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Abstract 
    The purpose of the present paper is to introduce and investigate  new classes of Separation 

Axioms called Associated Separation Axioms by using the concepts of rb-open and  Drb-sets. 

Several characterizations and fundamental properties concerning Drb-sets and Associated 

Separation Axioms are obtained. Furthermore, the relationships between this Associated 

Separation Axioms and other  types of Separation Axioms are also discussed. 

 الملخّص
سض البحث الحالي أى يقدّم ويدزس أصٌاف جديدة هي بديهياث الفصل سويج بديهياث الفصل الوسافقت وذلك باسخعوال إىّ غ

. قدهج وأثبخج عدّة خىاص وهويزاث أساسيت حخعلق بالوجوىعاث  Drbوهجوىعاث   rb -هفاهين الوجوىعاث الوفخىحت هي ًىع 

وبديهياث الفصل الوسافقت . علاوة على ذلك ،دزسج وًىقشج  العلاقاث بيي هرٍ  Drb وهجوىعاث  rb–الوفخىحت هي ًىع 

 الأًىاع  هي بديهياث الفصل .
 

 
Introduction 

    The notion of Regular closed sets are introduced and studied recently by Stone [1].Levine, [2] 

initiated the study of generalized closed sets in topological spaces in1970. Palaniappan and Rao 

[3]and Sharmistha Bhattacharya [4] , introduced and investigated  regular generalized Closed sets. 

b-closed sets  have been introduced and investigated by Andrijevi’c [5],[6] and [7] . The notion of 

regular b-Closed (briefly rb-Closed) sets is introduced and studied recently by Nagaveni and 

Narmadha [8],[9] and [10]. Al- Omari and Noorani [11] investigated the Class of generalized         

b-Closed sets and obtained some of its fundamental properties. In 1982, Tong [12] introduced the  

notion of  D-sets and used these sets to introduce a separation axiom D1 which is strictly between T0 

and T1 . By using the concept rb-open We introduce and study the concepts of a new type of  

Associated Separation Axioms is called Drb-Sets Associated Separation Axioms .  

 

1.Preliminaries 
     Throughout this paper, a space X means a topological space on which no separation axioms are 

assumed unless otherwise mentioned, for a subset A of a space (X,τ), Cl(A) and Int(A) denote the 

Closure of A and interior of A, respectively. A
C
 denotes the complement of A in X .  A subset A of 

a space (X, τ) is called  a regular open set if A= int (Cl(A)) and a regular Closed set if A= Cl(int 

(A)), The intersection of all regular closed sets of X containing A is called the regular closure of A 

and is denoted by rCl(A).  b-open [5] if A ⊂ Cl(int(A))∪int (Cl(A)). The complement of a b-open 

set is said to be b-Closed. The intersection of all b-Closed sets of X containing A is called the        

b-Closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called 

b-interior of A and is denoted by bInt(A). A subset A of a space X is said to be generalized Closed 

(briefly g-Closed) if Cl (A)  U whenever A U and U is open in X [2], A is called              

regular-generalized closed (briefly rg-closed) if Cl (A)  U whenever A  U and U is regular-open 

in X [3], A is called generalized b-Closed (briefly gb-Closed) if bCl (A)  U whenever A  U and 

U is open in X [11], A is called regular b-Closed(briefly rb-Closed)  if rCl (A)  U whenever A U 

and U is b-open in X [9] . The complement of g-closed (rg-closed, gb-closed,rb-closed )is called    

g-open (rg-open, gb-open, rb-open). The family of all rb-open (rb-Closed) subsets of a space X is 
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denoted by RBO(X), RBC(X)) and the collection of all rb-open(rb-closed) subsets of X containing a 

fixed point x is denoted by RBO(X,x)(RBC(X,x)), the end of the proof is denoted by .   

 

Definition 1.1[12]. A subset A of a topological space (X, τ ) is called D-set if there are two open 

sets U and V such that U ≠X and A=U -V .  

 

Definition 1.2. A point x  X which has only X as the rb-neighborhood is called a rb- neat point. 

 

Definition 1.3. A topological space (X, ) is rb-symmetric if for x and y in X , x   Clrb({y}) 

implies y  Clrb({x}). 

 

Lemma 1.4.[10]. For subsets A and A (  ) of a space (X ,τ ) , the following are hold: 

(i) If A ⊂ B, then Clrb(A) ⊂ Clrb(B) . 

