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Abstract 

    Quantile regression provides a more complete statistical analysis of the 

stochastic relationships between random variables. While this technique 

has become very popular as a comprehensive extension of the classical 

mean regression it nonetheless suffers the problem of crossing of 

regression functions estimated at different orders of quantiles. 

Theoretically, the extension of conditional quantiles to higher dimension   

of X is straight forward. However, its practical success suffers from the so-

called ‘curse of dimensionality’. In this article we propose a method of 

obtaining quantile regression estimates for high dimension data without the 

unfavourable quality of quantile crossing. The proposed method is a two 

step procedure that initially employs sparse ridge sliced inverse regression 

(SRSIR) to achieve dimension reduction when the predictors are possibly 

correlated and then followed by the usage of non-parametric method to 

estimate non-crossing quantile regression. For the second stage of our 

method we employ double kernel smoothing method (Yu and Jones,1998); 

monotone-based smoothing method based on the convolution of the 

distribution (Dette and Volgushev,2008) and joint non-crossing quantile 

smoothing spline method (Bondell et al., 2010) for estimating the 

conditional quantile without quantile crossing. Through a simulation and 

empirical study we compare our estimators with that of Gannon et al. 

(2004). 

Keywords: Dimension reduction, Sliced inverse regression (SIR), 

Conditional quantiles, Non-crossing quantiles. 

1. Introduction 

    Quantile regression provides a more complete statistical analysis of the 

stochastic relationships between random variables. While this technique 

has become very popular as a comprehensive extension of the classical 

mean regression it nonetheless suffers the problem of crossing of 

regression functions estimated at different orders of quantiles.  

Standard nonparametric quantile regression estimation suffers quantile 

crossing phenomenon, particularly for the neighbouring quantile curves. 

This problem is partly due to sparse data in an area (or reflects a paucity of 

data in the region concerned) and partly due to the quantile curves are 

usually computed one level at a time. This phenomenon usually causes 

difficulty in interpretation for applicants, see Koenker (2005). There are a 
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number of researchers attempt to find solutions for this problem. He (1997) 

proposed RRQ (restricted regression quantiles due to quantile smoothing 

spline optimization problem with boundary constraints) on regression 

models.  Yu and Jones (1998) proposed a nonparametric quantile 

regression ‘double-kernel’ method. This method smoothes the data along 

both the   and Y-axes using kernel smoothing followed by local-linear 

weighting in the X -axis direction. The authors urge that their method give 

non-crossing quantiles curves. Takeuchi et al (2005) added a positive 

derivative constrain on quantile smoothing spline optimization problem. 

Dette and Volgushev (2008) proposed monotone-based smoothing method 

based on the convolution of the distribution to give non-crossing quantiles 

curves. Bondell et al. (2010) proposed joint non-crossing quantile 

smoothing spline method for estimating the conditional quantile without 

quantile crossing.  

    The nonparametric quantile regression estimation suffers from another 

problem is called the ‘curse of dimensionality’. Theoretically, while the 

extension of nonparametric conditional quantiles from univariate to higher 

dimension case is quite clear its practical success is impeded by the ‘curse 

of dimensionality’. The reason for the curse of dimensionality is due to the 

exponential increase in dimension associated with adding extra dimensions 

to a space.  

A generic problem in non-parametric quantile regression estimation is the 

sparseness of high dimensional data. Furthermore, convergence rate of non-

parametric estimators depends on the inverse relationship with the 

dimension   of predictor space. That is, when convergence decreases the 

dimension increases for details see Stone (1982). Therefore, in light of the 

preceding discussion, the challenge is to reduce the  -dimensional 

predictor   without loss of information on the conditional distribution of    

given   and without requiring a pre-specified parametric model. 

    There are a number of approaches that attempts to reduce the  -

dimensional predictor   without loss of information and then estimate the 

conditional quantile. Chaudhuri (1991), Gooijer and Zerom (2003), Yu and 

Lu (2004), Horowitzand and Lee (2005), Dette and Scheder (2011), and 

Yebin et al. (2011)  used variants of adaptive model in order to reduce the 

dimension and thereafter estimate the conditional quantiles. Wu et al. 

