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Abstract 
The Multi-Objective Single Machine Scheduling (MOSMS) Problem is one of the most 

representative problems in the scheduling area. In this paper, we compare five multi-objective 

algorithms based on Variable Neighborhood Search (VNS) heuristic. The algorithms are applied 

to solve the MOSMS problem. In this problem, we consider minimizing the total completion 

times and minimizing the sum of maximum earliness/tardiness. We introduce two intensification 

procedures to improve a Multi-Objective Variable Neighborhood Search (MOVNS) algorithms 

proposed in the literature. The performance of the algorithms is tested on a set of instances of the 

problem. The computational results show that the proposed algorithms outperform the original 

MOVNS algorithms in terms of efficiency solutions.  

Keywords: Scheduling; Single machine; Maximum earliness/tardiness; Completion 

times; Efficient solution; Variable neighborhood search algorithms. 

 المستخلص
 خًس لاسَا هزا انبحث، في. انجذونت يجال في حًثيلا الأكثش انًسائم يٍ واحذة هي يسأنت جذونت انذوال انًخعذدة الاهذاف

يسانت جذونت انًاكُت  نحم انخىاسصيياث حطبيك حى. بحث يخغيشاث انجىاس أساس عهى بالاعخًاد يخعذدة خىاسصيياث نذوال

 لذيُا. انخأخش/انخبكيش أكبش ويجًىع الاحًاو ولج إجًاني يٍ حصغيش وفي هزِ انًسأنت هذفُا هى. راث دوال هذف يخعذدة انىاحذة

 أداء اخخباس حى. يٍ لبم انباحثيٍ وانًمخشحت دوال يخعذدة نًخغيشاث بحث انجىاس نهخىاسصيياث نخحسيٍ حكثيف طشيمخي

 حفىق عهى انًمخشحت انخىاسصيياث أٌ انحسابيت انُخائج وأظهشث. نهًسأنت انحالاث يٍ يجًىعت عهى انخىاسصيياث

 .انحهىل كفاءة حيث يٍ انخىاسصيياث الأصهيت

 

 
 

1. Introduction:  

This article addresses the single-machine scheduling problem with distinct due dates and no 

idle time inserted. Performance is measured by minimization of the total completion times (∑    ) 

and the sum of maximum earliness and tardiness (               ) of jobs. Single machine 

scheduling environments actually occur in several practical applications. The single machine 

scheduling problem (SMSP) has been extensively investigated during the last decades [1][2][3][4]. 

Most of the contributions consider a single optimization criterion, although in practice the Decision 

Maker often faces several (usually conflicting) criteria. The main criteria to be considered are the 

minimization of the two criteria have the same important in which we have look for the set of 

efficient solutions. 
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In this work we address the SMSP with total completion times and maximum earliness/ 

tardiness. This scheduling problem is a very important and frequent industrial problem that is 

common to most Just in Time (JIT) production environments. JIT consists in delivering products 

and services at the right time for immediate use, having as main objective the continuous search for 

improvement of the production process by (∑    ) and (     ), which is obtained and developed 

through reduced inventories [5][6]. JIT scheduling problems are very common in industry. In the 

JIT scheduling environment, the job should be finished as close to the due date as possible. An early 

job completion results in inventory carrying costs, such as storage and insurance costs. On the other 

hand, a tardy job completion results in penalties, such as loss of customer goodwill and damaged 

reputation. 

The most used methods for solving multi-objective combinatorial optimization problems (COP) 

are metaheuristics [7][8]. Metaheuristic methods were originally used for single-objective 

optimization and the success achieved in their application to a very large number of problems has 

stimulated researchers to extend them to multi-objective COP. Applications of the VNS 

metaheuristic for multi-objective optimization are scarce. To the best of our knowledge, the first 

multi-objective VNS (MOVNS) algorithm was proposed by Geiger [9]. In his work, the MOVNS 

was applied to solve the permutation flow shop scheduling problem minimizing different 

combinations of criteria. In [10] and [11] the MOVNS of Geiger was used to solve other multi-

objective problems. Arroyo et al. [12] introduced two intensification procedures to improve a 

MOVNS algorithm. The algorithms are applied to solve the single machine scheduling problem 

with sequence dependent setup times and distinct due windows for the minimizing the total 

weighted earliness/tardiness and the total flowtime criteria. 

In this work the objective is to determine feasible job schedules (efficient solutions) for the 

problem of minimizing the total completion times and the sum of maximum earliness/tardiness. The 

goal is to provide the decision maker with a set of efficient schedules (Pareto-optimal solutions) 

such that he/she may choose the most suitable schedule. We propose two algorithms based on VNS 

metaheuristic to solve the multi-objective SMSP. VNS is a stochastic local search method that is 

based on the systematic change of the neighborhood during the search. The proposed algorithms are 

based on the algorithm developed by Geiger [9]. We introduce two an intensification procedure 

based on constructing non-dominated solutions according to information taken on non-dominated 

partial solutions rather than evaluating complete solutions generated in the neighborhood of existing 

solutions. Simulation results and comparisons demonstrate the effectiveness, efficiency, and 

robustness of the proposed algorithms. 