(ii) Clrb (∩{A :  ∈ }) ⊂ ∩{Clrb (A ) :  ∈ }. 

(iii)  Clrb (⋃{A :   }) =⋃ {Clrb (A ) :   }. 

 

Definition 1.5. Let A be a subset of topological space (X,), The rb−kernel of A, denoted by 

Kerrb(A) is defined to be the set Kerrb (A) = ∩{H  RBΟ (X ,τ ): A  H}. 

 

Lemma 1.6.  Let (X,τ ) be a topological space and x  X, then Kerrb (A) = {x  X : Clrb ({x}) ∩ A 

≠ }. 

Proof: Let x  Kerrb (A) and suppose Clrb ({x}) ∩ A = . Hence x  [Clrb ({x})]
C 

which is a 

rb−open set containing A. This is contradiction, since x  Kerrb (A).  

Consequently,
 
Clrb ({x}) ∩ A ≠  . Next, let Clrb ({x}) ∩ A ≠  and suppose that x  Kerrb (A);Then  

there exists an rb-open set H containing A and x  H. Let y  Clrb ({x}) ∩ A .
 
Hence, H is a rb-

neighborhood of y which x  H.  This contradiction  with x  Kerrb (A)
 


 

 

Lemma 1.7. Let (X ,τ ) be a topological space and x  X , then y  Kerrb ({x}) if and only if x  

Clrb ({y}). 

Proof: Suppose that y  Kerrb ({x}), then there exists an rb -open set G containing x such that y  

G; therefore, we have x  Clrb ({y}). The proof of converse case can be done similarly 

 

Lemma 1.8. The following statements are equivalent for any points x and y in a topological space 

(X ,τ ) : 

(i) Kerrb ({x}) ≠ Kerrb ({y}) . 

(ii) Clrb ({x}) ≠ Clrb ({y}) . 

Proof: (i)  (ii) Let Kerrb({x}) ≠ Kerrb({y}) ,then there exist x0 ∈ X such that x0 ∈ Kerrb({x}) and 

x0  Kerrb({y}), since x0 ∈ Kerrb({x}) it follows that {x}∩CLrb{x0} ≠ φ , from this we get  x ∈ 

CLrb({x0}), by x0  Kerrb({y}), we have {y} ∩ CLrb({x0}) = φ, since x ∈ CLrb({x0}), CLrb({x}) ⊂ 

CLrb({x0}) and {y} ∩ CLrb({x}) = φ; therefore CLrb({x}) ≠ CLrb({y}).  

(ii)  (i) Suppose CLrb({x}) ≠ CLrb({y)} , then there exist  y ∈ X such that  y∈ CLrb({x}) and y ≠ 

CLrb({y}), then ther exist  rb−open set containing x0 and therefore x but not y , namely, y  

Kerrb({x}),hence Kerrb({x}) ≠ Kerrb({y}) 

 

Definition1.9. A topological function f : (X,) → (Y,) is called  rb−Closed if the image of every 

rb−Closed subset of X is rb−Closed in Y. 

 

Definition 1.10. A net  n  in a topological space  (X,) is called rb-converges  to  x  if  n  is 

eventually  in every rb-open set containing  x .  
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Lemma 1.11. Let x and y be any two points in X such that every net in X 

rb−converging to y rb−converges to x, then x  Clrb({y}). 

Proof: suppose x = y for each   , then {x}  is a net in Clrb({y}), 

since {x} rb−converges to y, then {x} rb−converges to x and this implies that x  

Clrb({y}) 

 

2. Drb-sets and associated separation axioms 

Definition 2.1. A subset H of a topological space (X, ) is called a Drb- set  if there are two sets G1 , 

G2  RBO(X,)   such that G1 ≠ X and H=G1−G2. 

Example 2.2. Let X = {a, b, c}. τ = {X, ϕ, {a}, {b}, {a, b}, {b, c}}and A = {a,b}, then A is Drb- set. 

Definition 2.3. A topological space (X,  ) is said to be 

(i) rb-D0  if for any distinct pair of points x and y of X there exist a Drb-set  of X containing x but 

not y or a Drb-set of X containing y but not x, 

(ii)  rb-D1  if for any distinct pair of points x and y of X there exist a Drb-set  of  X containing x but 

not y and a Drb-set  of X containing y but not . 

(iii) rb-D2  if for any distinct pair of points x and y of  X there exists disjoint Drb-sets  G and H of X 

containing x and y, respectively. 