(2010) proposed single-index quantile regression. They introduced a 

practical algorithm where the unknown link function is estimated by local 

linear quantile regression and the parametric index is estimated through 

linear quantile regression.  
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    Gannon et al. (2004) used sliced inverse regression (SIR) to reduce the 

dimensionality of the covariates in order to construct a more efficient 

estimator of conditional quantiles. Specifically, the authors employ (SIR) 

method as a pre-step to avoid the curse of dimensionality and then 

conditional quantile estimators are obtained by inverting the conditional 

distribution which is estimated using the Nadaraya-Watson method. 

However, the estimator proposed by Gannon et al. (2004) has some 

disadvantages. Notably, while the (SIR) method is proven to be an effective 

dimension reduction tool, it suffers from the drawback of using each 

dimension reduction component as a linear combination of all the original 

predictors. Consequently, this makes the interpretation of resulting 

estimates very difficult. Furthermore, in the presence of collinearity among 

the predictors the (SIR) method is documented to be inefficient (Li and Yin 

,2008). Additionally, the usage of Nadarya-Watson method to estimate the 

conditional distribution may induce large bias and boundary effects as is 

widely acknowledge in the literature.  

    Existing estimation procedures for nonparametric quantile regression 

which are proposed to solve the curse of dimensionality problem fail in 

solving the quantile crossing problem. For example, Single index quantile 

regression (Wu et al.,2010) , Local linear additive quantile regression (Yu 

and Lu, 2004).On the other hand, the estimation procedures which are 

proposed to solve the quantiles crossing problem unable to work in high 

dimensional data because they are proposed to work with low dimensions. 

So, we have proposed our method to tackle these two problems together. 

    In this paper, we propose a semi-parametric quantile regression 

estimation method for high dimension data when the predictors are 

possibly correlated. For different order of quantiles, the proposed approach 

guarantees that the estimated quantile regression functions do not cross. In 

order to ensure the quantile functions are not overlapping our proposed 

two-step procedure first employs the sparse ridge sliced inverse regression 

(SRSIR) to overcome the curse of dimensionality and then followed by a 

conditional quantile estimation methods which are give non-crossing 

quantile curves.  

    The article is organized as follows. In sections 2 and 3 we respectively 

give brief reviews of sparse ridge sliced inverse regression (SRSIR) 

followed by non-parametric quantile estimation methods focusing on the 

double kernel quantile regression method (Yu and Jones, 1998); monotone-

based smoothing method (Dette and Volgushev, 2008) and non-crossing 

quantile smoothing spline method (Bondell et al. , 2010). In section 4, we 

present our two-step proposed estimation procedure. we conduct 

simulations under different settings in section 5. We report the applications 



1811016  

 

 
 31 

 

of our method on real data in section 6. Finally, the conclusions are 

summarized in Section 7. 

2. Sparse ridge sliced inverse regression 

    One of the most important objectives in analyzing high dimension 

datasets is the reduction of dimension for visualizing patterns of data 

structure. The theory of sufficient dimension reduction (Li, 1991; Cook, 

1998) has been developed to achieve this aim. In high-dimensional, for 

regression problems involving a univariate response Y and a   -

dimensional predictor   (        ), the sufficient dimension reduction 

aims to replace   with a lower-dimensional projection     without loss of 

information about the conditional distribution of Y |X, where    is the 

orthogonal projection in the usual inner product. In this setting no pre-

specified model for Y |X is required. The central subspace        is the 

important object in the dimension reduction and in light of this there are 

number of dimension reduction methods proposed to estimate       .  Sliced 

Inverse Regression (SIR) approach proposed by (Li, 1991) is one of these 

methods. The author showed that an estimate of the central subspace        

can be obtained by the first    eigenvectors             for the eigenvalue 

problem of the form  

                                                           ( ) 

where            are the corresponding positive eigenvalues,  

      ( )  and 

     { (    )}.  

SIR suffers from the fact that each dimension reduction component is a 

linear combination of all the original predictors and no variable selection is 

achieved and thus making it difficult to interpret the resulting estimates. 

Moreover, (SIR) method suffers when there is high collinearity among the 

predictors (Li and Yin ,2008). In light of these drawbacks, in this article we 

shall make use of sparse ridge sliced inverse (SRSIR) method to remedy 

these problems. 

