* - Embded Of * - Semigroup into * - Ring

انغمار * - شبه الزمرة في *- الحلقة

Ahmed A. Omran <u>a.a_omran@yahoo.com</u> Department of Mathematics College of Education for Pure Science Babylon University, Babylon, Iraq

Abstract

The purpose of this paper is to study the embeddability of the *- semigroup (S,.,*) into *- ring, and prove that embeddability referred to, is possible if the ring (Z[S],*) resulted from the semigroup S and the integer ring (Z, +, .) is proper involution.

الخلاصة:

الغرض من هذا البحث هو در اسة انغمار *- شبه الزمرة في * - الحلقة واثبات ان هذا الانغمار ممكن اذا كانت الحلقة (*,[S]) انعكاسية فعلية

1 Introduction

In this paper one of the important of ring is the class of *-semigroup ring with involution is studied.

In Section 2 all important definitions of *-semigroup, *n*-proper maximal, involution on a ring, proper involution on *-ring and *-semigroup ring are discussed.

In Section 3, we proved some propositions, remarks, and examples of the embeddable

* -semigroup into * -ring.

At last, we proved that if (S, ., *) is * –semigroup finite commutative, maybe we can be

* -embedded into a ring involution, or we cannot be * -embedded into any ring with involution.

2 * - Semigroup Ring

Definition 2.1,[1]. Let (S,.) be any semigroup. A mab $*: (S,.) \to (S,.)$ is called an involution of (S,.) if the conditions are holds $(a^*)^* = a$ and $(ab)^* = b^*a^*$ for all a,b in S, (S,.,*) is called * -semigroup with involution *.

Definition 2.2,[1]. (S, ., *) is called n-proper if whenever $s_1s_1^* = s_1s_2^*, s_2s_2^* = s_2s_3^*, ..., s_ns_n^* = s_ns_n^*$ implies $s_1 = s_2 = \cdots = s_n \forall s_1, s_2, ..., s_n \in S$.

Definition 2.3,[1]. Let (S, ., *) be a *-semigroup and $= \{s_1, s_2, ..., s_n\} \subset S$. An element $s_k \in A$ is called maximal in A if the following two conditions are holds

1) $s_k s_k^* = s_k s_i^* \forall i = 1, 2, ..., n$ impliesed $s_k = s_i$. 2) $s_k s_k^* = s_{ij}^* (i \neq k \neq j)$ implies $s_k^* s_i = s_k^* s_j$.

Definition 2.4,[1]. Let (R, +, .) be a ring, an involution on this ring is a map $*: (R, +, .) \rightarrow (R, +, .)$ such that for all A, B, and C the following conditions are holds:

1) $(A + B) = A^* + B^*$ 2) $(AB)^* = B^*A^*$

3) $(A^*)^* = A$

Journal of Kerbala University, Vol. 14 No.1 Scientific . 2016

Definition 2.3,[2]. An involution * on a ring R is called a proper involution if for every $A \in R$ such that $AA^* = 0$ implies A = 0. In this case (*R*,*) is called a P^* –ring.

Example 2.6,[3]. (*C*,*) is a *P*^{*} -ring where C is the complex field and * is the conjugate operator. Definition 2.7,[3].Let (*S*,.,*) be a *-semigroup and let R be a *- ring. We say that (*S*,.,*) is * -embedded in a *-ring R if there is injective map $f: (S,.,*) \to (R,+,*)$ such that f(a,b) = f(a).f(b) and $f(a^*) = (f(a))^* \forall a, b \in S$.

Definition 2.8,[4]. Let (S, ., *) be a *-semigroup and let R be a *-ring We define $R[S] = \{\sum_{i=1}^{N} a_i g_i : a_i \in R, g_i \in S, n \in Z^+\}$ Where $\sum_{i=1}^{N} a_i g_i$ is just a formal symbol.