The remainder of this paper is organized as follows. The Basic concepts of the multi-objective 

problem is given in Section 2. Section 3 the multi-objective problem definition is described. 

Characterize the set of efficient solutions in section 4. Section 5 provides description of the 

MOVNS algorithms. Results of computational experiments to evaluate the performance of the 

proposed algorithms are reported in Section 6. Finally, Section 7 provides the concluding remarks. 

2. Basic concepts: 

We recall the following fundamental results for the three single objective problem. 

Theorem(1) [13]: The  ‖∑     problem is minimized by sequencing the jobs according to the 

shortest processing time SPT-rule, that is, in order of nondecreasing   . 

Theorem(2) [14]: The  ‖     problem is minimized by sequencing the jobs according to the 

earliest due date EDD-rule, that is, in order of nondecreasing   . 

Theorem(3) [15]: The  ‖     problem is solved by sequencing the jobs according to the 

minimum slack time MST-rule, that is, in order of nondecreasing      . 

The proof of each of these results proceeds by a straightforward interchange argument. Note 

that each of these problems is solved by arranging the jobs in a certain priority order that can be 

specified in terms of the parameters of the problem type. 



Journal of Kerbala University , Vol. 14 No.1 Scientific . 2016 
 

3 

The optimal solution values for these single machine scheduling problems will be denoted by 

∑   
 

 ,     
  and     

 , respectively. Furthermore, ∑    ( ),     ( ) and     ( ) are the objective 

values for the schedule  . In analogy,   ( ),   ( ) and   ( ) denote the respective measures for job 

 ( )(       ). Whenever ( ) is omitted, we are considering the performance measure in a 

generic sense, or there is no confusion possible as to the schedule we are referring to. The schedules 

that minimize ∑    ,      and      are referred to as SPT, EDD, and MST rules respectively. 

Multi-objective scheduling refers to the scheduling problem in which the advantages of a particular 

schedule are evaluated using more than one performance criterion. 

Definition(1) (optimize) [16]: The term "optimize" in a multi-objective decision making problem 

refers to a solution around which there is no way of improving any objective without worsening at 

least one other objective. 

Definition(2) (efficient) [16]: A schedule   is said to be efficient if there does not exist another 

schedule    satisfying   (  )    ( )          with at least one of the above holding as a strict 

inequality. Otherwise   is said to be dominated by   . 
Definition(3) (neighborhood) [17]: A neighborhood function    is a mapping       ( ) 

which specifies for each     a subset   ( ) of   neighbors of  . 

Theorem(4) [16]: If the composite objective function  (   ) is non-decreasing in both argument, 

then there exists a Pareto optimal schedule that minimize  . 

3. Multi-Objective Single Machine Scheduling (MOSMS) Problem Description  

The MOSMS problem examined in this paper is stated as follows. There is a set of   jobs to be 

processed on a continuously available single machine. The machine can process only one job at a 

time. Each job   is available for processing at time zero, has a known processing time   , a due date 

  . The completion time    is cumulative total for the processing times from    to   . The earliness 

and the tardiness are computed as       *       + and       *       +, respectively.  

The objective of the problem is to determine feasible schedules with minimum total flow time (  ) 

and maximum earliness and maximum tardiness of the jobs (  ). For a sequence of jobs 

(permutation of the   jobs)     where   is the set of all feasible solutions, the criteria (  ) and 

(  ) are computed in the following as:  

Let              {  } and              {  } 

   {
  ( )  ∑  

 

   

                                                                                                              ( )

  ( )                                                                                               ( )
                                                                                                                             

                                                                                                                

                                                                                                          

                                                                                                          

                                                                                                                

                                                                                                                }
 
 
 
 
 

 
 
 
 
 

( ) 

In the addressed problem the occurrence of machine idle time is not allowed. The multi-criteria 

problem that we consider concerns the simultaneous minimization of the performance measures (1) 

and (2). The problem ( ) is NP-hard since the problem  ‖      is NP- hard [18]. 
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4. Characterizing Efficient Solutions: 

The problem is to characterize the set of efficient (Pareto optimal) solutions. 

Proposition(1): There exists an efficient sequence in the multi-criterion problem ( ) that satisfies 

SPT-rule. 

Proof: (a) Suppose first that all processing times are different. The unique SPT-sequence (    ) 

gives the absolute minimum of ∑    . Hence, there is no sequence        such that 

∑    ( )  ∑    (    ) and      ( )       (    )      …(3) 

with at least one strict inequality since (3) cannot hold. 