Cook (2004) rewrite SIR in (1) as a least-squares minimization problem 

and SIR estimate can be obtain by minimizing 

 (   )  ∑ ̂ 

 

   

‖ ̅     ‖
                               ( ) 

Where  ̂   ̂ 
 

   (   ( ))  with  ̅  denoting the mean of  ̂  in the  th 

slice,     is the number of observations within each slice and  ̂     ⁄  is 
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the observed fraction of observations falling in slice y. Over          

and    (        )       the values of    which minimize   (   ) 
form an estimation of the central space      . 

 Li and Yin (2008) derived another least-squares formulation of SIR, which 

is equivalent to (2) but in the original predictor   scale as follows: 

 ̃(   )  ∑ ̂ 

 

   

‖( ̅   ̅)   ̂     ‖
 
                 ( ) 

and then they proposed ridge sliced inverse regression (RSIR) estimator 

given by: 

  (   )  ∑ ̂ 

 

   

‖( ̅   ̅)   ̂     ‖
 
       ( )    ( )               ( ) 

Where   is a nonnegative constant and    ( )  is a matrix operator that 

stacks all columns of the matrix to a single vector. For a fixed    , Li and 

Yin (2008) proposed an alternating least –squares algorithm to minimize 

(4). The mechanics of the algorithm is as follows: 

Given   the solution of   can be obtained by:  

         ̂  ( ̂     ̂ )  where       ̂  (   ̂ 
  )

  
    ̂  ( ̅  

 ̅)              ( ) 

        . 

Thereafter, rewrite (4) in the form of least-squares regression, 

  (   )  ‖ ̃     ̃   ̃   (    ̂ )    ( )‖
 

      ( )    ( )      ( ) 

where   is the Kronecker product,  ̃     ( ̅   ̅    ̅   ̅)  , 

 ̃      
   

   , and        ( ̂     ̂ ). Given  , the solution of    

in (6) is 

   ( ̂)  (    
   ̂ 

       )
  (     ̂ ) ̃           ( ) 

and this procedure will continue between minimizing    and   until 

convergence. 

Li and Yin (2008) derived a generalized cross-validation criterion (GCV) 

to select the ridge parameter   in (4) given by 
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‖(      ) ̃

     ̃‖
 

  {       (  )   }
                          ( ) 

where, 

   (  
   

 ̂   ̂ )( ̂   ̂
   ̂ 

       )
  
( ̂  

   
  ̂ )       ( ) 

Estimates of ridge SIR (RSIR) are linear combinations of all the predictors, 

and no variable selection is achieved. Li and Yin (2008) followed the least 

absolute shrinkage and selection operator (Lasso) idea to the RSIR 

estimator to induce sparsity in the estimated linear combinations. 

Let ( ̂  ̂)  denote the RSIR estimator. A sparse ridge sliced inverse 

regression (SRSIR) estimator of the central subspace        is defined as  

    (    ( ̂) ̂), where the shrinkage index vector   ̂  ( ̂     ̂ )  

   is obtained by minimizing  

  ( )  ∑ ̂ 

 

   

‖( ̅   ̅)   ̂      ( ) ̂ ̂ ‖
 
         (  ) 

over  , subject to ∑ |  |  
 
     , for some non-negative constant  . 

Because  ( ) ̂ ̂      ( ̂ ̂ )  , we have 

  ( )  ∑ ̂ 

 

   

‖( ̅   ̅)   ̂      ( ̂ ̂ ) ‖
 
       (  ) 

Let  ̃     ( ̅   ̅    ̅   ̅)      , 

 ̃  (    ( ̂ ̂ ) ̂         ( ̂ ̂ ) ̂ )
 
       

Then the shrinkage vector  , is exactly the Lasso estimator for the 

regression  ̃  with     observations on the  -dimensional data matrix  ̃ . 

Akaike information criterion (AIC), Baysian information criterion(BIC), 

and residual information criterion (RIC) can be used to select  . 

Li and Yin (2008) adopted a criterion proposed by Zhu et al. (2006) to 

estimate       (     ) . Zhu et al.(2006) suggested that   can be 

estimated by: 
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 ̂        
       

{
 

 
∑ (   ( ̂ )     ̂ )

 

       (    )

 
     (      )

 
         (  ) 

where,  the matrix       ( (  ⁄ ))      and   ̂     ̂  denote the 

eigenvalues of the sample estimate  ̂ of    ,   is the number of  ̂   , and 

    is a penalty constant taken to be     (   ( )  ⁄ ). 