(iv) rb-T0  if for any distinct pair of points x and y in X, there exist rb-open  set U in X containing x 

but not y or  rb-open  set V in X containing y but not x. 

(v) rb-T1  if for any distinct pair of points x and y in X, there exist rb-open set U in X containing x 

but not y and rb-open set V in X containing y but not x . 

(vi) rb-T2  if for any distinct pair of points x and y in X, there exist rb-open  sets U and V in X 

containing x and y, respectively, such that U ∩V=∅. 

 

Remark 2.4. the following diagram explain  relationship between the above definitions in (2.3)  

       

 

 

 

 

 Example 2.5.  Let  X = {a, b, c}. τ = {X, ϕ, {a}, {b}, {a, b}} is rb-D0  but not  rb-D1  . 

 

Theorem 2.6.  In a topological space the following statements are true: 

(i) (X,) is rb − T0 if and only if it is rb − D0. 

(ii) (X,) is rb – D2 if and only if it is rb – D1. 

Proof: (i)  The sufficiency is stated in Remark (2.3). 

Necessarily,  let X be rb − D0, then for each distinct pair of points x, y  X, at least one of  x, y, say 

x belongs to  Drb-set H but y  H , let H= H1 − H2 where H1 ≠ X and H1, H2  RBO(X, τ) , then x  

H1 and for y  H we have two cases : first  x  H1 but y  H1 , second  y  H2 but x  H2. Hence X 

is rb − T0 . 

(ii) sufficiency, Clearly in Remark (2.2) . 

Necessarily , suppose X is rb − D1, then for each distinct pair x, y  X, we have Drb-sets U,V such 

that x  U ,y  U and y  V , x  V . Let U =H1 – H2  and V = G1 – G2 and H1 , H2 ,G1 ,G2  

RBO(X, τ). From x  V, it follows that either x  G1 or x  G1 and x  G2 . We have two cases 

separately :first  x  G1 . By y  U we have two subcases: 

(a) y H1 . From x  H1 − H2, it follows that x  H1 − (H2  G1) and by y  G1 – G2 we have  y  

G1 − (H1  G2). Therefore (H1 − (H2  G1)) ∩ (G1 − (H1  G2) = φ. 

(b) y  H1 and y  H2. We have x  H1 − H2, y  H2 ,(H1 − H2) ∩ H2 =φ. 

rb-T2   rb-T1  rb-To  

rb-D2 

  

rb-D1 

  

rb-Do  
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(2) x  G1 and x  G2. We have y  G1 – G2 , x  G2  ,(G1 – G2) ∩ G2 = φ ;therefore, X is rb − D2 

 

Theorem 2.7. A topological space (X,  ) is rb-T0 if and only if for each pair of distinct points x, y 

of X, CLrb({x}) ≠ Clrb({y}). 

Proof: Sufficiency. Suppose that x, y  X, x ≠ y and Clrb({x}) ≠ Clrb({y}), 

let z  X such that z Clrb({x}) but z  Clrb({y}). We Claim that x  Clrb({y}), if x  Clrb({y}) 

then Clrb({x})  Clrb({y}), this contradicts with 

z  Clrb({y}), consequently x belongs to the rb-open set [Clrb({y})]
C
 to which y does not belong. 

Necessity. Let (X,  ) be an rb-T0 space and x, y be any two distinct points of X, there exists an rb-

open set G containing x or y, then G
C
 is an rb-Closed set which x  G

C
 and y  G

C
, since Clrb({y}) 

is the smallest rb-Closed set containing  y (Corollary 1.1), Clrb({y})  G
C
, and  x  Clrb({y}), hence 

Clrb({x}) ≠ Clrb({y}) 

 

Theorem 2.8. Let (X,  ) be an rb−T0 topological space ; then (X,  ) is rb-D1 if and only if  has no 

rb-neat point. 

Proof:  Sufficiency , since X is rb-D1, so each point x of X is contained in a Drb-set H=G1−G2 and 

thus in G1. By definition G1 ≠ X . This implies that x is not a rb− neat point. 

Necessity ,if X is rb − T0 ;then for each distinct pair of points x and y  X, at least one of them, x 

has an rb-neighborhood H containing x and not y . Thus H which is different from X is an Drb-set . 

If X has no rb-neat point ; then y is not a rb-neat point . This means that there exists an rb-

neighborhood G of  y such that G ≠ X . Thus y  G −H but not x and G –H is an Drb-set. Hence X is 

rb-D1 

 

Theorem 2.9. For a topological space (X,  ), the following properties are equivalent: 

(i) (X,  ) is rb-symmetric . 

