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Modeling Lateral Motion of a Vehicle Using Neural Networks 
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Abstract 
In this research a neural model is proposed to predict the lateral force which affects the lateral 

motion dynamics of a vehicle during its travel. Neural networks technique is used to predict the 

lateral force through learning it the previous information about the relations among lateral force, 

variation in air pressure inside the tire, friction coefficient between tire and road, sideslip angle 

and normal load exerted on the tires. The results show that the model is capable of predicting the 

dynamic response to lateral motion represented by the dynamic response to yaw rate and side 

velocity when a vehicle negotiating a turn at different conditions. The lateral motion dynamics of 

a vehicle during its travel is affected by several parameters. The interaction between these 

parameters and states-variables is governed by nonlinear relations. 

Keyword: Vehicle dynamics, Lateral motion of vehicle, Neural networks. 
 

 الخلاصة
اسخخذمج طشٌقت نهشبكاث انعصبٍت نهخىبؤ بانقىة انداوبٍت مه خلال حعهٍمها عهى انمعهىماث انمسبقت حىل علاقت انقىة انداوبٍت مع 

حغٍش ضغظ هىاء الاطاس ومعامم الاحخكاك و صاوٌت الاوضلاق انداوبٍت وانحمم انعمىدي انمسهظ عهى الاطاساث.اظهشث انىخائح 

عصبً انمقخشذ عهى انخىبؤ بالاسخدابت انذٌىامكٍت نهحشكت انداوبٍت مخمثهت بالاسخدابت انذٌىامكٍت نكم مه نمعذل قابهٍت انىمىرج ان

انذوسان وانسشعت انداوبٍت عىذ مخخهف ظشوف انعمم انخً حىاخهت انمشكبت عىذ دوساوها . ان دٌىامكٍت انحشكت انداوبٍت نهمشكبت 

ومخغٍشاث انحانت عهى بعضها انبعض  ت اثىاء سٍشها. كما ان حاثٍش هزي انباسامخشاث انمشكب حخاثش بخغٍش عذد مه انبشامخشاث

فً هزا انبحث حم اقخشاذ ومىرج عصبً نهخىبؤ بانقىة انداوبٍت انمىثشة عهى انحشكت انداوبٍت نهمشكبت  ححكمها علاقاث لاخطٍت.

 اثىاء سٍشها.
 

 نهمشكباث , انشبكاث انعصبٍت.                  كهماث مفخاحٍت:  دٌىامٍكٍت انمشكباث, انحشكت انخطٍت 

 
 

 
1-Introduction  

The use of computer simulation of real systems has witnessed an increase in demand when 

these systems are tested whether they are plants, airplanes or vehicles etc. Computer simulation is 

now gaining ground because the traditional methods of testing are costly as well as risky, and take a 

long time to prepare. Furthermore, with simulation it is easy to change and modify the sample 

system and study all design possibilities, operation conditions, and the system response so that the 

designer can take the appropriate decision on the performance of the system components. Thus 

mathematical models are realized which are both reliable and trustworthy. The mathematical 

models are developedby finding out the relationship between all state variables, taking into 

consideration all changes in the related parameters when operation conditions change affecting the 

system dynamic response.[1] 

Among the fields in which simulation is employed are vehicle manufacturing and testing. A 

vehicle prototype is simulated to test its performance and response to operation conditions on the 

road before it is manufactured, thus avoiding any error in design and getting the best performance 

Dr. Abdullah Dhayea Assi 

Lecturer 

Dean of Technical College/ Mussaib 



Journal of Kerbala University , Vol. 13 No.4 Scientific . 2015 
 

178 

when it is manufactured later. No doubt, this requires advanced mathematical models which 

describe the vehicle dynamics as accurately and realistically as possible. 

A vehicle undergoes three types of motion. They are longitudinal, lateral and normal. They can 

be studied collectively or separately, in the latter case, the subject is simplified and acceptable 

results are obtained [18].  

This paper is concerned with developing a model for vehicle lateral motion. Most literature on 

vehicle lateral motion depends on linear model [2-5]or on simplified nonlinear one [6-9]. These 

models are built on a specified operation condition and cannot be relied on when any vehicle 

parameter is changed. The lateral force generated duringvehicle lateral motion depends on and is 

affected by several parameterssuch as air pressure in the tires, normal load, coefficient of friction 

between vehicle tires and the road, slide slip angle and vehicle velocity[10]. 

