Differentiation of the Al-Tememe Transformation And Solving Some Linear Ordinary Differential Equation With or Without Initial Conditions
 مشتقة تحويل التميمي وحل بعض المعادلات التفاضلية الخطية الاعتيـادية الخاضعة وغير الخاضعة لثروط ابتدائية
 * prof.Ali Hassan Mohammed/** Alaa Sallh Hadi/*** Hassan Nadem Rasoul *,** University of Kufa. Faculty of Education of Women. Department of Mathematics
 *** University of Kufa. Faculty of Computer Science and Math. Department of Mathematics
 The exact competence: Differential equations
 *Aass85@yahoo.com **alaasalh.hadi@gmail.com ***Hassan.nadem.rasoul@gmail.com

Introduction:

Laplace transform [3] is an important method for solving ODEs with constant coefficients under initial conditions.
The Al-Tememe transform [4] began at 2008 by prof A.H.Mohammed, this transform used to solve ordinary differential equation with variable coefficients with initial conditions. We will use the idea which exist at [3] to solve ODEs contains the terms $(\ln x)^{n}$ and $\left[x^{m}(\ln x)^{n}\right]$; where $m, n \in \mathbb{N}$ by using Al-Tememe transform.

Basic definitions and concepts :

Definition 1: [2]
Let f is defined function at a period (a, b) then the integral transformation for f whose it's symbol $F(p)$ is defined as :

$$
F(p)=\int_{a}^{b} k(p, x) f(x) d x
$$

Where k is a fixed function of two variables, which is called the kernel of the transformation, and a, b are real numbers or $\mp \infty$, such that the integral above convergent.
Definition 2: [4]
The Al-Tememe transformation for the function $f(x) ; x>1$ is defined by the following integral :

$$
\mathcal{T}[f(x)]=\int_{1}^{\infty} x^{-p} f(x) d x=F(p)
$$

Such that this integral is convergent, p positive is constant.

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

Property 1: [4]

Al-Tememe transformation is characterized by the linear property, that is:
$\mathcal{T}[A f(x)+B g(x)]=A \mathcal{T}[f(x)]+B \mathcal{T}[g(x)]$,
Where A, B are constants , the functions $f(x), g(x)$ are defined when $x>1$.
The Al-Tememe transform of some fundamental functions are given in table(1) [4] :

ID	Function, $\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{F}(\boldsymbol{p})=\int_{\mathbf{1}}^{\boldsymbol{x}^{-\boldsymbol{p}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}}$ $=\boldsymbol{T}[\boldsymbol{f}(\boldsymbol{x})]$	Regional of convergence
1	$k ; k=$ constant	$\frac{k}{p-1}$	$\boldsymbol{p}>\mathbf{1}$
2	$x^{n}, \quad n \in R$	$\frac{1}{p-(n+1)}$	$\boldsymbol{p}>\boldsymbol{n}+\mathbf{1}$
3	$\ln x$	$\frac{1}{(p-1)^{2}}$	$\boldsymbol{p}>\mathbf{1}$
4	$x^{n} \ln x, n \in R$	$\frac{1}{[p-(n+1)]^{2}}$	$\boldsymbol{p}>\boldsymbol{n}+\mathbf{1}$
5	$\sin (a \ln x)$	$\frac{a}{(p-1)^{2}+a^{2}}$	$\boldsymbol{p}>\mathbf{1}$
6	$\cos (a \ln x)$	$\frac{p-1}{(p-1)^{2}+a^{2}}$	$\boldsymbol{p}>\mathbf{1}$
7	$\sinh (a \ln x)$	$\frac{p-1)^{2}-a^{2}}{(p-1)^{2}-a^{2}}$	$\|\boldsymbol{p}-\mathbf{1}\|>\boldsymbol{a}$
8	$\cosh (a \ln x)$	$\boldsymbol{p}-\mathbf{1} \mid>\boldsymbol{a}$	

Table (1).
From the Al-Tememe definition and the above table, we get:

Theorem 1:

If $\mathcal{T}[f(x)]=F(p)$ and a is constant, then $\mathcal{T}\left[x^{-a} f(x)\right]=F(p+a)$.see [4]
Definition 3: [4]
Let $f(x)$ be a function where $(x>1)$ and $\mathcal{T}[f(x)]=F(p), f(x)$ is said to be an inverse for the Al-Tememe transformation and written as $\mathcal{T}^{-1}[F(p)]=f(x)$, where \mathcal{T}^{-1} returns the transformation to the original function.
Property 2: [4]
If $\mathcal{T}^{-1}\left[F_{1}(p)\right]=f_{1}(x), \mathcal{T}^{-1}\left[F_{2}(p)\right]=f_{2}(x), \ldots, \mathcal{T}^{-1}\left[F_{n}(p)\right]=f_{n}(x)$ and $a_{1}, a_{2}, \ldots, a_{n}$ are constants then,

$$
\mathcal{T}^{-1}\left[a_{1} F_{1}(p)+a_{2} F_{2}(p)+\cdots+a_{n} F_{n}(p)\right]=a_{1} f_{1}(x)+a_{2} f_{2}(x)+\cdots+a_{n} f_{n}(x)
$$

Definition 4: [5]
The
equation

$$
a_{0} x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{n-1} x \frac{d y}{d x}+a_{n} y=f(x)
$$

Where $a_{0}, a_{1}, \ldots, a_{n}$ are constants and $f(x)$ is a function of x, is called Euler's equation.
Theorem 2: [4]
If the function $f(x)$ is defined for $x>1$ and its derivatives $f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(n)}(x)$ are exist then:

$$
\begin{aligned}
\mathcal{T}\left[x^{n} f^{(n)}(x)\right] & =-f^{(n-1)}(1)-(p-n) f^{(n-2)}(1)-\cdots-(p-n)(p-(n-1)) \ldots(p-2) f(1) \\
& +(p-n)!F(p)
\end{aligned}
$$

We will use Theorem(2) to prove that
$\mathcal{T}(\ln x)^{n}=\frac{n!}{(p-1)^{n+1}} ; \quad n \in \mathbb{N}$
if $\quad n=1 \quad \Rightarrow \mathcal{T}(\ln x)=\frac{1}{(p-1)^{2}}$
If $n=2 \Rightarrow y=(\ln x)^{2} \quad \Rightarrow y(1)=0$
$y^{\prime}=2 \ln x \cdot \frac{1}{x}=\frac{2}{x} \ln x \quad \Rightarrow x y^{\prime}=2 \ln x$
$\mathcal{T}\left(x y^{\prime}\right)=2 \mathcal{T}(\ln x)=2 \cdot \frac{1}{(p-1)^{2}}=\frac{2}{(p-1)^{2}}$
$\because \mathcal{T}\left(x y^{\prime}\right)=-y(1)+(p-1) \mathcal{T}(y) \Rightarrow \mathcal{T}\left(x y^{\prime}\right)=(p-1) \mathcal{T}(y)$
$\therefore(p-1) \mathcal{T}(y)=\frac{2}{(p-1)^{2}} \Rightarrow \mathcal{T}(y)=\frac{2}{(p-1)^{3}}=\frac{2!}{(p-1)^{3}}$
If $n=3 \quad \Rightarrow \quad y=(\ln x)^{3} \quad \Rightarrow y(1)=0$
$y^{\prime}=3(\ln x)^{2} \cdot \frac{1}{x}=\frac{3}{x}(\ln x)^{2} \Rightarrow x y^{\prime}=3(\ln x)^{2}$
$\mathcal{J}\left(x y^{\prime}\right)=3 \mathcal{J}(\ln x)^{2}=3 \cdot \frac{2}{(p-1)^{3}}=\frac{6}{(p-1)^{3}}$
$\because \mathcal{T}\left(x y^{\prime}\right)=(p-1) \mathcal{T}(y)$
$(p-1) \mathcal{T}(y)=\frac{6}{(p-1)^{3}} \quad \Rightarrow \mathcal{T}(y)=\frac{6}{(p-1)^{4}}=\frac{3!}{(p-1)^{4}}$
$\begin{array}{cccc}\vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots\end{array}$
Also, $\quad y=(\ln x)^{n} \quad \Rightarrow y(1)=0$
$y^{\prime}=n(\ln x)^{n-1} \cdot \frac{1}{x} \quad \Rightarrow x y^{\prime}=n(\ln x)^{n-1}$
$\mathcal{T}\left(x y^{\prime}\right)=n \mathcal{T}(\ln x)^{n-1}=n \cdot \frac{(n-1)!}{(p-1)^{n}}=\frac{n!}{(p-1)^{n}}$
$\because \mathcal{T}\left(x y^{\prime}\right)=(p-1) \mathcal{T}(y)$
$\therefore(p-1) \mathcal{T}(y)=\frac{n!}{(p-1)^{n}} \quad \Rightarrow \mathcal{T}(y)=\frac{n!}{(p-1)^{n+1}}$

$$
\therefore \mathcal{T}(\ln x)^{n}=\frac{n!}{(p-1)^{n+1}} ; \quad n \in \mathbb{N}
$$