3.Non-crossing nonparametric quantile regression methods 

    First of all, we need to explain a class of kernel smoothing quantile 

regression. A class of kernel smoothing quantile regression is defined as a 

solution to  

                    ∑  (    )   (      )                  (  ) 

Where   ( )  
 

 
 (

 

 
)  is a kernel function with bandwidth  , and    is 

the check function given by: 

  ( )       [   )( )  (   )    (    ) ( )        (  ) 

with   indexes the conditional quantile of interest. 

Another class of kernel quantile regression estimation is based on 

estimating conditional distribution function or conditional density function. 

For instance, the conditional      quantile   ( ) is the solution of  

                (  ( )  ⁄ )                                     (  ) 

Where the distribution function  (  ⁄ ) is estimated by 

  ̂(  ⁄ )  ∑    ( )   (    )                            (  ) 

Then estimating the conditional quantile function by the inverse of   

  ̂(  ⁄ )  where the weights    ( ) are either obtained using the Nadarya-

Watson procedure 

  ( )  
  (    )

∑   
 
   (    )

                            (  ) 

or the local linear approach   

     ( )   (
    

 
) [   ̂ (    )]               (  ) 
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where  ̂  
    

    
, 

       ∑  (
    

 
) 

   (    )
   ,                  (19) 

 with kernel function    and bandwidth   , and    (    )  is indicator 

function.  

Now, we will give view for the methods which we used to get non-crossing 

quantile regression. The first and second of the following methods are from 

nonparametric kernel smoothing quantile regression while the third method 

from nonparametric quantile regression smoothing spline. 

3.1 Double kernel method 

Yu and Jones (1998) proposed a nonparametric quantile regression 

‘double-kernel’ method. This method smoothes the data along both the   

and Y-axes using kernel smoothing followed by local-linear weighting in 

the X -axis direction. The double-kernel method requires two bandwidths, 

one for kernel smoothing along the X-axis and the other for kernel 

smoothing along the Y-axes. Yu and Jones (1998) outlined an automated 

method for determining the two bandwidths for each percentile curve (Li et 

al. , 2010). The idea behind this method is that replacing  the indicator 

function    (    )  in (16) by a kernel density function to get a smoother 

version of the estimated conditional distribution function in (16) as 

  ̂    (  ⁄ )  
 

  (    )
∑   (    )  (

 ̂ ( )   

  
)       (20) 

where   is the distribution function associated with a kernel density 

function W and 

               (
    

  
)  ∫    

 

  
(    )                           (21) 

  (    ) are the local linear weights . 

This method focuses on choosing a second kernel function    and second 

bandwidth     so that  ̂ ( )  is monotonic function of     for all     in its 

range to solve the problem of quantile crossing. If    is taken to be the 

uniform kernel density,    ( )     (     )  it can show that    
 

  
 ̂ ( )   . 

The choice of the bandwidth is critical in determining how smooth the 

resulting conditional mean/percentile curve will be. Yu and Jones (1998) 

proposed an automatic bandwidth selection strategy for estimating 

conditional percentiles using single and double-kernel methods. They 
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summarise their automatic bandwidth selection strategy for smoothing 

conditional quantiles as follows: 

a. Use ready methods to select       ,where        is the bandwidth for 

the smoothing estimation of the mean regression. 

b. Use                              { (   )  (   ( ))
 
}
   

                   

(22) 

to obtain all      from      , where      is the first bandwidth for the 

percentage and 

  and      are the standard normal density and distribution functions, 

respectively. 

Additionally, the authors proposed a method that depends only on   and 

     for obtaining     , the second bandwidth estimator for smoothing in the 

  direction. This bandwidth is given by                               

   (
       

     
 
    

  
)     if                    (23) 

 
       

     
                         Otherwise 

Yu and Jones (1998) preferred the double-kernel to the single-kernel 

estimator because of its smoother appearance, improved mean-squared-

error properties (Li et al.,  2010) and its yielding of non-crossing quantiles. 

3.2 Monotone-based smoothing  

    Dette and Volgushev (2008) proposed Monotone-based smoothing 

method to give non-crossing quantiles curves. The idea of this method is 

based on convolution of the distribution. Let   denote a strictly increasing 

(fix or known) distribution function, consider the convolution                              

   ( )  ∫  { ( )   }   ( ) 

                                        ∫  [ {   }   ]  

 

 

                 (  ) 

or        ( )     
  ( ) or     ( )     

  
  ( ) 

The function       ( ) is obviously always increasing but the function 

  is not smooth, so first smooth    ( ) as  

   
  ( )  

 

  
∫ ∫   [

 {   ( )   }

  
]

 

 

 

  

          (  ) 
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  ( ) , then estimate    ( ) as      

  ̂( )  (   
   

 ̂ )( ) where 

function   is introduced here to enforce the existence of the integral if the 

support of the distribution function is unbounded and     denotes a 

bandwidth converging to 0. 