(ii)  For each x ∈ X , {x} is rb-Closed . 

(iii)  (X,  ) is rb-T1  . 

Proof : (i)(ii) let x  CLrb({y}) but y  CLrb({x}). This means that [CLrb({x})]
C
 contains y, this 

implies that CLrb({y}) is a subset of [CLrb({x})]
C
, now [CLrb({x})]

C
 contains x this is a 

contradiction.  

Suppose that {x} G  RBO(X) but CLrb{x} is not a subset of G, therefore CLrb{x} and G
C
 are not 

disjoint, let y belongs to their intersection, now we have x CLrb{y} which is a subset of G
C
 and x 

 G, but this is a contradiction. 

 (ii)(iii) suppose {x} is rb-Closed for every x  X, let x, y  X with x ≠ y .Now x ≠ y implies y  

{x}
C
, hence{x}

C
 is an rb-open set containing y but not x, similarly {y}

C
 is an rb-open set containing 

x but not y. Accordingly X is an rb-T1 space. 

(iii)(i) Suppose that y  CLrb({x}), then, since x ≠ y, by (iii) there exists an rb-open set G 

containing x such that y G and hence x  CLrb({y}). This shows that x  CLrb({y}) implies y  

CLrb({x});therefore, (X,  ) is rb-symmetric 

 

Theorem 2.10. The following four properties are equivalent: 

(i) X is rb-T2 . 

(ii)  Let x  X . For each y ≠ x, there exists an rb−open set H such that x  H and y  CLrb(H) . 

(iii) For each x  X , ∩{CLrb(H) : H RBO(X,  ) and x  H} = {x}. 

(iv)  The diagonal  = {(x, x) : x X} is rb−Closed in X × X}. 

Proof: (i)  (ii) Let x  X and y ≠  x ; Then there are disjoint rb−open sets H and G such that        

x  H and y  G . Clearly, G 
C
 is rb−Closed, Clrb(H)  G

C
, y  G

C
 and therefore y  Clrb(H) . 

(ii)  (iii) If y ≠ x, then there exists an rb−open set H such that x  H and y  Clrb(H) . So y ∩ 

{Clrb(H) : U  RBO(X,  ) and x  H}. 
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(iii)  (iv) We prove that 
C
 is rb−open , let (x, y)    ; then y ≠ x and since {CLrb(H) : H 

RBO(X,  ) and x  H} = {x},there is some H  RBO(X,  ) with x  H and y  Clrb(H) . Since    

H ∩ (Clrb(H))
C
 =  , H × (Clrb(H))

C
 is an rb−open set such that (x, y)  H × (CLrb(H))

C
  

C
 . 

(iv) (i) If y ≠ x ; then (x, y)   and thus there exist rb−open sets H and G  such that                  

(x, y)  H ×G and (H ×G ) ∩  =  . Clearly, for the rb−open sets H and G we have : x  H, y  G 

and H  G =   

 

3. Applications 

Definition 3.1. A topological function f: (X, τ1)  (Y, 2) is called  

(i) rb− continuous if  f 
−1

(H) is rb− Closed in (X, τ1) for every Closed set H of (Y,2) . 

(ii) rb− continuous if  f 
−1

(G) is rb− open in (X, τ1) for every open set G of (Y,2) . 

(iii)  rb− irresolute if f
 −1

(H) is rb- Closed in(X, τ1) for every rb−Closed set H in (Y, 2). 

(iv) rb− irresolute if f
 −1

(G) is rb−open in(X, τ1) for every rb−open set G in (Y, 2). 

Theorem 3.2. If topological function f : (X, τ)→(Y, 2) is a rb-continuous surjective function and H 

is a D-set of (Y, 2 ); then the inverse image of H is a Drb-set of (X, τ1).  

Proof: Let G1 and G2 be two open sets of (Y, 2 ) and H=G1 – G2 be a D-set and G1 ≠ Y. We have f
 

−1
(G1) and f 

−1
(G1)  RBO(X, τ1) such that  f 

−1
(G1) ≠ X . Hence f 

−1
(H)=f 

−1
(G1 − G2)= f 

−1
(G1)− f 

(G2) , this is implies to  f 
−1

(H) is an Drb-set 

Theorem 3.3. If topological function f : (X, τ1) → (Y, 2) is a rb-irresolute surjection and H is a 

Drb-set in Y; then the inverse image of H is an Drb-set in X.  