Also we will use Theorem(2) to find $\mathcal{T}\left[x^{m}(\ln x)^{n}\right] ; n, m \in \mathbb{N}$
The first case : If $n=1$

$$
\mathcal{T}\left[x^{m} \ln x\right]=\frac{1!}{[p-(m+1)]^{2}} ; m \in \mathbb{N} \quad \text { Table1 }
$$

The second case: If $n=2$ To find $\mathcal{T}\left[x^{m}(\ln x)^{2}\right]$
If $\quad m=1 \quad \Rightarrow \mathcal{T}\left[x(\ln x)^{2}\right]$
Consider, $\quad y=x(\ln x)^{2} \quad \Rightarrow y(1)=0$
$y^{\prime}=x \cdot 2(\ln x) \cdot \frac{1}{x}+(\ln x)^{2} \Rightarrow x y^{\prime}=2 x(\ln x)+x(\ln x)^{2}$
$\mathcal{T}\left(x y^{\prime}\right)=2 \mathcal{T}[x(\ln x)]+\mathcal{T}(y)=2 \cdot \frac{1}{(p-2)^{2}}+\mathcal{T}(y)$
$\because \mathcal{T}\left(x y^{\prime}\right)=(p-1) \mathcal{T}(y) \Rightarrow(p-1) \mathcal{T}(y)=\frac{2}{(p-2)^{2}}+\mathcal{T}(y)$
$\Rightarrow(p-2) \mathcal{T}(y)=\frac{2}{(p-2)^{2}} \quad \Rightarrow \mathcal{T}\left[x(\ln x)^{2}\right]=\frac{2}{(p-2)^{3}}$