For computational reasons the integration with respect to the variable    is 

substituted by a summation and the function   is replaced by an 

appropriate estimate of the conditional distribution, say   ̂  : 

  
 ̂ ( )  

 

   
∑∫  [

 ̂ { 
  (  ⁄ )}   

  
]

 

  

 

   

          (  ) 

where,                                                   (          
   )       (  ) 

3.3 The joint constrained quantile smoothing spline 

    Koenker  et al. (1994) explored a class of quantile smoothing splines, 

defines as a solution to  

               
 

∑  (    (  ))     (  )  (  ) 

Where  (  )   is the total variation of the derivative of the function   and 

for twice continuously differentiable       (  )  ∫     ( )   
 

 
. 

Koenker  et al. (1994) , He and Ng(1999) suggested the use of a Schwartz-

type information criterion for choosing the regularization parameter in 

quantile smoothing splines. For each individual quantile curves, this 

criterion is  

   (   )     [   ∑   {      
   (  )}

 

   

]  (  )           ( )    (  ) 

Where   [   ]  ,            
   denotes the estimated function for that 

choice of    and    is the number of interpolated data points. 

Bondell et al.(2010) proposed the constrained joint quantile smoothing 

spline as the set of functions  ̂      ̂     that minimize  

                     ∑ (  )

 

   

∑   

 

   

{      (  )}  ∑   

 

   

 (   
 )             (  ) 

Subject to     ( )       ( )   and where  (  )  denote some weight 

function such that  (  )    for all        . 
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The full set of tuning parameters for the individual quantile curves 

minimizes the joint Schwartz-type criterion 

    ( )  ∑  (  )

 

   

   [   ∑  {      
   (  )}

 

   

]

 (  )           ( )∑    

 

   

    (  ) 

with the weights satisfying   (  )   . 

Bondell et al.(2010) show that their method give non-crossing quantile 

curves. 

4. Estimation procedure 

    In this section we describe the practical implementation of our proposed 

two step estimation procedure. The first step is the dimension reduction 

using SRSIR followed by the employment of non-crossing quantile 

regression methods for estimating the conditional quantiles. 

4.1 SRSIR step 

Let  ̅   and  ̂  be the sample variance matrix of the   ’s. Follow the 

algorithm described in section 2, according to equations (5), (6), (7) we will 

obtain the SRSIR estimates for effective dimension reduction (EDR) 

directions sample version  ̂ .  

4.2 Non-crossing quantile regression estimator step 

    Using the SRSIR estimates obtained in the previous subsection, we now 

give non-crossing quantile regression estimators for conditional quantile 

according to the methods which are described in section (3). For the sake of 

convenience, let       (     )   . Now: 

  ( )    (   ⁄  )    (   ⁄  )             (32) 

Let  ̂   ̂   ,  ̂  is an estimated basis of     ( ), then { ̂   ̂   }   
 

  and    

 ̂   ̂  .  

From the data {(    ̂ )}   
  we can define the non-crossing quantile 

regression estimators for the conditional quantile according to the methods 

outlined in section (3). 

5. Simulation study     
    We now provide a simulation study to illustrate the numerical 

performance of the proposed method. We compare our method with 
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Gannon et al. (2004) method as well as comparing all estimators when SIR 

and SRSIR are used in the first step. 

