2	0

where $Q = \{0,2\}$ is a BCK- algebra.

The Q-Smarandache ideal $I = \{0,1\}$ is a Q-Smarandache 0-implicative ideal of X, so I be a Q-Smarandache 1,3 - implicative ideal of X, but it is not a Q-Smarandache 2-implicative ideal of X. Since, x=2, y=2, z=0, $((2*(2*2))*0)*2=((2*0)*2=2*2=0 \in I$, but $x=2 \notin I$.

Proposition (3.3):

Let X be a Q-Smarandache BH-algebra. Then every b- implicative ideal of X is a Q-Smarandache b-implicative ideal of X, \forall b \in X.

Proof:

Let I is b - implicative ideal of X, \forall b \in X.

Now, let $x,y \in Q$ and $z \in I$ such that $((x^*(y^*x))^*z)^*b \in I$ and $z \in I$.

Since $x,y \in Q \implies x,y \in X$. [Since $Q \subseteq X$]

Now, we have

 $((x^*(y^*x))^*z)^*b \in I \text{ and } z \in I.$

 \Rightarrow x \in I. [Since I is b- implicative ideal of X, by Definition (2.7) (ii)]

Therefore, I is a Q-Smarandache b- implicative ideal of X. ■

Remark (3.4):

The follwing example shows that converse of Proposition(3.3) is not correct in general.

Example (3.5):

Consider the Q-Smarandache BH-algebra $X=\{0,1,2,3\}$ with binary operation "*" defind by the following table:

*	0	1	2	3
0	0	0	2	3
1	1	0	1	2
2	2	1	0	1
3	3	3	2	0

where $Q=\{0,1\}$ a is BCK - algebra.

The Q-Smarandache ideal I= $\{0,2\}$ is a Q-Smarandache 2- implicative ideal of X, but it is not an 2-implicative ideal of BH- algebra. Since, x=3, y=0, z =2, $((3*(0*3))*2)*2=((3*3)*2)*2=(0*2)*2=2*2=0 \in I$, but $3 \notin I$.

Theorem (3.6):

Let (N,*) be a Q-Smarandache BH-algebra, where $N=\{0,1,2,\ldots\}$, " * " be a binary operation defind on N by :

$$x*y = \begin{cases} x & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}, \forall x, y \in N$$

,and Q={4k , k \in N} is a BCK- algebra. Then I= {2k , k \in N} is a Q-Smarandache b- implicative ideal of N, \forall b \in I .

Proof:

It is clear I is a Q-Smarandache ideal of N.

Now, let $x,y \in Q$ and $z,b \in I$ such that $((x^*(y^*x)^*z)^*b \in I$ and $z \in I$.

 \Rightarrow (x*(y*x)* z \in I. [Since I is a Q-Smarandache ideal of X]

 \Rightarrow (x*(y*x) \in I. [Snce I is a Q-Smarandache ideal of X]

Case 1: if x = y, then x*(y*x) = x*(x*x) = x*0 = x

[Since Q is a BCK- algebra; x*x=0 and x*0=x, $\forall x \in Q$]

 \Rightarrow x \in I. [Since $x^*(y^*x) \in I$]

Case 2: if $x \ne y$, then $x^*(y^*x) = x^*y = x$. [Since $x^*y = x$]

⇒ $x \in I$. [Since $x^*(y^*x) \in I$ and $x^*(y^*x) = x$] Therefore ,I is a Q-Smarandach b - implicative ideal of X, \forall b \in I.

Theorem (3.7):

Let Q_1 and Q_2 be a two BCK-algebras contained in Q_2 -Smarandache BH-algebra X Such that $Q_1 \subseteq Q_2$ and $b \in X$. Then every a Q_2 -Smarandache b-implicative ideal of X is a Q_1 -Smarandache b-implicative ideal of X.

Proof:

Let I be a Q_2 - Smarandache b - implicative ideal of X.