If $m=2 \Rightarrow \mathcal{T}\left[x^{2}(\ln x)^{2}\right]$
Consider, $y=x^{2}(\ln x)^{2} \quad \Rightarrow y(1)=0$
$y^{\prime}=x^{2} \cdot 2(\ln x) \cdot \frac{1}{x}+2 x(\ln x)^{2} \Rightarrow x y^{\prime}=2 x^{2}(\ln x)+2 x^{2}(\ln x)^{2}$
$\mathcal{T}\left(x y^{\prime}\right)=2 \mathcal{T}\left[x^{2}(\ln x)\right]+2 \mathcal{T}(y)=2 \cdot \frac{1}{(p-3)^{2}}+2 \mathcal{T}(y)$
$\because \mathcal{T}\left(x y^{\prime}\right)=(p-1) \mathcal{T}(y) \Rightarrow(p-1) \mathcal{T}(y)=\frac{2}{(p-3)^{2}}+2 \mathcal{T}(y)$
$\Rightarrow(p-3) \mathcal{T}(y)=\frac{2}{(p-3)^{2}} \Rightarrow \mathcal{T}\left[x^{2}(\ln x)^{2}\right]=\frac{2}{(p-3)^{3}}$
If $m=3 \Rightarrow \mathcal{T}\left[x^{3}(\ln x)^{2}\right]$
Consider, $\quad y=x^{3}(\ln x)^{2} \quad \Rightarrow y(1)=0$
$y^{\prime}=x^{3} \cdot 2(\ln x) \cdot \frac{1}{x}+3 x^{2}(\ln x)^{2} \Rightarrow x y^{\prime}=2 x^{3}(\ln x)+3 x^{3}(\ln x)^{2}$
$\mathcal{T}\left(x y^{\prime}\right)=2 \mathcal{T}\left[x^{3}(\ln x)\right]+3 \mathcal{T}(y)=2 \cdot \frac{1}{(p-4)^{2}}+3 \mathcal{T}(y)$
$\begin{array}{lccc}(p-1) \mathcal{T}(y)=2 \cdot \frac{1}{(p-4)^{2}}+3 \mathcal{T}(y) \Longrightarrow \mathcal{T}\left[x^{3}(\ln x)^{2}\right]=\frac{2}{(p-4)^{3}} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \mathcal{T}\left[x^{m}(\ln x)^{2}\right] & ; m \in \mathbb{N} \Rightarrow y=x^{m}(\ln x)^{2} & \Rightarrow & y(1)=0\end{array}$
$y^{\prime}=x^{m} \cdot 2(\ln x) \cdot \frac{1}{x}+m x^{m-1}(\ln x)^{2} \Rightarrow x y^{\prime}=2 x^{m}(\ln x)+m x^{m}(\ln x)^{2}$
$\mathcal{T}\left(x y^{\prime}\right)=2 \mathcal{T}\left[x^{m}(\ln x)\right]+m \mathcal{T}(y)=2 \cdot \frac{1}{[p-(m+1)]^{2}}+m \mathcal{T}(y)$
$(p-1) \mathcal{T}(y)=2 \cdot \frac{1}{[p-(m+1)]^{2}}+m \mathcal{T}(y)$
$\Rightarrow \mathcal{T}\left[x^{m}(\ln x)^{2}\right]=\frac{2!}{[p-(m+1)]^{3}} ; m \in \mathbb{N}$
Note: These cases are also true for $m \in \mathbb{Q}$
The third case: To find $\mathcal{T}\left[x^{m}(\ln x)^{3}\right]$
If $\quad m=1 \Rightarrow \mathcal{T}\left[x(\ln x)^{3}\right]$
Consider, $\quad y=x(\ln x)^{3} \quad \Rightarrow y(1)=0$
$y^{\prime}=x \cdot 3(\ln x)^{2} \cdot \frac{1}{x}+(\ln x)^{3} \Rightarrow x y^{\prime}=3 x(\ln x)^{2}+x(\ln x)^{3}$
$\mathcal{J}\left(x y^{\prime}\right)=3 \mathcal{T}\left[x(\ln x)^{2}\right]+\mathcal{T}(y)=3 \cdot \frac{2}{(p-2)^{3}}+\mathcal{T}(y)$
$\Rightarrow(p-1) \mathcal{T}(y)=\frac{3!}{(p-2)^{3}}+\mathcal{T}(y)$
$\Rightarrow(p-2) \mathcal{T}(y)=\frac{3!}{(p-2)^{3}} \quad \Rightarrow \mathcal{T}\left[x(\ln x)^{2}\right]=\frac{3!}{(p-2)^{4}}$
If $\quad m=2 \Rightarrow \mathcal{T}\left[x^{2}(\ln x)^{3}\right]$
Consider, $\quad y=x^{2}(\ln x)^{3} \quad \Rightarrow y(1)=0$
$y^{\prime}=x^{2} \cdot 3(\ln x)^{2} \cdot \frac{1}{x}+2 x(\ln x)^{3} \Rightarrow x y^{\prime}=3 x^{2}(\ln x)^{2}+2 x^{2}(\ln x)^{3}$
$\mathcal{T}\left(x y^{\prime}\right)=3 \mathcal{T}\left[x^{2}(\ln x)^{2}\right]+2 \mathcal{T}(y)=3 \cdot \frac{2}{(p-3)^{3}}+2 \mathcal{T}(y)$
$(p-1) \mathcal{T}(y)=3 \cdot \frac{2}{(p-3)^{3}}+2 \mathcal{T}(y) \Rightarrow \mathcal{T}\left(x^{2}(\ln x)^{3}\right)=\frac{3!}{(p-3)^{4}}$
If $m=3 \Rightarrow \mathcal{T}\left[x^{3}(\ln x)^{3}\right]$
Consider, $y=x^{3}(\ln x)^{3} \quad \Rightarrow y(1)=0$
$y^{\prime}=x^{3} \cdot 3(\ln x)^{2} \cdot \frac{1}{x}+3 x^{2}(\ln x)^{3}$
$x y^{\prime}=3 x^{3}(\ln x)^{2}+3 x^{3}(\ln x)^{3} \Rightarrow \mathcal{T}\left(x y^{\prime}\right)=3 \mathcal{T}\left[x^{3}(\ln x)^{2}\right]+3 \mathcal{T}(y)$
$=3 \cdot \frac{2}{(p-4)^{3}}+3 T(y)$
$(p-1) \mathcal{T}(y)=3 \cdot \frac{2}{(p-4)^{3}}+3 \mathcal{T}(y) \Rightarrow \mathcal{T}\left[x^{3}(\ln x)^{3}\right]=\frac{3!}{(p-4)^{4}}$
\vdots
\vdots
$\mathcal{T}\left[x^{m}(\ln x)^{3}\right]$
consider $\Rightarrow y=x^{m}(\ln x)^{3} \quad \Rightarrow y(1)=0$
$y^{\prime}=x^{m} \cdot 3(\ln x)^{2} \cdot \frac{1}{x}+m x^{m-1}(\ln x)^{3} \Rightarrow x y^{\prime}=3 x^{m}(\ln x)^{2}+m x^{m}(\ln x)^{3}$
$\mathcal{J}\left(x y^{\prime}\right)=3 \mathcal{T}\left[x^{m}(\ln x)^{2}\right]+m \mathcal{T}(y)=3 \cdot \frac{2}{[p-(m+1)]^{3}}+m \mathcal{T}(y)$
$(p-1) T(y)=3 \cdot \frac{2}{[p-(m+1)]^{3}}+m T(y)$
$\Rightarrow \mathcal{T}\left[x^{m}(\ln x)^{3}\right]=\frac{3!}{[p-(m+1)]^{4}} ; m \in \mathbb{N}$
$\begin{array}{cccc} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots\end{array}$
Gradually we find now

$$
\mathcal{T}\left[x^{m}(\ln x)^{n}\right] ; m \in \mathbb{N}, n \in \mathbb{N}
$$