5.1 Estimation methods 

    In our simulation study we compare between these estimators of the 

     conditional quantile: 

a.  ̂ ( ̂)   ̂ ( ̂
  ),  this estimator is the double kernel quantile regression 

estimator by numerically inversing the estimated conditional cumulative 

distribution function in (20). The direction  ̂  is estimated with SRSIR 

according to equations (5), (6) and (7). The standard normal  (   ) is used 

as the kernel density function. The first and second bandwidths are chosen 

according to the equations (22) and (23) respectively. 

b.  ⏞
 
( ̂)   ⏞

 
( ̂  ) , this estimator is similar to estimator  ̂ ( ̂) except 

the dimension reduction direction  ̂ is estimated using SIR according to 

equation (3). 

c.   ̌ ( ̂)   ̌ ( ̂
  ) , this estimator is the monotone-based quantile 

regression estimator as in the (26). The direction  ̂ is estimated with SRSIR 

according to equation (5), (6) and (7). The kernel density function is the 

density of standard normal  (   ) with the bandwidth chosen according to 

equation (27). 

d-   ⃛ ( ̂)   ⃛ ( ̂
  )  , this estimator is similar to the estimator  ̌ ( ̂) 

except the dimension reduction direction   ̂   is estimated using SIR 

according to equation (3). 

e.      ̆ ( ̂)   ̆ ( ̂
  )  , the joint constrained quantile smoothing spline 

estimator as in equation (30) and the full set of tuning parameters for the 

individual quantile curves selected to  minimizes the joint Schwartz-type 

criterion according to (31). The direction  ̂  is estimated with SRSIR 

according to equation (5), (6) and (7).  

f.  ̈ ( ̂)   ̈ ( ̂
  ), this estimator is similar to the estimator  ̆ ( ̂) except 

the dimension reduction direction   ̂  is estimated using SIR according to 

equation (3). 

g.   ̃ ( ̂)   ̃ ( ̂
  ) , Gannoun et al. (2004) estimator , the direction  ̂ is 

estimated with SIR  according to the equation (3) , and the conditional 

quantile by numerically inverting the estimated conditional c.d.f. in (16) 

with weights as in (17). The kernel density function is the density of 

standard normal  (   ), and the bandwidth is chosen by a cross-validation 

technique. 
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5.2 Simulated model 

We tested the performance of our proposed estimators and Gannoun et al. 

(2004) estimator for correlated predictor, by considering the following 

model: 

   (   )  (   )                        (33) 

Where,   (        )  follows a multivariate normal distribution with 

mean 0, and the correlation between     and    is         , we take   

(           ). Additionally, we assume the error term     (   ) and    

independent of   . We study the estimators in these cases: 

Case (I)      (                 )          (   ). 
Case (II)     (                 )          (   )  
Case (III)    (                 )          (   )  

Case (IV)    (             ) √           (   )  

Case (V)     (             ) √           (   )  

Case (VI)    (             ) √           (   )  

The true conditional     -quantile for the model in (33) is   ( )  
 (   )       , where    is the     -quantile of standard normal 

distribution. 

For the purpose of comparison the estimators 

 ̂ ( ̂),  ⏞ 
( ̂),  ̌ ( ̂),  ⃛ ( ̂),  ̆ ( ̂),  ̈ ( ̂), and  ̃ ( ̂)  to the true quantile 

for the previous different cases we generate data replications       of 

sample size n=300. Five quantile values                               

were considered. The performance of the estimators can be assessed on 

each of the 200 replications by a mean square error criterion (and averaged 

over replications). 

5.3 Results 

    All the experiments concerning the behavior of the estimators with 

respect to the different forms of   and different values of   according to the 

previous six cases have been conducted based on model (33) and the Table 

1 and Figure 1 provide the mean squares errors for these estimators. 
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Table1. Mean squared error of the estimators 

  ̂ ( ̂),  ⏞ 
( ̂),  ̌ ( ̂),  ⃛ ( ̂),  ̆ ( ̂),  ̈ ( ̂), and  ̃ ( ̂) for the different quantiles  

  (                        ). 
Case (I) 

                                   

 ̃ ( ̂) 0.099409 0.071722 0.040051 0.089786 0.097308 

 ⏞
 
( ̂) 0.092989 0.049379 0.024830 0.077639 0.095013 

 ⃛ ( ̂) 0.097168 0.069118 0.034219 0.060412 0.069323 

 ̈ ( ̂) 0.061525 0.044617 0.030515 0.064587 0.080406 

 ̂ ( ̂) 0.056112 0.026635 0.007754 0.043927 0.053793 

 ̌ ( ̂) 0.062205 0.018083 0.013730 0.043039 0.055438 

 ̆ ( ̂) 0.05647 0.013983 0.005788 0.028570 0.045059 

Case (II) 

                                   