 \Rightarrow I is a Q₂ - Smarandache ideal of X . [By Definition (3.1)]

 \Rightarrow I is a Q₁ - Smarandache ideal of X. [By Theorem (2.14)]

Now, let $x,y \in Q_1$ and $z \in I$ such that $((x^*(y^*x)) * z)^*b \in I$.

Since $x,y \in Q_1 \implies x,y \in Q_2$. [Since $Q_1 \subseteq Q_2$]

Now, we have

 $((x^*(y^*x))^*z)^*b) \in I \text{ and } x,y \in Q_2, z \in I.$

 \Rightarrow x \in I. [Since I is a Q₂ – Smarandache b- implicative ideal of X]

Therefore, I is a Q₁–Smarandache b- implicative ideal of X.■

Remark (3.8):

The converse of Theorem (3.7) is not correct in general as in the following example.

Example (3.9):

Consider the Q-Smarandache BH-algebra $X=\{0,1,2,3,4\}$ with binary operation "*" defind by the following table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	2	0
3	3	1	3	0	3
4	4	4	4	4	0

where $Q_1=\{0,1\}$, $Q_2=\{0,1,3\}$ are two BCK-algebras such that $Q_1\subseteq Q_2$. The Q-Smarandache ideal $I=\{0,1,4\}$ is a Q_1 -Smarandache 4- implicative ideal of X, but it is not Q_2 -Smarandache 4-implicative ideal of X. Since, x=3, y=0, z=1, $((3*(0*3))*1)*4=((3*0)*1)*4=(3*1)*4=1*4=1 \in I$, but $x=3 \notin I$.

Theorem (3.10):

Let I be a Q-Smarandache ideal of a Q-Smarandache BH-algebra X. Then I is a Q-Smarandache b-implicative ideal of X if and only if for all $x, y \in X$ and $b \in I$, $x^*(y^*x) \in I$ imply $x \in I$.

Proof:

```
Let I be a Q-Smarandache b-implicative ideal of X, \forall b \in I.
```

Now, let $x^*(y^*x) \in I$.

Then $x^*(y^*x) = (x^*(y^*x)) *0 = ((x^*(y^*x)) *0)*0$.

[Since Q is a BCK-algebra; x*0 = x, $\forall x \in Q$]

Then, we have

 $((x^*(y^*x))^*0))^*0 \in I$ and $0 \in I$ implies that $x \in I$. [Since I is a Q-Smarandache 0- implicative ideal of X]

Conversely, suppose that I is a Q-Smarandache ideal of X and the condition is satisfied.

Let $x,y \in Q$ and $z,b \in I$ such that $((x^*(y^*x)^*z)^*b \in I$.

- \Rightarrow (x*(y*x))* z \in I. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]
- \Rightarrow x*(y*x) \in I. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]

 \Rightarrow x \in I. [By hypothesis]

Therefore, I is a Q-Smarandache b- implicative ideal of X.

Theorem (3.11):

Let X be a positive implicative Q-Smarandache BH–algebra and I be a Q-Smarandache ideal of X such that $Q * I \subseteq I$. Then I is a Q-Smarandache b- implicative ideal of X, \forall b \in I.

Proof:

Let I be a O-Smarandache ideal of X such that $O * I \subseteq I$.

Now, let $x, y \in Q$ and z, $b \in I$ such that $((x^*(y^*x)) * z)^* b \in I$.

 \Rightarrow (x*(y*x))* z \in I. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]

But $(x^*(y^*x))^*z = (x^*z)^*((y^*x)^*z)$. [Since X is a positive implicative BH–algebra]

Now $x,y \in Q \implies y^*x \in Q$, so $(y^*x)^*z \in I$. [Since $Q * I \subseteq I$]

So, we have

 $(x^*z)^*((y^*x)^*z) \in I \text{ and } ((y^*x)^*z) \in I.$

- \Rightarrow x* z \in I. [Since I is Q-Smarandache ideal of X]
- \Rightarrow x \in I. [Since I is Q-Smarandache ideal of X]

Therefore, I is a Q-Smarandache b- implicative ideal of X. ■

Theorem (3.12):

Let X be a bounded Q-Smarandache BH-algebra such that Q is a bounded BCK- algebra and I be a Q-Smarandache ideal of X. Then I is a Q-Smarandache b- implicative ideal of X, \forall b \in I.