Proof: Let H be a Drb-set in Y; then there exist rb-open sets G1 and G2 in Y such that H= G1− G2 

and G1 ≠ Y. Since f is rb-irresolute; then f
 −1

(G1) and f 
−1

(G1)  RBO(X, τ1)  and since G1 ≠ Y, we 

have f
 −1

(G1) ≠ X. Hence f
 −1

(H) = f
 −1

(G1− G2)  = f
 −1

(G1)− f
 −1

(G2)   is an Drb-set 

Theorem 3.4. If f : (X, τ1) → (Y, 2) is an rb-continuous injective  function and (Y, 2) is a D1 

−space ; then (X, τ1) is a rb−D1−space. 

 Proof: Let Y is a D1−space and x , y be any pair of distinct points in X, since f is injective and Y is 

a D1−space; then there exists D-sets Gx and Gy of Y containing  f(x) and f(y) respectively such that 

f(x)∉ Gy and f(y)∉ Gx. By theorem (4.1) f 
−1

(Gx) and f 
−
(Gy) are Drb-sets in X containing x and y 

respectively such that x∉ f 
−1

(Gy) and y∉ f
−1

(Gx); therefore, X is a rb−D1−space 

Theorem 3.5. If f : (X,τ1)→ (Y,2) is rb-irresolute and injective and (Y,2)  is rb−D1 space; then 

(X,τ1) is rb−D1. 

 Proof: Assume (Y,2)  is rb-D1 and  f is injective rb−irresolute, let x , y be any pair of distinct 

points of X. Since f is injective and Y is rb-D1 space, then there exists Drb-sets Gx and Gy of Y 

containing f(x) and f(y) respectively such that f(y)∉ Gx and f(x)∉ Gy. By theorem 4.2 , f 
−1

(Gx)  and 

f 
−1

(Gy) are Drb−sets in X containing x and y respectively. Hence X is rb-D1 space  

Theorem 3.6. A topological space (X, τ1) is a rb−D1 if  for each pair of distinct points  x , y  X; 

then there exists a rb-continuous surjective topological function f: (X,τ1) → (Y,2) where (Y,2) is a 

D1− space such that f(x) and f(y) are distinct. 

Proof: Let x and y be any pair of distinct points in X, from hypothesis, there exists an rb-continuous 

surjective function  f of  a space (X, τ1) onto  a D1- space (Y,2) such that f(x) ≠ f(y). Hence there 

exists disjoint D-sets Gx and  Gy in Y such that f(x)  Gx and f(y) Gy. Since f is rb-continuous and 

surjective, by theorem 4.1 then f 
−1

(Gx) and f 
−1

(Gy)are disjoint Drb−sets in X containing x and y 

respectively. Hence (X, τ1) is an rb-D1-space 

Theorem 3.7. A topological space (X,1) is rb-D1 if and only if for each pair of distinct points x , 

y∈ X, there exists an rb-irresolute surjective topological function f: (X,τ1) → (Y,1),where (Y,1) is 

rb- D1 space such that f(x) and f(y) are distinct.  

Proof: Necessity , for every pair of distinct points x , y ∈ X, it suffices to take the identity function 

on X.  
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Sufficiency, let x ≠ y ∈ X. By hypothesis ,there exists an rb-irresolute, surjective function from X 

onto an rb-D1 space such that f(x) ≠ f(y). Hence there exists disjoint Drb− sets Gx, Gy ⊂ Y such that 

f(x) ∈ Gx and f(y) ∈ Gy, since f is rb-irresolute and surjective, by theorem 4.2 , f 
−1

(Gx) and f 
−1

(Gy) 

are disjoint Drb-sets in X containing x and y respectively; therefore, X is rb-D1 space 

 

Theorem 3.8. If a topological function f : (X, τ1 ) → (Y, τ2 ) is injective, contra rb-continuous and 

Y is a Urysohn space, then X is rb-T2. 

Proof: Let x,yX with x ≠ y,since f is injective , then f(x) ≠ f(y),since Y is a Urysohn space, there 

exists open sets G1 and G2 in Y such that f(x) G1, f(y)G2 and Cl(G1) ∩CL(G2) = Ø , since f is 

contra rb-continuous, by Theorem 4.2 there exists rb-open sets A and B in X such that xA, yB 

and f(A)  CL(G1), f(B)  CL(G2), then f(A) ∩ f(B) = Ø and so f(A∩B)=Ø ,this implies that A∩ B 

= Ø and hence X is rb-T2 

 

Theorem 3.9. Let f be a topological continuous function from a space (X,1) to an rb-T1-space (Y 

,2) , then f has an rb-strongly Closed graph. 