 ̃ ( ̂) 0.106747 0.078177 0.043856 0.098405 0.109350 

 ⏞
 
( ̂) 0.106472 0.053823 0.029051 0.085092 0.107365 

 ⃛ ( ̂) 0.105913 0.066212 0.037470 0.075339 0.079721 

 ̈ ( ̂) 0.071984 0.048633 0.033414 0.070787 0.088205 

 ̂ ( ̂) 0.061723 0.029032 0.008491 0.048144 0.059011 

 ̌ ( ̂) 0.068426 0.019710 0.015034 0.047171 0.060815 

 ̆ ( ̂) 0.062117 0.015241 0.007467 0.031313 0.049430 

Case (III) 

                                   

 ̃ ( ̂) 0.116770 0.085349 0.047621 0.106576 0.117899 

 ⏞
 
( ̂) 0.111587 0.058761 0.029523 0.092157 0.112685 

 ⃛ ( ̂) 0.116602 0.071890 0.040686 0.082043 0.089427 

 ̈ ( ̂) 0.081213 0.053094 0.036282 0.076665 0.095362 

 ̂ ( ̂) 0.067334 0.031696 0.009220 0.052141 0.063798 

 ̌ ( ̂) 0.074646 0.021519 0.016325 0.051087 0.065749 

 ̆ ( ̂) 0.067764 0.018877 0.007756 0.033913 0.059928 

Case (IV) 

                                   

 ̃ ( ̂) 0.095930 0.069427 0.038769 0.086823 0.096335 

 ⏞
 
( ̂) 0.090199 0.047799 0.024035 0.075077 0.091973 

 ⃛ ( ̂) 0.094253 0.066906 0.033124 0.058418 0.067105 

 ̈ ( ̂) 0.059679 0.043189 0.029539 0.062456 0.077833 

 ̂ ( ̂) 0.054429 0.025783 0.007506 0.042477 0.052072 

 ̌ ( ̂) 0.060339 0.017504 0.013291 0.041619 0.053664 

 ̆ ( ̂) 0.054776 0.013536 0.005603 0.027627 0.043617 

Case (V) 

                                   

 ̃ ( ̂) 0.103604 0.074981 0.041871 0.093769 0.104042 

 ⏞
 
( ̂) 0.097415 0.051623 0.025958 0.081083 0.099331 

 ⃛ ( ̂) 0.101793 0.072258 0.035774 0.063091 0.072473 

 ̈ ( ̂) 0.064453 0.046644 0.031902 0.067452 0.08406 

 ̂ ( ̂) 0.058783 0.027846 0.008106 0.045875 0.056238 

 ̌ ( ̂) 0.065166 0.018904 0.014354 0.044949 0.057957 

 ̆ ( ̂) 0.059158 0.014619 0.006051 0.029837 0.047106 

Case (VI) 

                                   

 ̃ ( ̂) 0.107749 0.077980 0.043545 0.097520 0.108203 

 ⏞
 
( ̂) 0.101312 0.053688 0.026996 0.084326 0.103304 

 ⃛ ( ̂) 0.105865 0.075149 0.037205 0.065615 0.075372 

 ̈ ( ̂) 0.067031 0.048510 0.033178 0.070151 0.087422 

 ̂ ( ̂) 0.061135 0.028959 0.008431 0.047710 0.058487 

 ̌ ( ̂) 0.067773 0.019660 0.014928 0.046746 0.060275 

 ̆ ( ̂) 0.061524 0.015204 0.006293 0.031031 0.048991 
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Figure.1. Mean squared error of the estimators  ̂ ( ̂) (SRSIR-DK),  ⏞
 
( ̂) 

(SIR-DK),  ̌ ( ̂) (SRSIR-DE),  ⃛ ( ̂) (SIR-DE),  ̆ ( ̂) (SRSIR-

HO),  ̈ ( ̂) (SIR-HO), and  ̃ ( ̂) (GANNO) for the different quantiles  

  (                        ) 

    From Table 1 and Figure 1, it can be observed that for the all cases the 

estimators of sparse ride sliced inverse for non-crossing quantile regression 
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were better than the estimators of the sliced inverse regression for non-

crossing quantile . Further, we can also note that for the all cases the 

estimators of the sparse ride sliced inverse for non-crossing quantile and 

the estimators of the sliced inverse regression for non-crossing quantile are 

better than Gannoun et al. (2004) estimator,  ̃ ( ̂). 