Consider, $y=x^{m}(\ln x)^{n} \Rightarrow y(1)=0$
$y^{\prime}=x^{m} \cdot n(\ln x)^{n-1} \cdot \frac{1}{x}+m x^{m-1}(\ln x)^{n} \Rightarrow x y^{\prime}=n x^{m}(\ln x)^{n-1}+m x^{m}(\ln x)^{n}$
$\mathcal{T}\left(x y^{\prime}\right)=n \mathcal{T}\left[x^{m}(\ln x)^{n-1}\right]+m \mathcal{T}(y)=n \cdot \frac{(n-1)!}{[p-(m+1)]^{n}}+m \mathcal{T}(y)$
$(p-1) \mathcal{T}(y)=n \cdot \frac{(n-1)!}{[p-(m+1)]^{n}}+m \mathcal{T}(y)$
$\mathcal{T}\left[x^{m}(\ln x)^{n}\right]=\frac{n!}{[p-(m+1)]^{n+1}} \quad ; m \in \mathbb{N}, n \in \mathbb{N}$
Definition 5: [3] :A function f has exponential order α if there exist constants $M>0$ and α such that for some $x_{0} \geq 0$

$$
|f(x)| \leq M e^{\alpha x}, \quad x \geq x_{0} .
$$

Definition 6: [6]
A function $f(x)$ is piecewise continuous on an interval $[a, b]$ if the interval can be partitioned by a finite number of points $a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that:

1. $f(x)$ is continuous on each subinterval (x_{i}, x_{i+1}), for $i=0,1,2, \ldots, n-1$
2. The function f has jump discontinuity at x_{i}, thus

$$
\left|\lim _{x \rightarrow x_{i}^{+}} f(x)\right|<\infty, i=0,1,2, \ldots, n-1 ;\left|\lim _{x \rightarrow x_{i^{-}}} f(x)\right|<\infty, \quad i=0,1,2, \ldots, n
$$

Note: A function is piecewise continuous on $[0, \infty)$ if it is piecewise continuous in $[0, a]$ for all

$a>0$

Differentiation of the Laplace Transform [1]

Let f be piecewise continuous function on $[0, \infty)$ of exponential order α and $\mathcal{L}[f(x)]=F(p)$ then :

$$
\frac{d^{n}}{d p^{n}} F(p)=\mathcal{L}\left[(-1)^{n} x^{n} f(x)\right] ; n=1,2,3, \ldots \quad(p>\alpha)
$$

Differentiation of Al-Tememe transformation

Theorem 3: Let f be piecewise continuous function on $[1, \infty)$ of order α and $\mathcal{T}[f(x)]=$ $F(p)$ then:

$$
\frac{d^{n}}{d p^{n}} \mathcal{T}[f(x)]=(-1)^{n} \mathcal{T}\left[(\ln x)^{n} f(x)\right] ; n=1,2,3, \ldots \quad(p>\alpha)
$$

Proof:
$\mathcal{T}[f(x)]=\int_{1}^{\infty} x^{-p} f(x) d x$

$$
\Rightarrow \frac{d}{d p} \mathcal{T}[f(x)]=\frac{d}{d p} \int_{1}^{\infty} x^{-p} f(x) d x=\int_{1}^{\infty} \frac{\partial}{\partial p} x^{-p} f(x) d x
$$

Note $: \frac{\partial}{\partial p} x^{-p} ; x$ constant $=-x^{-p} \ln x$

$$
=\int_{1}^{\infty}\left(-x^{-p} \ln x\right) f(x) d x=(-1)^{1} \int_{1}^{\infty} \ln x \cdot x^{-p} f(x) d x
$$