The large number of variables affecting vehicle lateral motion as well as the nonlinear relations 

connecting them makes it difficult to create a simulation of the vehicle lateral motion using the 

traditional mathematical models such as partial differential equations and empirical equations. 

Many attempts have been made to establish mathematical relations to describe the relation 

between lateral motion and one of the parameters such as tire pressure, coefficient of friction and 

normal load [11-12]. 

The motivation of this work is the most researches which studied the relation between variables 

affecting vehicle lateral motion explain it through performance curves without trying to build a 

complete mathematical model to describe vehicle lateral motion [13-16]. 

The fundamental essence of this research is to build a model for lateral force using neural 

network. This model covers all variables affecting vehicle lateral motion such as tire pressure, 

normal load, coefficient of friction between the vehicle and the road, slide slip angle and vehicle 

velocity. 

The neural network system was learned to calculate the lateral force through learning the data 

published in the researches on the behavior of the force under various parameters during vehicle 

lateral motion. The dynamic response to side  velocity and yaw rate under different operation 

conditions was studied and the results are compared with those obtained from linear model. The 

results show the nonlinear relations between lateral force and a number of compound parameters.  

The remainder of this paper is organized as follows: Section two is a description of the 

mathematical model of the vehicle model. In section three, the proposed of neural network topology 

for calculating lateral force is derived. Simulations results of the neural network modelling are 

presented in section four and the conclusions are drawn in section five. 

 

2- Mathematical Vehicle Model: 

The model used in this work describes vehicle lateral dynamics in a turn lane, which is 

obtained from the bicycle model, shown in figure (1). The two-dimensional model with linear tire 

characteristics of the four wheels vehicle behavior can be described by the following differential 

equations [10]. 
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The equations of motion are formed using figure (1) [  1  ] 
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For linear model of lateral forces is given  
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The sideslip angles are calculated by the following equations 
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But the production of the lateral force based on neural network will be discussed in next section is 

function of ( VNPr ,,,,  ). 

The input of the lateral motion model is the front steer angle f  . The value of steer angle must take 

into consideration the maximum limit of the desired yaw rate for certain value of forward speed. At 

given vehicle velocity there is a minimum radius of maneuver that the vehicle can be turned without 

slipping or overturning.  

 

3-Model of the lateral force based on neural network 

    The feed-forward neural is used to build lateral force model (NLF). The structure of this model is 

shown in figure (2), where a multi-layer perceptron with two hidden layers model is used [17].The 

nodes of input, hidden and output layers are highlighted and the outputs lateral force. 

The training of the (NLF) is performed off-line depending on the training data come from published 

results [10-16].These relations are presented in the form of performance curves and not in 

mathematical or empirical relations because it is difficult to build a mathematical model which 

combines together. 

 

 

 
 

Figure (1) bicycle model and vehicle parameters 
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In this work,  the inflation pressure of tire, normal load, coefficient of friction between the tires 

and road, sideslip angle and vehicle velocity are input data of the (NLF).The mathematical analysis 

of the NLF is cleared as follow: 

Consider the general j
th

 neuron in the first hidden layer. The inputs to this neuron consist of an 

i– dimensional vector, where i is the number of the input nodes. jUb  is the weight vector for the 

bias of  first hidden layer that is set equal to -1 to prevent the neurons quiescent. The output of the 

first hidden layer is calculated as[   ] 

j

nh

i

ijij UbbiasZUnet 
1

1                                                                          …(5) 

where nh is the number of the hidden nodes Z is the input vector  ],,,,[ uNPZ r  . 

Next the output of the neuron j is calculated as the continuous sigmoid function of the jnet  as: 

j = 1
1

2
1



 jnet

e
                                                                                          …(6) 

For second hidden layer, also the output is calculated as the continuous sigmoid function of the 

knet2  as 

k

Nh

j

jkjk VbbiasVnet 
1

2                                                                          ...(7) 

k = 1
1

2
2

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e
                                                                                   …(8) 

Figure (2) The multi-layer perceptron neural network of the direct neural 

controller. 
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Once the outputs of the hidden layers are calculated, they are passed to the output layer. In the 

output layer, the linear neuron is used to calculate the weighted sum (netol) of its inputs. 

lnet  = 
l

Nh

k

klk WbbiasW 
1

                                                               …(9) 

where lkW  is the weight between the second hidden neuron k  and the output neuron. bW  is the 

weight vector for the bias of  the output neuron. The linear neuron, then, pass the sum ( lnet ) 

through a linear function of slope 1 as: 

)( ll netoLO                                                                                             …(10) 

The output of this neural solution is the lateral force FNL.   