(b) If more than one SPT-sequence (jobs with equal processing times), lets      be a sequence 

satisfying the SPT-rule and such that the jobs with equal processing times are ordered in EDD-

sequence or MST-sequence such that           for these jobs as minimum as possible. Note 

that if several jobs have identical processing times and identical slack times (see Proposition (3)), 

     is not unique. We prove that every     -sequence is efficient sequence, that do not satisfy 

the SPT-rule cannot dominate an     -sequence by (3) and if   is an SPT-sequence but not an 

    -sequence, it cannot dominate      since 

∑    (    )  ∑    ( ) and      (    )       ( ) 

by virtue of the EDD-rule or MST-rule.                                                                                             

Lemma(1) [19]: In the problem  ‖     , the best common due date is assigned in each position 

within time space between the minimum completion time (    ) and the maximum completion 

time (    ). 

Lemma(2): If        , then the SPT-rule is efficient solution for  |    |(∑          ) 

problem ( ) with (∑          )  (∑    (   )      ). 

Proof: By Proposition (1) the SPT-rule is efficient sequence. And if Lemma (1) is satisfied then we 

have 

           , where         ∑   
 
    and            {  }     and        . 

Therefore,(∑          )  (∑    (   )      ).                                                                        

Proposition(2): If SPT-rule and EDD-rule have the same ordered and all jobs are tardy then this 

order is the only efficient solution for ( ).  

Proof: Suppose that   be the SPT-sequence and EDD-sequence and all jobs are tardy, which yields 

that         , i.e. (∑          )  (∑         ). Hence the sequence   gives ∑    ( ) is 

optimal since   is SPT-sequence and     ( ) is optimal since   is EDD-sequence. 

Hence   is the only efficient solution for ( ).                                                                                    

Proposition(3): If SPT-rule and MST-rule have the same ordered   then this order gives the only 

efficient solution for ( ). 

Proof: Suppose that   be the SPT-sequence and MST-sequence and for every adjacent jobs   and   
we have:  

                        ( ) 

and 

                             ( ) 

Hence ∑    ( ) is minimum since   is SPT-sequence and     ( ) is minimum since   is MST-

sequence.  

For the     ( ), we have from (5)  
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      (     )      , since         0 by using (4). Hence 

           . 

Hence     ( ) is minimum by EDD-rule. 

Therefore the  -sequence is the only efficient solution for ( ).                                                         

Lemma(3): For any adjacent jobs   and   such that       and            , then job   

precede job  , in any efficient schedule. 

Proof: It is clear from Proposition(3).                                                                                                

Remark(1): If MST-rule and EDD-rule have the same ordered, then this order does not necessary 

give efficient solution for the multi-criterion problem ( ) as shown by the following example. 

Example(1): If we have the processing times    (     ) and due date    (     ), and the 

schedule   (     ) satisfy the MST-rule and EDD-rule, which gives (∑   
 
         )  

(    ), where the schedule    (     ) is not satisfy the MST-rule which gives 

(∑   
 
         )  (    ). It is clear that   is not efficient solution since it dominated by the 

sequence   . 

Theorem(5): In the problem ( ) with common due date   the number of efficient solutions |  | is 

|  |  {

                                                                *  +                     

  (                        )                     *  +

                                                        , -     , -                 
 

Proof: Suppose that the sequence   (, -   , -) is obtained by SPT-rule, and the partial 

sequence   (, -   , -) of   with   jobs different processing times such that    ,  , -  

 , -      and  , -       and  , -      , then the following cases are investigated. 
 

Case(1)     : 

 

 

 

 

 
Figure1 Case(1) 

 

If due date   is before          , - (Fig.1), then all jobs are tardy and maximum tardiness is 

         . Thus,       is given by: 

               . 

Therefore, we have only one efficient solution for the problem ( ) with (∑          )  

(∑         ). 
 

Case(2)      :  

 

 

 

 

 

 

 

 

 

𝑑 𝐶 (𝑝𝑚𝑖𝑛) 𝐶𝑛 

𝑇𝑚𝑎𝑥 

, - 
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Figure2 Case(2) 

 

If due date   is after    (Fig.2), then all jobs are early and maximum earliness is          . 

Thus,       is given by: 

               .  