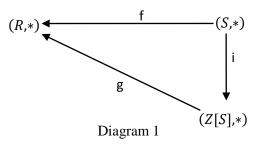
Thus, $\sum_{i=1}^{N} a_i g_i = \sum_{i=1}^{N} b_i g_i \Leftrightarrow a_i = b_i \forall i = 1, 2, ..., n$. Also, we define additive "+" and multiplication "." On R[S] as follows. $\sum_{i=1}^{N} a_i g_i + \sum_{i=1}^{N} b_i g_i = \sum_{i=1}^{N} (a_i + b_i) g_i$ and $\sum_{i=1}^{N} a_i g_i \cdot \sum_{i=1}^{N} b_i g_i = \sum_{i=1}^{N} c_i g_i$ where $c_i = \sum_{i=1}^{N} a_i b_i$. The sum being taken over all pairs (a_i, b_i) such that $g_i \cdot g_j = g_k$. Define * on R[S] as $(\sum_{i=1}^{N} a_i g_i)^* = \sum_{i=1}^{N} a_i^* g_i^* \forall a_i \in R, g_i \in S$

Proposition 2.9. (R[S], +, ., *) is a * -ring. Proof. Clearly (R[S], +) is an abelian group and (R[S], .) is semigroup under multiplication and $\sum_{i=1}^{N} a_i g_i \quad (\sum_{i=1}^{N} b_i g_i + \sum_{i=1}^{N} c_i g_i) =$ $(\sum_{i=1}^{N} a_i g_i \quad \sum_{i=1}^{N} b_i g_i) + (\sum_{i=1}^{N} a_i g_i \quad \sum_{i=1}^{N} b_i g_i)$ Thus, the left distributive law holds. Similarly the right distributive law holds. Thus, (R[S], +, ., *) is * -ring. (R[S], +, ., *) is called * -semigroup ring of (R, +, ., *) over (S, ., *)

3 Embeddability into (R, +, ., *)

Proposition 3.1. If (R[S], +, ., *) * -embeds (S, ., *) through a * -embeding $f, w: S \to Z[S]$ is the inclution map and $g: Z[S] \to R$ is defined by

 $g(\sum_{i=1}^{N} m_i s_i) = \sum_{i=1}^{N} m_i f(s_i) \quad \forall m_i \in \mathbb{Z}, s \in \mathbb{S}$. Then the following diagram is commute



Proof. Clearly g is a * -homomorphism and $g \circ i = f$. If (Z[S],*) is a proper * -ring, then (S,*) is * -embeddable in P^{*} -ring (Z[S],*). It turns out that if S ia an inverse semigroup, then (Z[S],*) is a proper * -ring and (S,*) is * -embeddable in (Z[S],*).

Proposition 3.2. Let (S,*) be a proper * –semigroup, and let $A_1 \neq A_2, A_1, A_2 \in Z[S]$ such that $A_1A_1^* = A_2A_2^* \in Z[S]$ and $C \in Z[S]$ such that $CC^* = m_1A_1 + m_2A_2$.

If $s_1 - s_2$ is a linear combination of A_1, A_2 , and C in Z[S], then there is no P^{*} -ring which * -embedding (S,*).

Journal of Kerbala University, Vol. 14 No.1 Scientific . 2016

Proof. Let $(R,*^{\setminus})$ be a P* -ring, *-embedding (S,*) consider diagram(1), since $g(A_1A_1^*) = g(A_2A_2^*) = 0$ in R. $g(A_1).g(A_1)^* = g(A_2).g(A_2)^* = 0$ and hence $g(A_1) = g(A_2) = 0$. Now $g(CC^*) = 0 = g(C).g(C)^*$ and since (R,*) is P* -ring, then $g(D) = f(s_1).f(s_2) = 0$ which implies that $f(s_1) = f(s_2)$ and so f is not injective. Thus, (S,*) in not *-embeddable.

Proposition 3.3. Let (S, ., *) be a * – semigroup with n-proper maximal involution. Then * is an n –proper involution.

Proof. Suppose that (S, ., *) is n -proper involution, then $s_1s_1^* = s_1s_2^*, s_2s_2^* = s_2s_3^*, ..., s_ns_n^* = s_ns_n^* \quad \forall s_1, s_2, ..., s_n \in S$. Since (S, ., *) has a maximal, then there exist a maximal element $s_1 \in \{s_1, s_2, ..., s_n\}$. From the fact $s_is_i^* = s_is_{i+1}^* \pmod{n}$ implies $s_i = s_{i+1} \pmod{n}$, it follows that $s_1 = s_2 = \cdots = s_n$.

Proposition 3.4.[2]. Let (R,*) be a ring with a 1-formally complex involution, then the involution is *2 –proper. Moreover if the involution * is n –formally complex, then it is n-proper.

Corollary 3.5. Let (R,*) be a ring with a formally complex involution, then the involution * is n-proper.

Proof. Follows directly from proposition 3.4.

Remark 3.6. If (S, ., *) is a finite commutative, then

1) We can be * –*embedded* into a ring with involution, as shown in Example 3.7.