The pattern of neural network output 
LFN is compared with the pattern of actual output LF and the 

weights are adjusted by the supervised back-propagation training algorithm until the pattern 

matching occurs, i.e., the cost function (E) becomes acceptably small. 

The cost function (E)  is  the sum of the square of the differences between the actual output LF and 

neural network output 
LFN and given by equation (11) [18]: 
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        where np is the number of patterns. 

The adaptation equations of the direct neural controller‟s weights are shown below: 
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The algorithm of the (NLF)    is carried out using MATLAB version 2012. 

A training set of 378 patterns has been used with a learning rate of 0.1 at different drive 

conditions (velocity, tire inflation pressure, slip angle and of friction between the tires and road). 

After 25 epochs, the output of the neural network is approximated to the actual output (lateral force) 

as shown in figure (3). The cost function (E) is equal to 5.5 e
-5

 for excellent learning of (NLF) as 

shown in figure (4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-Result and Discussion  

The model of lateral motion which is used in the simulation was built by combining the 

equations of motion with neural model to calculate the lateral force. A neural network algorithm of 

the lateral force with Range Kutta method for the solutions of differential equations of lateral 

motion are programmed using Matlab language. Using the numerical values of the vehicle listed in 

Appendix (A), the response of lateral motion to rapid changes in the front steer angle is calculated. 

The neural model which includes nonlinear relations between compound variables has been 

tested against the linear model  

Figure (5&6) show the dynamic response of the side velocity and yaw rate at various vehicle 

velocities  

From these figures, it is seen that as the velocity increases, the difference between the linear 

and neural models increases because of the increase in nonlinear effect between the variables of 

neural model. 

The linear model is incapable of showing the effect of various vehicle velocities on dynamic 

response during its travel. On the other hand, the neural model can take into consideration all the 

changes in variables and their effect on some of them, thus this model shows response closer to 

reality.To validate the performance of the neural model of vehicle lateral motion, it was tested when 

changes took place in the compound parameters such as variation in tire pressure, normal load on 

tires and variation in coefficient of friction the tire and the ground. The simulation was carried out 

at constant speed of 70 km/h.  

The figure (7) shows how the dynamic response of the side velocity and yaw rate changes with 

change in vehicle tire pressure. The less pressure in tire, the less stable the vehicle is as it turns a 

curve and it will slide off.  

The coefficient of friction between the tire and the road effects on the dynamic response of the 

side velocity and yaw rate are illustrated in Figure (8).It can be seen that as the coefficient of 
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friction decreases, vehicle slipping increases because of decrease in the cohesion between the tire 

and the ground.  
 

The magnitude of normal load exerted on the tire plays a major role in the stability of the 

vehicle on the road. As the normal load increases, the cohesion between the tire and the ground 

increases. This is illustrated in figures (9). From this figure, it can be seen that as the normal load 

decreases, the vehicle lateral motion increases, the stability of the vehicle on the road decreases. 
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5-Conclusion 

1-A new neural network based program for lateral motion has been created to predict lateral force. 

The system takes into consideration a number of parameters which affect the vehicle behavior 

during its lateral motion the neural model is learnt to calculate lateral force. The relation 

between the parameters and lateral force is nonlinear one therefore this neural model can be 

considered nonlinear model. 

2- The results show that the proposed neural model for lateral motion is capable of predicting 

dynamic response for yaw rate, side velocity of the vehicle when tire pressure, normal load, 

coefficient of friction and vehicle velocity change. 

3- The results show also that the behavior of nonlinear model is almost similar to that of linear one 

the other parameters are fixed but with increase in velocity, deviation and the difference 

between the two responses become clear  
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Appendix (A) 

List of symbols. 

 
Symbol Description Value Unit 

A Length from mass center to front axle 1 m 

B Length from mass center to rear axle 1.5 m 

Cf Front cornering coefficient (linear model) 55000 N/rad 

Cr rear cornering coefficient (linear model) 45000 N/rad 

I Mass moment of inertia  1500 Kg m2 

M Vehicle mass 1000 Kg 

R Yaw rate - Rad/sec 

V Vehicle velocity 10 m/sec 

V side velocity - m/sec 

f Front steering angle - rad 

 