Proof:

Let I be a Q-Smarandache ideal of X.

Now, let $x,y \in Q$ and z, $b \in I$ such that $((x^*(y^*x))^*z)^*b \in I$.

- \Rightarrow (x*(y*x))* z \in I. [Since I is a Q-Smarandache ideal of X]
- \Rightarrow (x*(y*x) \in I. [Since I is a Q-Smarandache ideal of X]
- \Rightarrow x \in I. [Since Q is a bounded BCK algebra, by Definition (2.5)]

Therefore, I is a Q-Smarandache b- implicative ideal of X. ■

Theorem (3.13):

Let X be a Q-Smarandache BH-algebra and satisfies the following condition:

$$\forall x, y \in Q, x * y = x \text{ with } x \neq y$$

,and I be a Q-Smarandache ideal of X. Then I is a Q-Smarandache b- implicative ideal of X, $\forall b \in I$.

Proof:

```
Let I be a Q-Smarandache ideal of X. Now, let x, y \in Q and z,b \in I such that ((x^*(y^*x))^*z)^*b \in I.
```

 \Rightarrow ($x^*(y^*x)$)* $z \in I$. [Since I is a Q-Smarandache ideal of X]

 $\Rightarrow x^*(y^*x) \in I$. [Since I is a Q-Smarandache ideal of X]

Now, we have two cases:

Case 1: if x=y, then x*(x*x) = x*0 = x.

[Since Q is a BCK-algebra; x*x=0 and x*0=x]

 \Rightarrow x \in I. [Since $x^*(y^*x) \in I$]

 \Rightarrow I is a Q-Smarandache b- implicative ideal of X.

Case 2: if $x \neq y$, then $x^*(y^*x) = x^*y = x$. [Since $x^*y = x$]

 \Rightarrow x \in I. [Since $x^*(y^*x) \in I$]

Therefore, I is a Q-Smarandache b- implicative ideal of X.■

Theorem (3.14):

Let X is a Q-Smarandache BH-algebra X and satisfies the condition:

$$\forall x, y \in Q ; x = x *(y *x)$$

, and I be a Q-Smarandache ideal of X. Then I is a Q-Smarandache b- implicative ideal of X, \forall b \in I.

Proof:

Let I be a Q-Smarandache ideal of X.

Now, let $x, y \in Q$ and $z,b \in I$ such that $((x^*(y^*x))^*z)^*b \in I$.

 \Rightarrow ($x^*(y^*x)$)* $z \in I$. [Since I is a Q-Smarandache ideal of X]

 \Rightarrow x*(y*x) \in I. [Since I is a Q-Smarandache ideal of X]

Case 1: if y=0, then x*(0*x) = x*0 = x.

[Since Q is a BCK-algebra; x*0=x, 0*x=0, $\forall x \in Q$]

 $\Rightarrow x \in I$.

Hence I is a Q-Smarandache implicative ideal of X. ■

Case 2: if $y \ne 0$, then $x^*(y^*x) = x$. [By condition; $x = x^*(y^*x)$]

 \Rightarrow x \in I. [Since $x^*(y^*x) \in I$]

Therefore, I is a Q-Smarandache b- implicative ideal of X.■

Proposition (3.15):

Let $\{I_i \; ; \; i \in \lambda\}$ be family of a Q-Smarandache b- implicative ideals of a Q-Smarandache BH-algebra. Then $\bigcap I_i$ is a Q-Smarandache b- implicative ideal of X. $i \in \lambda$

Proof:

Let
$$x,y \in Q$$
 and $z \in \bigcap I_i$ such that $(x^*(y^*x)) * z) * b \in \bigcap I_i$. $i \in \lambda$ $i \in \lambda$. $i \in \lambda$. [Since I_i is a Q -Smarandache b- implicative ideal of X , $\forall i \in \lambda$] $i \in \lambda$ $i \in \lambda$.