Now, suppose that   is the sequence of all jobs with different processing times such that  , -   , -  

     . Let  , -    and   , -    such that    is the schedule with   (  , -)   , - for the first 

job and the remaining jobs of    ordered by SPT-rule and the same think for    schedule with 

  (  , -)   , - as the first job and the remaining jobs of    ordered by SPT-rule, then we have for 

the criteria (  ) and (  ): 

∑  (  )

 

   

   (  , -)  ∑  (  (   ))

 

   

 ∑  (  )

 

   

   (  , -)  ∑  

 

   

(  (   )) 

and 

    (  , -)      (  , -),  

where (   ∑   
 
   ,   (  , -) and   (  , -) be the completion times of the job in the first 

position in    and    respectively and   (  , -)    (  , -)). Now using the same techniques for 

the schedules         for the other jobs in   (see Fig.2). Then we have: 

  (  , -)  ∑  (  (   ))

 

   

   (  , -)  ∑  (  (   ))

 

   

  

   (  , -)  ∑  (  (   ))

 

   

 

Hence, in general the schedules         and with     , we have  

∑  (  )

 

   

 ∑  (  )

 

   

   ∑  (  )

 

   

 

and  

    (  , -)      (  , -)        (  , -) 

Hence      (  )       (  )         (  ) i.e.     (  )      (  )        (  ) 

since     (  )           . 

Therefore the schedules            are efficient solutions for the   jobs of different processing 

times, i.e. |  |   . 
 

Case(3)        : If common due date   is between   ( , -) and   , then the first job and the 

last job have the maximum earliness and maximum tardiness, respectively. By considering the job 

position with the maximum earliness and maximum tardiness, in the first and the last position in the 

𝑑 𝐶𝑛 

𝐸𝑚𝑎𝑥 

𝑑 𝐶 (𝑠𝑘, -) 

𝐸𝑚𝑎𝑥 

⋮ 

𝐶𝑛 

𝐶 (𝑠 , -) 

, - 

,𝑘- 
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sequence respectively, equations           and           are obtained and resulting the 

following equation. 

                     ; hence we have two subcases to be considered: 
 

(a)    , -: 

 

 

 

 

 

 

 

 

 

 

 
Figure3 Case(3)(a) 

 

Suppose we have the schedules            with       , where   jobs different processing times 

as in Case(2), then we have for the schedules    and   : 

∑  (  )

 

   

   (  , -)  ∑  (  (   ))

 

   

 ∑  (  )

 

   

   (  , -)  ∑  

 

   

(  (   )) 

and 

     (  , -)       (  , -) 

Then using the same techniques for the schedules         for the other jobs in   (see Fig.3). Then 

we have for the criteria (  ) and (  ): 

  (  , -)  ∑  (  (   ))

 

   

   (  , -)  ∑  (  (   ))

 

   

  

   (  , -)  ∑  (  (   ))

 

   

 

Hence 

∑  (  )

 

   

 ∑  (  )

 

   

   ∑  (  )

 

   

 

and  

     (  , -)       (  , -)         (  , -) 

     (  )       (  )         (  ) 
Therefore the schedules            are efficient solutions for the   jobs of different processing 

times, i.e. |  |   .  

 

(b)  , -    and    , -: Where  , -             is the processing time for the first job of the 

schedules            

 

 

 

 

 

 

 

𝑑 𝐶𝑛 

𝐸𝑚𝑎𝑥 

𝑑 𝐶 (𝑠𝑘, -) 

𝐸𝑚𝑎𝑥 

⋮ 

𝐶𝑛 

𝐶 (𝑠 , -) 

, - 

,𝑘- 

  

  

𝑇𝑚𝑎𝑥 

𝑇𝑚𝑎𝑥 
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Figure3 Case(3)(b) 

 

Let     and   (   ) be two adjacent jobs in   such that  , -    and    , -, let the schedules 

           as in Case(2), then we have: 

  (  , -)  ∑  (  (   ))

 

   

     (    , -)  ∑  (    (   ))

 

   

   (  , -)  ∑  (  (   ))

 

   

   (    , -)  ∑  (    (   ))   

 

   

   (  , -)  ∑  (  (   ))

 

   

 

Hence 

∑  (  )

 

   

   ∑  (    )

 

   

 ∑  (  )

 

   

 ∑  (    )

 

   

   ∑  (  )

 

   

 

and 

     (  , -)         (    , -)       (  , -)              

     (  )         (    )       (  )      (  )      (    )        (  ) 

It is clear that the sequence    is efficient solution which dominate the sequence     , when    , - 

i.e. all jobs     (, -   , -) such that       are tardy and with maximum tardiness is 

given by     . Thus,      (  ) is given by: 

     (  )      (  )      . 

The jobs (, -   , -)    have processing times less than or equal  , therefore the sequences 

           are efficient solutions for the   jobs of different processing times, i.e. |  |   .  
 