Hence,

$$
\begin{equation*}
\frac{d}{d p} \mathcal{T}[f(x)]=(-1)^{1} \mathcal{T}[\ln x \cdot f(x)] \tag{10}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\frac{d^{2}}{d p^{2}} \mathcal{T}[f(x)] & =\frac{d}{d p}\left[\frac{d}{d p} \mathcal{T}[f(x)]\right]=\frac{d}{d p}\left[(-1)^{1} \mathcal{T}[\ln x \cdot f(x)]\right] \\
& =(-1)^{1} \frac{d}{d p} \int_{1}^{\infty} \ln x \cdot x^{-p} f(x) d x \\
& =(-1)^{1} \int_{1}^{\infty} \frac{\partial}{\partial p} \cdot \ln x \cdot x^{-p} f(x) d x \\
& =(-1)^{1} \int_{1}^{\infty} \frac{\partial}{\partial p} x^{-p} \cdot \ln x \cdot f(x) d x \\
& =(-1)^{1} \int_{1}^{\infty}\left(-x^{-p} \ln x\right) \cdot \ln x \cdot f(x) d x \\
& =(-1)^{2} \int_{1}^{\infty}(\ln x)^{2} \cdot x^{-p} f(x) d x
\end{aligned}
$$

So,
$\frac{d^{2}}{d p^{2}} \mathcal{T}[f(x)]=(-1)^{2} \mathcal{T}\left[(\ln x)^{2} \cdot f(x)\right]$
And so,on

```
\
\frac{\mp@subsup{d}{}{n}}{d\mp@subsup{p}{}{n}}\mathcal{T}[f(x)]=(-1\mp@subsup{)}{}{n-1}\mp@subsup{\int}{1}{\infty}\frac{\partial}{\partialp}(\operatorname{ln}x\mp@subsup{)}{}{n-1}\cdot\mp@subsup{x}{}{-p}\cdotf(x)dx
    =(-1\mp@subsup{)}{}{n-1}}\mp@subsup{\int}{1}{\infty}(\operatorname{ln}x\mp@subsup{)}{}{n-1}(-1\cdot\mp@subsup{x}{}{-p}\cdot\operatorname{ln}x)f(x)d
    =(-1)}\mp@subsup{)}{}{n}\mp@subsup{\int}{1}{\infty}(\operatorname{ln}x\mp@subsup{)}{}{n}\cdot\mp@subsup{x}{}{-p}\cdotf(x)d
    =(-1)n}\mathcal{T}[(\operatorname{ln}x\mp@subsup{)}{}{n}\cdotf(x)]\quad\ldots(n
    \frac{\mp@subsup{d}{}{n}}{d\mp@subsup{p}{}{n}}\mathcal{T}[f(x)]=(-1\mp@subsup{)}{}{n}\mathcal{T}[(\operatorname{ln}x\mp@subsup{)}{}{n}f(x)]; n=1,2,3,\ldots.}(p>\alpha)!
```

 \(\Rightarrow \mathcal{T}\left[(\ln x)^{n} f(x)\right]=(-1)^{n} \frac{d^{n}}{d p^{n}} \mathcal{T}[f(x)] ; n=1,2,3,(p>\alpha)\)
 Example 1: To find $\mathcal{T}\left[x^{-3} \ln x\right]$ we note that

$$
\begin{aligned}
& \mathcal{T}\left[\ln x \cdot x^{-3}\right]=(-1)^{1} \frac{d}{d p} \mathcal{T}\left(x^{-3}\right) \\
& =-\frac{d}{d p} \cdot\left(\frac{1}{p+2}\right)=\frac{1}{(p+2)^{2}}
\end{aligned}
$$

By using the previous conversion table

$$
\mathcal{T}\left[\ln x \cdot x^{-3}\right]=\mathcal{J}\left[x^{-3} \cdot \ln x\right]=\frac{1}{(p+2)^{2}}
$$

Example 2: To find $\mathcal{T}[\ln x \cdot \sin (3 \ln x)]$ by applying the above relationship:

$$
\begin{gathered}
\mathcal{T}[\ln x \cdot \sin 3 \ln x]=(-1)^{1} \frac{d}{d p}\left[\frac{3}{(p-1)^{2}+9}\right] \\
\quad=\frac{-3 \cdot\{-2(p-1)\}}{\left[(p-1)^{2}+9\right]^{2}}=\frac{6(p-1)}{\left[(p-1)^{2}+9\right]^{2}}
\end{gathered}
$$

Example 3: To find $\mathcal{T}[\ln x \cdot \cosh (5 \ln x)]$ by applying the above relationship:

$$
\begin{aligned}
\mathcal{T} & {[\ln x \cdot \cosh (5 \ln x)]=\frac{-d}{d p}\left[\frac{(p-1)}{(p-1)^{2}-25}\right] } \\
& =-\frac{\left[(p-1)^{2}-25\right]-(p-1) \cdot 2(p-1)}{\left[(p-1)^{2}-25\right]^{2}} \\
& =\frac{p^{2}-2 p+26}{\left[(p-1)^{2}-25\right]^{2}}=\frac{(p-1)^{2}+25}{\left[(p-1)^{2}-25\right]^{2}}
\end{aligned}
$$