Remark (3.16):

The union of a Q-Smarandache implicatives ideals with repect to an element $\, b$ of a Q-Smarandache BH-algebra may not be a Q-Smarandache implicative ideal of $\, X$ as in the following example .

Example (3.17):

Consider the Q-Smarandache BH-algebra $X=\{0,1,2,3,4,5\}$ with binary operation "*" defind by the following table:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

where Q={0,2} is a BCK-algebra. I={0,1} and J ={0,5} are two a Q-Smarandache 0-implicative ideals of X, but I \cup J ={0,1,5} is not a Q-Smarandache 0- implicative ideal of X, since x=2 ,y= 0, z =5, ((2*(0*2))*5)*0=((2*0)*5)*0=(2*5)*0=1*0=1 \in I, but $2 \notin$ I \cup J.

Proposition (3.18):

Let $\{I_i, i \in \lambda\}$ be chain of a Q-Smarandache b- implicative ideal of a Q-Smarandache BH-algebra X. Then $\bigcup I_i$ is a Q-Smarandache b- implicative ideal of X. $i \in \lambda$

Proof:

Since $\{I_i, i \in \lambda\}$ is a be chian of a Q- Smarandache ideal of X. Then $\bigcup I_i$ is a Q- $i \in \lambda$

Smarandache ideal of X.

Let
$$x,y \in Q$$
 and $z \in U I_i$ such that $((x^*(y^*x)) * z)^*b \in U I_i$ and $z \in U I_i$. $i \in \lambda$ $i \in \lambda$

There exist $\ I_j$, $I_k \in \{I_i \ , i \in \lambda \ \}$ such that ($(x^* (y^*x) \ ^*z)^*b \in I_j$ and $\ z \in I_k$.

- \Rightarrow either $I_i \subseteq I_k$ or $I_k \subseteq I_j$. [Since $\{I_i\}_{i \in \lambda}$ is chain]
- $\implies \text{ either (} (x*(y*x))*\ z\)*b \in\ I_j \ \text{and} \ \ z\ \in\ I_k \ \ \text{or (} (x*(y*x))*\ z)*b \in\ I_k \ \ \text{and} \ \ z \in I_j \, .$
- \implies either $\ x \in I_j \ \text{or} \ x \in I_k$. [Since $I_j \ \text{and} \ I_k$ are Q -Smarandache b- implicative ideal of X]
- $\Rightarrow x \in \cup I_i$. $i \in \lambda$

References:

- [1]H. H. Abbass and S. A. Neamah., "A New Type of Implicative Ideals of a BH-Algebra", European Journal scientific Research Vol. 126, No3. pp.255-268, 2014.
- [2]H. H. Abbass and S. J. Mohammed., "On a Q-Smarandache Completely Closed Ideal with Respect To An Element of a Smarandache BH -algebra", Journal of kerbala university, Vol. 11 No.3, pp.147-157, 2013.
- [3]J. Meng and Y.B. Jun, "BCK-algebras", Kyung Moon SA, Seoul, 1994.
- [4]K. Iseki ,"An algebra related with a propositional calculus", Proc. Japan Acad. 42, 2629,1966.
- [5]Q.P. Hu and X. Li," On BCH-algebras", Math. Seminar Notes, Vol. 11, pp. 313-320, 1983.
- [6]S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chungcheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
- [7]Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae Vol. 1, No 3, pp.347–354, 1998.
- [8]Y. Imai and K. Iseki, "On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42, pp. 19-20, 1966.