 

 

 

 

 

 

 

 

 

𝑇𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 

𝑑  𝑝,𝑖- 𝐶 (𝑠 , -) 𝐶𝑛 𝑝,𝑘- 

⋮ 

𝐸𝑚𝑎𝑥 

𝑑  𝑝,𝑖- 𝐶𝑛 𝑝,𝑘- 𝐶 (𝑠𝑖  , -) 

𝐶𝑛 𝑝,𝑘- 𝑑  𝐶 (𝑠𝑖, -) 

, - 

  

,𝑖   - 

  

,𝑖- 

  

𝑇𝑚𝑎𝑥 

𝑇𝑚𝑎𝑥 
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Case(4)   ,   -     , -:       

 

 

 

 

 

 

 

 

 
 

Figure4 Case(4) 

 

From Case(3) (b) we have |  |      since  , -     , - and    , -, and from Case(1) we 

have |  |    since    , -, therefore we have |  |   .                                                              
 

Remark(2): For the common due date   problem, suppose that   (, -   , -) is obtained by 

SPT-sequence. Let   be a subsequence of   of all different processing times with   jobs. We can 

find all efficient solutions by the following Algorithm1 if the first efficient solution   given by SPT 

rule  (∑          )  .∑   ( )       ( )/: 

 
Algorithm1 
1.       
2.      
3.               (    )        , - 

a.          

i.   ∑    (  )  ∑    (    )   , -   , -  

b.        

i.          

ii.   ∑    (  )  ∑    (    )   (  (  )      (  ))  

c.       

d.        (  )       (  )   , -   , -       , -  , -    

4.     

Example(2): The following examples explain the cases of Theorem(5) and satisfy the 

Remark(2) (Algorithm1) also. 

 Conditions    ,       - Seq ∑             (∑   
 

      ) |  | 

Case(1)                 53 0 21 (53,21) 1 

Case(2)           

     53 21 0 (53,21) 

4 
     54 20 0 (54,20) 

     58 18 0 (58,18) 

     61 17 0 (61,17) 

Case(3)(a) 
        

   , - 
     

     53 7 13 (53,20) 

4 
     54 6 13 (54,19) 

     58 4 13 (58,17) 

     61 3 13 (61,16) 

Case(3)(b) 
        

 , -     , - 
    

     53 3 17 (53,20) 

3      54 2 17 (54,19) 

     58 0 17 (58,17) 

Case(4)  , -     , -     

     53 2 18 (53,20) 

3      54 1 18 (54,19) 

     58 0 18 (58,18) 

𝐸𝑚𝑎𝑥 

𝑑 𝐶𝑛 𝐶 (𝑠𝑖  , -) 

𝐶 (𝑠𝑖, -) 𝐶𝑛 

,𝑖   - 

  

,𝑖- 

  

𝑇𝑚𝑎𝑥 

𝑇𝑚𝑎𝑥 

𝑑 

𝑝,𝑖- 
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For the Remark(2), consider the Case(2), the SPT solution with the first efficient solution is 

.∑  (   )      (   )/  (     ), then the second efficient solution is (∑  (   )   , -  

 , -      (   )   , -   , -)  (             )  (     ). The third efficient 

solution (∑  (  )   ( , -   , -)      (   )   , -   , -)  (    (   )       )  
(     ). 

Also it easily to get the remaining efficient solution by the same way which is (     ). 

Lemma(4): In the problem ( ), if     (   )   , then      ,    (   )     (   )-. 
Proof: In the problem ( ), the smallest value of      is     (   ). 
For the largest value of     , let   be any sequence such that     (   )      ( ) that implies   

is not efficient since  .∑    (   )     (   )/   .∑    ( )     ( )/ where ∑    (   )  

∑    ( ) by the SPT rule. 

Therefore      ,    (   )     (   )-.                                                                                  

Remark(3): Consider the  || ∑           problem (  ) which is special case of problem ( ). If 

there exists optimal solution   for the problem (  ), then this solution   is Pareto optimal for the 

problem ( )  And vice versa if a set   is the set of all Pareto optimal solutions to the problem ( ), 

then there exists optimal solution     for the problem (  ). 

5. Multi-Objective Variable Neighborhood Search (MOVNS) Algorithms  

Geiger [9] was developed the first application of the VNS metaheuristic for multi-objective 

optimization. The VNS provides approach high quality solution to NP-hard problems of realistic 

size in reasonable time. The VNS algorithm was randomly selection of neighborhoods and arbitrary 

selection of the base solution and then continually try to add better solution by searching 

neighborhood. 

In this paper, we applied the MOVNS1 algorithm of Geiger [9] to solve the MOSMS problem ( ) 

defined in Section 3. Also we propose the MOVNS2 and MOVNS3 are new modified algorithms 

and MOVNS4, MOVNS5 which were proposed by Arroyo et al. [12]. The MOVNS  (        ) 

use simple heuristics to generate three initial solutions   ,    and    obtained by SPT, EDD and 

MST rules respectively, and put it in the non-dominate set  .    and    be two neighborhood 

structures which used to generate new solutions. For each iteration of the algorithm, a base non-

dominated solution is randomly selected from  , this solution is removed from  . From the base 

solution, neighbor solutions are generated by chosen randomly neighborhood    (     ). The set 

  is update with the solutions        by generated a set of population (   ). Solutions     are 

added to the set   if       and there are not dominated by any solution in  , and the solutions of   

dominated by     are removed from  .  