2) We cannot be * – embedded into any ring with involution, as shown Example 3.8.

Example 3.7. Let $S \subset Z^2$ be such that $S = \{s_1 = (1,1), s_2 = (0,1), s_3 = (-1,-1), s_1 = (0,-1)\}$. It is clear that S is semigroup under pointwise multiplication (a,b).(c,d) = (ab,cd)

Define a map $*: (S, .) \rightarrow (S, .)$ by $(a, b)^* = (ab, b)$. This satisfies all conditions of involution. It's clear that * is proper (since if $s_1s_1^* = s_1s_2^* = s_2s_2^*$, then $s_1 = s_2$) and S is commutative. Let (Z[S],*) be *-semigroup ring of S over the integer where * is the involution induced from S in Z[S].

 $X = \sum_{i=1}^{4} x_i \, s_i \text{ such that } XX^* = 0, \text{ let}$ $f_1 = x_1^2 + x_3^2 = 0, f_2 = 2x_1x_2 + x_2^2 + 2x_3x_4 + x_4^2 = 0, f_3 = 2x_1x_3 = 0,$ $f_4 = 2x_1x_4 + 2x_3x_2 + 2x_2x_4 = 0. \text{ It is clear that in Z if } x_1^2 + x_2^2 = 0 \text{ then } x_1 = x_2 = 0.$ By substituting in f_2 we get $x_3 = x_4 = 0$, thus the solution of XX^* in (Z[S],*) is trivial in this case. Then (S,*) is * – embeddable.

Example 3.8. Let $S \subset Z^3$ be such that $S = \{s_1 = (-1,1,1), s_2 = (-1,1,1), s_3 = (-1,-1,1), s_1 = (1,-1,1)\}.$

Clearly *S* is semigroup under pointwise multiplication (a_1, b_1, c_1) . $(a_2, b_2, c_2) = (a_1a_2, b_1b_2, c_1c_2)$. Define a map $*: (S, .) \rightarrow (S, .)$ by

 $(a, b, c)^* = (a, ab, c)$, this map satisfies all conditions of involution and it is proper and commutative. $X = \sum_{i=1}^{4} x_i s_i$ such that $XX^* = 0$, this implies

$$\begin{aligned} f_1 &= x_1^2 + 2x_2x_3 + x_4^2 = 0, \ f_2 &= x_1x_3 + x_1x_2 + x_3x_4 + x_2x_4 = 0, \\ f_3 &= x_2^2 + 2x_1x_4 + x_3^2 = 0, \\ f_4 &= x_1^2 + 2x_1x_4 + x_3^2 = 0 \\ f_1 + f_3 &= (x_1 + x_4)^2 + (x_2 + x_3)^2, \ f_2 &= (x_1 + x_4)(x_2 + x_3) = 0, \\ thus \quad x_1 &= -x_4, \ x_2 &= -x_3, \\ x_2 &= \pm x_1 \end{aligned}$$

Journal of Kerbala University, Vol. 14 No.1 Scientific . 2016

 $X = t_1s_1 + t_1s_2 - t_1s_3 - t_1s_4$ or $X = t_1s_1 - t_1s_2 + t_1s_3 - t_1s_4 \in Z$. Thus, the solution of the equation $XX^* = 0$ is non-trivial in this case $A = s_1 + s_2 - s_3 - s_4$, let $B = s_1 - s_2 + s_3 - s_4$ and $C = 2s_1 + 3s_2 - 3s_3 - 2s_4$ $AA^* = 0, BB^* = 0, CC^* = -5A - 5B$ $g(AA^*) = g(BB^*) = 0$. Since g is *-homomorphism then $g(A) = g(B) = O_R$ (since R a proper 8-ring). Hence $g(C)g(C)^* = g(CC^*) = g(-5A - 5B)$ $g(CC^*) = O_R, g(C) = O_R$. Let D = C - 2A, then $D = s_2 - s_3$ By proposition 3.1. (S, ., *) is not *- embeddable.

Refrences

[1] J.Howe,"Interoduction to Semigroup Theory" Academic press(1976).

- [2] M.P.Drazin,"Naturel Structures on Ring and Semigroup with Involution" Bull.Amer, Math.Soc.84(1978), 139-141.
- [3] Adil A.Shehadah " n-Proper Maximal Involution on Semigroup and Ring" Math Japonica 46, NO.2(1997), 293-296.
- [4] Hassan.J.S "Solution for Equtions Corresponding to *-ring"M.Sc at Yarmouk University,Jordan.