In addition, we can see that for the all estimators the MSE criterion in the 

cases (i), (ii) and (iii) are lower than the MSE criterion in cases (iv), (v) and 

(vi) for the same  . 

The MSE criterion for the estimators of  the sliced inverse regression for 

non-crossing quantile regression and  ̃ ( ̂)(Gannoun et al. 2004) estimator 

increase significantly when    increases, while the MSE criterion for the 

estimators of  the sparse ridge sliced inverse regression for non-crossing 

quantile regression increase in small amount when    increase. 

For all cases, the performance of the all estimators when        were 

better than the performance of these estimators with other quantiles; while, 

the performance of all estimators when        were worse than the 

performance of these estimators with other quantiles.  

For the all cases, the performance of the estimator   ̂ ( ̂)  was better than 

the performance of the other estimators when    (        ) , while the 

performance of the estimator  ̆ ( ̂) was better than the other estimators 

when    (            ). 

In general, the differences between the MSE for the estimators 

 ̂ ( ̂), ̌ ( ̂), and  ̆ ( ̂) were small amounts. 

6. Application to real data 

6.1 Description of the data set 

   We applied our estimation procedure on body dimension datasets which 

is described in (Heinz et al. , 2003). This dataset provide body girth and 

skeletal diameter measurements, as well as age, weight, height and gender, 

are given for 507 physically active individuals - 247 men and 260 women. 

We applied our estimation procedure on the body girth (circumference) 

measurements and the height as covariate variables against weight as a 

response variable for 247 men. The body girth (circumference) 

measurements contained twelve variables, namely,      (Shoulder 

Girth),     (Chest Girth),     (Waist Girth),     (Navel Girth),     (Hip 

Girth),    (Thigh Girth), 

   ( Flexed Bicep Girth),     ( Forearm Girth),     (Knee Girth),      

(Maximum Girth),      (Ankle Minimum Girth), and       (Wrist Minimum 

Girth).we refer to the height by    . 
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We computed the correlation matrix for the covariates variables, and we 

found the variables to be highly correlated. The maximum correlation is 

0.88 between    and   .  

6.2 Application of estimation procedure 

We can describe the estimation procedure by the following two steps. 

Assume    is the set of the    covariates (    ) in our research. 

Step1. We apply the sparse ridge sliced inverse regression (SRSIR) method 

using the response variable    (weight) and the covariates of     (body girth 

measurements and height). We determine the number   ̂ of EDR directions 

according to (12) and we obtain   ̂    ̂      ̂   .where    ̂    ̂      ̂   

are the estimated EDR directions. 

Step2. We estimate the non-crossing quantile regression using the methods 

described in section 3. 

6.3 The results: 

We apply the estimation procedure to get the estimates to quantile 

curves (                                     )  for the response 

variable (weight) as follow: 

Step1. We find  ̂    for our data and thus we obtain   ̂   where    ̂  is the 

first estimated EDR direction. Table2 describes the estimated direction for 

(SIR) and (SRSIR) as follow:  

Table2. the estimated direction for sliced inverse regression and sparse 

ridge sliced inverse regression 
  ̂ -SRSIR  ̂ -SIR 

   0.0000000 0.11669728 

   0.0000000  0.10181972 

   0.5672437  0.35600727 

   0.1059630  0.01758213 

   0.5228808  0.21574339 

   0.0000000  0.30413007 

   0.0000000  0.16641450 

   0.0000000  0.57422016 

   0.0000000  0.24255242 

    0.0000000  0.30291702 

    0.0000000 -0.10121251 

    0.0000000 -0.22163315 

    0.6273771  0.37755221 

From our analysis the first (SRSIR) linear combination  ̂ will be: 

 ̂                                                       
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Figure. 2. Scatter plot of the response variable (weight) against the first 

SRSIR index. The first index has a strong structure in the scatter plot 

matrix. 

Step 2: Figure3 describes the estimated quantiles regression curves 

  (                                  )  using the estimators 

 ̂ ( ̂),   ̌ ( ̂), and  ̆ ( ̂) respectively. We can see from the figure.3 the 

estimators  ̂ ( ̂),  ̌ ( ̂), and  ̆ ( ̂) are non-crossing quantile estimators. 

 

 
Figure. 3. The estimated quantile regression curves 

  (                                  )  by using the estimators 

 ̂ ( ̂),  ̌ ( ̂), and  ̆ ( ̂)  respectively from the left to the right. 
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