The main work in this paper to improve a non-dominate solution and base on the previous 

algorithms of Geiger [9] and Arroyo et al. [12]. The pseudocode description of the proposed 

MOVNS2 algorithm is presented in Algorithm2 and Subalgorithm1. Also the MOVNS3 algorithm 

is presented in Algorithm2 and Subalgorithm2. The Subalgorithm1 and Subalgorithm2 has an input 

parameter   used in the intensification phase (  is the number of jobs to be cut from a sequence  ). 

From a non-dominated neighbor solution  , new non-dominated solutions are constructed by the 

intensification procedure. This procedure is based on two typical approaches used in multi-objective 

optimization: dynamic weighted aggregation and Pareto dominance. The first approach 

(Subalgorithm1) is according to the objectives,    and    are summed to a weighted combination 

      (         ), where the weights    and    are non-negative weights and        . 

These weights can be either fixed or adapt dynamically during the optimization. The dynamic 

weighted aggregation [20], which we used in this paper. Alternatively, the weight can be changed 

gradually according to the   ( )  |   (   
 ⁄ )| and   ( )      ( ), where   is the iteration’s 

index, in our work   is a time in ,   - (   number of jobs) and  (    ) is the weights’ change 

frequency. The second approach (Subalgorithm2) is Pareto dominance approach, only non-

dominated solutions are considered analyzed. 
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The algorithms were run with the same stopping criterion (StoppingCriterion) based on an amount 

of CPU time. This time is giving by   seconds and it depends on the size of the considered instance.  
Algorithm2  

1.     *        +; 
2.                                     
a.          ( )  
b.       * +  
c.                   

d.       ( )  
e.         (         )  
f.                    
i.         (  ); 
ii.                                 
I.         *   +; 
iii.       
g.       
h.         (  )   

k.            (                               (   ))               

   (                              (   ))            

l.                

3.       

The pseudocodes of the algorithms Intensification1 and Intensification2 are presented in 

Subalgorithm1 and Subalgorithm2, respectively.  
Subalgorithm1 Intensification1 (   ) 

1.          

2.     ( )  |   (   
 ⁄ )|     ( )      ( )  

3.                                  ; 
4.                                                                                      ; 

5.                   
a.        (   )                (   ); 

b.                     
i.                                    

I.                         (     )                (  )   
ii.       
iii.                                
iv.           
I.                            (                      (         ))  

v.        
I.                                              *  +  

vi.        
c.        
6.       
7.             

 
Subalgorithm2 Intensification2 (   ) 
1.                                  ; 
2.                                                 

3.       *  +  

4.                   
a.          
b.                                   

i.        (   )                (   ); 

ii.                     
I.                                    

A.                         (     )                (  )   
II.       
III.                                
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IV.                                              *  +  
iii.       
iv.          

c.       
5.       
6.             

In the next subsections, we describe in detail each phase of the MOVNS algorithms.  

5.1 Initial Non-dominated Solutions 

In this paper, we use simple dispatching rules to generate initial non-dominated solutions (instead of 

generating random solutions). In the algorithms MOVNS2 and MOVNS3, the set   of non-

dominated solutions is initialized with three solutions (sequences):   ,    and    obtained by SPT, 

EDD and MST rules respectively. The non-dominated solutions of *        + are stored in the set  . 

This set will contain at least one solution, to start with this solution is obtained by Proposition(1). 

5.2 Variable Neighborhood Structures and Local Search Algorithms 

Local search algorithms usually are based on neighborhood search. These algorithms move from 

solution to solution in the space of candidate solutions (the search space) by applying local change 

(neighborhood), until a solution deemed optimal is found or a time bound is elapsed. 

In this paper, the MOVNS algorithms used two neighborhood structures: transpose and exchange. 

For a given sequence   ( ( )    ( )), the neighborhood structures are described below.  

Transpose neighborhood TN(  ): the neighbors of   are generated by interchanging jobs  ( ) and 

 (   ) in the sequence,        .   ( ) neighborhood has size (   ). 

Exchange neighborhood EN(  ): the neighbors of   are generated by interchanging jobs  ( ) and 

 ( ) in the sequence,      ,      ,    .   ( ) neighborhood has size  (   )  . 

The MOVNS algorithms start with a base solution   select randomly from the current set of non-

dominated solutions  . The selected solutions are removed as visited and it will be excluded from 

the selection of the base one.  

In each iteration of the algorithms, a neighborhood structure          is selected randomly. The 

base solution   is perturbed by choosing randomly a solution    from   ( ) neighborhood (shaking). 

Then, all the neighboring solutions of    are analyzed, that is, the neighborhood   (  ) is explored. 

In the Algorithm2, the non-dominated neighbor solutions are stored in a set   . From a solution 

selected randomly from   , the intensification procedures are executed. 