Differential Equations with Polynomial Coefficients by using Laplace Transform .[3].
$\mathcal{L}[x f(x)]=-F^{\prime}(p)$,
$\mathcal{L}\left[x f^{\prime}(x)\right]=-p F^{\prime}(p)-F(p)$,
$\mathcal{L}\left[x f^{\prime \prime}(x)\right]=-p^{2} F^{\prime}(p)-2 p F(p)+y(0)$
Differential Equations with multiple of polynomial and logarithms coefficients by using Al-Tememe Transform: Recall (Theorem) that for

$$
\begin{gathered}
F(p)=\mathcal{T}[f(x)] \\
\frac{d^{n}}{d p^{n}} \mathcal{T}[f(x)]=(-1)^{n} \mathcal{T}\left[(\ln x)^{n} f(x)\right] ; n=1,2,3, \ldots \quad(p>\alpha)
\end{gathered}
$$

For a piecewise continuous function $f(x)$ on $[1, \infty)$ and of exponential order α.Hence, for $n=1$

$$
\begin{gathered}
\mathcal{T}\left[\ln x \cdot y^{\prime}\right]=\frac{-d}{d p} \mathcal{T}\left(y^{\prime}\right) \\
\mathcal{T}\left[\ln x \cdot x y^{\prime}\right]=\frac{-d}{d p} \mathcal{T}\left(x y^{\prime}\right) \\
=\frac{-d}{d p}[-y(1)+(p-1) \mathcal{T}(y)] \\
=-\left[(p-1) \mathcal{T}^{\prime}(y)+\mathcal{T}(y)\right] \\
\mathcal{T}\left[\ln x \cdot x y^{\prime}\right]=-(p-1) \mathcal{T}^{\prime}(y)-\mathcal{T}(y)
\end{gathered}
$$

Similarly, for

$$
\begin{gathered}
\mathcal{T}\left[\ln x \cdot x^{2} y^{\prime \prime}\right]=-\frac{d}{d p}\left[-y^{\prime}(1)-(p-2) y(1)+(p-1)(p-2) \mathcal{T}(y)\right] \\
=-\left[-y(1)+(p-2)(p-1) \mathcal{T}^{\prime}(y)+(2 p-3) \mathcal{T}(y)\right] \\
\mathcal{T}\left[\ln x \cdot x^{2} y^{\prime \prime}\right]=y(1)-(p-2)(p-1) \mathcal{T}^{\prime}(y)-(2 p-3) \mathcal{T}(y) .
\end{gathered}
$$

In many cases these formulas for $\mathcal{T}\left[\ln x \cdot x y^{\prime}\right]$ and $\mathcal{T}\left[\ln x \cdot x^{2} y^{\prime \prime}\right]$ are useful to solve linear differential equations with variable coefficients .
Example 4: To solve the differential equation:

$$
x \ln x \cdot y^{\prime}-y=(\ln x)^{2}
$$

By taking (\mathcal{T}) to both sides we get:
$\mathcal{T}\left[x \ln x . y^{\prime}\right]-\mathcal{T}(y)=\mathcal{T}\left[(\ln x)^{2}\right]$
$-(p-1) \mathcal{T}^{\prime}(y)-\mathcal{T}(y)-\mathcal{T}(y)=\frac{2!}{(p-1)^{3}}$
$-(p-1) \mathcal{T}^{\prime}(y)-2 \mathcal{T}(y)=\frac{2}{(p-1)^{3}}$
$\Rightarrow \mathcal{T}^{\prime}(y)+\frac{2}{p-1} \mathcal{T}(y)=\frac{-2}{(p-1)^{4}}$
This is an ordinary linear differential equation and its integrating factor is given by:
$\mu=e^{\int \frac{2}{p-1} d p}=e^{2 \ln (p-1)}=e^{\ln (p-1)^{2}}=(p-1)^{2}$
Therefore,
$\left[\mathcal{T}(y) \cdot(p-1)^{2}\right]^{\prime}=\frac{-2}{(p-1)^{2}}$
And
$\mathcal{J}(y) .(p-1)^{2}=-2 \int \frac{1}{(p-1)^{2}} d p$
$\mathcal{T}(y) \cdot(p-1)^{2}=-2 \cdot \frac{-1}{(p-1)}+c$
$\mathcal{T}(y)=\frac{2}{(p-1)^{3}}+\frac{c}{(p-1)^{2}}$
By taking \mathcal{T}^{-1} to both sides we get :