5.3 Improving Procedures 

Arroyo et al. [12] proposed two intensification procedures: scalarizing function with arbitrary fixed 

weighted (MOVNS4) and Pareto dominance (MOVNS5). 

In this paper a new intensification procedures are used, in order to improve a non-dominated 

solution selected randomly from set    (set of non-dominated solutions). The proposed algorithms 

are compare with the algorithms developed by Geiger [9] and Arroyo et al. [12].  

The two propose intensification procedures are composed of two stages: destruction and 

construction as shown in following example for     and     which are given in Fig.5 and 

Fig.6. In the destruction stage,   jobs (selected randomly) are cut from   (solution selected 

randomly from   ) and a partial solution    (of size    ) is obtained. The first part jobs are stored 

in    (  ( )          are the deducted jobs). The construction stage has   steps. In step    , 

inserting job   ( ) in the first possible position of    and using the TN(  ) for new   , then we 

generating a set   of (     ) partial sequences. 

In the Intensification1 algorithm, from   (set of non-dominated solution), have the (     ) 

partial solutions, the best is chosen (one that has the lowest value of   ) and it replaces   . The 

other steps,          , are similar. Note that, in step       of the example,   complete 

solutions are constructed. From these   complete solutions, the set    (of non-dominated solutions) 

is determined. Fig.5 illustrate the idea of the Intensification1 procedure for the example. 
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Figure5  Intensification1  

Step     of Intensification2 is the same, i.e. (     ) partial solutions are constructed. 

From these partial solutions, the non-dominated solutions are selected. In the next step, new 

solutions (of size      ) are obtained by inserting job   (   ) in first position of the partial 

non-dominated solutions and using TN(  ). From the solutions constructed in each step, in the 

Intensification2 algorithm, the non-dominated solutions are always selected. In the last step 1, the 

set    of complete non-dominated solutions is determined. Fig.6 illustrate the idea of the 

Intensification2 procedure for the example. 

 

 

 

 

 

 

Figure6  Intensification2  

6. Computational Experiments 

In this paper, to compare the results of algorithms we analyze the efficiency of the proposed 

intensification procedures used in the MOVNS1 algorithm by Geiger [9], the new modified 

(MOVMS2, MOVNS3) algorithms and the MOVNS4, MOVNS5 algorithms by Arroyo et al. [12] 

obtained by the algorithms MOVNS  (        ). 

The five algorithms were coded in Matlab R2013a and executed on an Intel Core i7 with a 

2.13GHz and 4.0 of RAM. The algorithms were run with the same stopping criterion (Stopping 

Criterion) based on an amount of CPU time. This time is giving by   seconds (   number of jobs) 

and it depends on the size of the considered instance. In this way, we assign more time to larger 

instances that are obviously more time consuming to solve. Stopping criteria based on CPU times 

are widely used for performance comparison of heuristic algorithms [21][22]. 

6.1 Problems Instances 

The performance of the algorithms MOVNS  (        ) are compared on    problems 

instances. For the complete enumeration (  ) method and the reference set the sizes of these 

instances are          , and the sizes of more jobs instances are                   and    . 

The problems were generated randomly, similar to that of Wang and Yen [23] and Ribeiro et al. 

[24][25]. For each job  , the processing times    was uniformly generated in [1,10]. The due date    

was uniformly generated in ,(          )   (          )  -, where    is the total 

processing times of  all the jobs,    is the tardiness factor, and     is the relative range of the due 

dates.    and     have values from *               + and *           +, respectively.  
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Because    and     take 4 and 3 different values, respectively, there are total 12 settings for 

both parameters.  

6.2 Characterizing Non-dominated Solutions by the Five Algorithms 

For each problem instance, for the    method we have the set of all exact efficient solutions of 

the each instance example of the problem ( ). The exact efficient set is denoted by    which 

obtained by    method. We compare the non-dominated solutions obtained by the five algorithms. 

We denoted by   ,   ,  ,    and    the sets of non-dominated solutions (approximated Pareto 

fronts) obtained by the algorithms MOVNS  (        ), respectively. Since for the problem ( ) 

the optimal Pareto front for each instance is not known, a reference set, constituted by gathering all 

non-dominated solutions obtained by the five tested algorithms, is used. The reference set (the best 

known Pareto front) is denoted by (   ). The performance of an algorithm is then measured in 

terms of the quality of the solutions obtained by this algorithm with respect to the solutions in    . 

In this paper the cardinal measure is used.  

Cardinal measure: for each algorithm we compute the number of obtained non-dominated 

solutions that belong to the    set, i.e. |     |, |     |, |     |, |     |  and |     | 
and that belong to the reference set, i.e. |      |, |      |, |      |, |      |  and 

|      |.  

6.3 Comparison of Results 

The five algorithms MOVNS  (        ) were run for all the 12 instances for each   of the 

problem. The sets    (       ), contain the non-dominated solutions found by all the runs. The 

cardinal measure is  calculated for these sets.  

Table1 Performance of the algorithms with the complete enumeration (  ) for       

   MOVNS1  MOVNS2  MOVNS3  MOVNS4  MOVNS5 

  |  |  |  | |     |  |  | |     |  |  | |     |  |  | |     |  |  | |     | 

5 85  66 51  85 85  85 85  52 48  52 46 

6 103  60 45  103 103  103 103  67 60  65 61 

7 152  96 87  152 152  152 152  107 101  108 83 

8 145  71 56  145 145  144 144  103 93  125 110 

Total 485  293 239  485 485  484 484  329 302  350 300 

Percentage    49.28%   100%   99.79%   62.27%   61.86% 

Table1 presents the comparison among MOVNS  (        ) with the    (obtained by    

method) regarding the cardinal measure. For each group of 12 instances of size  , Table1 shows the 

total number of exact efficient solutions |  |, the number of solutions obtained by each algorithms 

(|  |,|  |,|  |,|  | and |  |) and the total number of exact efficient solutions provided by each 

algorithm |     | (       ). Note that, the algorithms MOVNS  (        ) generate their 

own set of non-dominated solutions    (       ), which do not necessarily belong to   . We note 

that for all groups of instances, the algorithm MOVNS2 determines a greater number of solutions in 

both sets |  | and |     |. For all the 12 instances tested, a total of 485 exact efficient solutions 

were obtained, from which 239 (49.28%), 485 (100%), 484 (99.79%), 302 (62.27%) and 300 

(61.86%) exact efficient solutions were obtained, respectively, by MOVNS  (        ). Based 

on the cardinal measure, the algorithm MOVNS2 is superior to the algorithms MOVNS1, 

MOVNS3, MOVNS4 and MOVNS5, (|     |  |     |  |     |  |     |  
|     |). 
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Table2 Performance of the algorithms with the reference solutions for       

   MOVNS1  MOVNS2  MOVNS3  MOVNS4  MOVNS5 

  |   |  |  | |      |  |  | |      |  |  | |      |  |  | |      |  |  | |      | 
5 85  66 51  85 85  85 85  52 48  52 46 

6 103  60 45  103 103  103 103  67 60  65 61 

7 152  96 87  152 152  152 152  107 101  108 83 

8 145  71 56  145 145  144 144  103 93  125 110 

Total 485  293 239  485 485  484 484  329 302  350 300 

Percentage    49.28%   100%   99.79%   62.27%   61.86% 

It is clear from Table1, the MOVNS2 (  ) gives the exact number of efficient solution |  |, 
hence Table2 have the same results as in Table1 since |  |  |  |. 

 

Table3 Performance of the algorithms with the reference solutions for          

   MOVNS1  MOVNS2  MOVNS3  MOVNS4  MOVNS5 

  |   |  |  | |      |  |  | |      |  |  | |      |  |  | |      |  |  | |      | 
20 835  473 334  737 550  788 532  399 317  485 305 

30 1286  640 342  1077 533  1286 394  596 395  772 249 

40 1563  845 407  1196 640  1686 576  673 403  976 134 

50 1814  1243 356  1359 651  2194 572  981 639  1874 143 

75 2000  1276 175  1637 832  3377 574  769 506  2928 142 

100 2233  1448 147  1815 973  4128 428  666 487  4166 428 

Total 9731  5925 1761  7821 4179  13459 3076  4084 2747  11201 1401 

Percentage    18.10%   42.95%   31.61%   28.23%   14.40% 

In Table3 with |   |, which is similar to Table2 with a larger number of jobs   and the same 

number of instances test, a total of 9731 reference solutions were obtained, from which 1761 

(18.10%), 4179 (42.95%), 3076 (31.61%), 2747 (28.23%) and 1401 (14.40%) reference solutions 

were obtained, respectively, by MOVNS  (        ). Based on the cardinal measure, the 

algorithm MOVNS2 is superior to the algorithms MOVNS1, MOVNS3, MOVNS4 and MOVNS5, 

(|      |  |      |  |      |  |      |  |      |). 
Note, from the paper [12] the results for    and    were better than   , while the results we 

have obtained through our research,    was better than    and the reason for this is due to the 

difference in programming algorithms where we used in our search Stopping Criterion depended on 

times which equal to number of jobs instead of the number of iterations. 

7.  Conclusion  

In this paper, we considered the MOSMS problem with the minimization the total completion 

times and the minimization of sum of maximum earliness and tardiness of jobs. Five algorithms 

based on the MOVNS  (        ) approaches were compared. The results show the MOVNS2 

algorithm by using intensification2 procedure improved the efficient solutions for the problem ( ) 

and gives superior results with respect to the others algorithms.  
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