$$
y=\mathcal{J}^{-1}\left[\frac{2}{(p-1)^{3}}\right]+\mathcal{T}^{-1}\left[\frac{c}{(p-1)^{2}}\right]
$$

$$
y=(\ln x)^{2}+\operatorname{cln} x \quad ; c \text { constant }
$$

Example 5: To solve the differential equation:

$$
\ln x \cdot x^{2} y^{\prime \prime}+x y^{\prime}=x \ln x \quad ; y(1)=1
$$

By taking (\mathcal{T}) to both sides we get:
$\mathcal{T}\left(\ln x \cdot x^{2} y^{\prime \prime}\right)+\mathcal{T}\left(x y^{\prime}\right)=\mathcal{T}(x \ln x)$
$y(1)-(p-2)(p-1) \mathcal{T}^{\prime}(y)-(2 p-3) \mathcal{T}(y)-y(1)+(p-1) \mathcal{T}(y)=\frac{1}{(p-2)^{2}}$
$-(p-2)(p-1) \mathcal{T}^{\prime}(y)-(2 p-3-p+1) \mathcal{T}(y)=\frac{1}{(p-2)^{2}}$
$-(p-2)(p-1) \mathcal{T}^{\prime}(y)-(p-2) \mathcal{T}(y)=\frac{1}{(p-2)^{2}}$
$\mathcal{T}^{\prime}(y)+\frac{1}{p-1} \mathcal{T}(y)=\frac{-1}{(p-2)^{3}(p-1)}$
This is an ordinary linear differential equation and its integrating factor is given by:
$\mu=e^{\int \frac{1}{p-1} d p}=e^{\ln (p-1)}=(p-1)$
Therefore,
$[\mathcal{T}(y) \cdot(p-1)]^{\prime}=\frac{-1}{(p-2)^{3}}$
$\Rightarrow \mathcal{T}(y) .(p-1)=\int \frac{-1}{(p-2)^{3}} d p$ $=\frac{1}{2(p-2)^{2}}+C$
$\mathcal{T}(y)=\frac{1}{2(p-2)^{2}(p-1)}+\frac{C}{(p-1)}$
$\frac{1}{2(p-2)^{2}(p-1)}=\frac{A}{p-2}+\frac{B}{(p-2)^{2}}+\frac{C}{p-1}$

$$
=\frac{-1 / 2}{p-2}+\frac{1 / 2}{(p-2)^{2}}+\frac{1 / 2}{p-1}
$$

$\therefore \mathcal{T}(y)=\frac{-1 / 2}{p-2}+\frac{1 / 2}{(p-2)^{2}}+\frac{1 / 2}{p-1}+\frac{C}{p-1}$
By taking \mathcal{T}^{-1} to both sides we get:
$y=-1 / 2 \mathcal{T}^{-1}\left(\frac{1}{p-2}\right)+1 / 2 \mathcal{T}^{-1}\left[\frac{1}{(p-2)^{2}}\right]+1 / 2 \mathcal{T}^{-1}\left(\frac{1}{p-1}\right)+\mathcal{T}^{-1}\left(\frac{C}{p-1}\right)$
And,
$y=-1 / 2 x+1 / 2 x \ln x+1 / 2+c$
$y=-1 / 2 x+1 / 2 x \ln x+c_{1} ; \quad c_{1}=1 / 2+c$
Since, $\quad y(1)=1 \Rightarrow c_{1}=3 / 2$

$$
y=-1 / 2 x+1 / 2 x \ln x+3 / 2
$$

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

Conclusion: apply Al-Tememe transformations to solve linear ordinary differential equations with variable coefficients by using initial and without any initial conditions.

References:

[1] Dennis G.Zill, " A First Course In Differential Equations with modeling application" ,Tenth edition, 2012.
[2] Gabriel Nagy , " Ordinary Differential Equations " Mathematics Department, Michigan State University,East Lansing, MI, 48824.October 14, 2014.
[3] Joel L. Schiff, " The Laplace Transform Theory and Applications", springer, 2010.
[4] Mohammed, A.H. ,Athera Nema Kathem, " Solving Euler's Equation by Using New Transformation", Karbala university magazine for completely sciences ,volume(6), number(4), (2008),103-109.
[5] PhD, Andr'as Domokos, " Differential Equations Theory and Applications", California State University, Sacramento, Spring, 2015.
[6] William F. Trench ," Elementary Differential Equations " Trinity University, 2013.