Proof: Let (x,y)  X ×Y with (x,y)  G(f). This means that f(x) ≠ y,and since Y is an rb-T1-space, 

there exists rb-open sets V  Y such that y  CL(V) and f(x)  CL(V), that is, f(x)  Y −CL(V), by 

continuity of f at x, there exists U open set in a space X contain x such that f(U)  Y −CL(V), this 

implies that f(U) ∩ CL(V)= and it follows that (x,y)  U ×CL(V) with (U ×CL(V)) ∩ G(f)=, 

Thus G(f) is rb-strongly Closed 

 

Definition 3.10. Let (X, ) be a topological space, we define the  rbr-h(X,  ) = {f | f : (X,  )  (X, 

 ) is a rb-irresolute bijection, f
−1

 : (X, )  (X,  ) is rb-irresolute}. 

 

Theorem 3.11. Let (X, ) be a topological space, the collection rbr-h(X,  ) forms a group under the 

composition of  functions. 

Proof : If f : (X,  )  (X, 1) and g : (X, 1 )  (X, 2) are rbr homeomorphisms, then clearly the 

composition g  f : (X,  )  (X, 2) is a rbr-homeomorphism, it is obvious that for a bijective     

rbr-homeomorphism  f : (X,  )  (X, 1), f
−1

 : (X, 1)  (X, ) is also an rbr-homeomorphism and 

the identity I : (X,  )  (X,  ) is a rbr-homeomorphism. A binary operation  : rbr-h(X, ) × rbr-

h(X,  )  rbr-h(X,  ) is well defined by (a, b) = b  a, where a, b  rbr-h(X,  ) and b  a is the 

composition of a and b. By using the above properties, the set rbr-h(X,  ) is a group under 

composition of functions 

 

4.rb− R0 spaces and rb − R1 spaces 

Definition 4.1. A topological space (X ,τ ) is said to be: 

(i) Sober rb -R0 if ∩x X Clrb ({x}) =  . 

(ii) rb -R0 space  if every rb-open set contains the rb-Closure of each of its singletons . 

(iii) rb -R1 if for x , y in X with Clrb ({x}) ≠ Clrb ({y}) , there exist disjoint rb-open sets G and H 

such that Clrb ({x}) is a subset of G and Clrb ({y}) is a subset of H . 

 

Theorem 4.2. A topological space (X ,τ ) is sober rb -R0 if and only if 

Kerrb ({x}) ≠ X for every x  X . 

Proof: Suppose that the space X be sober rb -R0 and  that there is a point  y in X such that Kerrb 

({y}) = X , then y  H which H is some proper rb-open subset of X , this implies that y  ∩xX Clrb 

({x}) , but this is a contradiction . 

Consequently , Kerrb({x}) ≠ X for every x  X . If there exists a point y in X such that  y ∩x X 

Clrb ({x}) , then every rb-open set containing  y must contain every point of X , this implies that the 
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space X is the unique rb-open set containing y , hence Kerrb ({y}) = X which is a contradiction , 

therefore, (X ,τ ) is sober rb -R0 

Theorem 4.3. If the topological space X is sober rb -R0 and Y is any topological space , then the 

product X × Y is sober rb -R0 . 

 

 

Proof: We must  showing that ∩(x, y) X ×Y Clrb ({x, y}) =  , we have   ∩(x, y) X ×Y Clrb ({x, y})  

∩(x, y)X ×Y (Clrb ({x}) × Clrb ({y}))= ∩x X Clrb ({x}) × ∩yY Clrb ({y})   × Y =  

 

Theorem 4.4. If a topological  function f : (X,) → (Y,) is an bijective and rb-Closed function and 

X is sober rb−R0 , then Y is sober rb−R0 . 

 Proof: Is Clearly from definitions (4.1) and (1.9)  

 

Theorem 4.5. If a topological space (X,) is rb – R1 ,then (X,) is rb – R0 topological space. 

Proof: Let x  G and G  RBO(X,) , if y  G ,then since x  Clrb({y}), Clrb({x}) ≠ Clrb({y}) , 

hence there exist Hy  RBO(X,) such that  Clrb({y} Hy and x  Hy ,  which implies y  

Clrb({x}), thus Clrb({x})  G, therefore, X is rb − R0  

 

Theorem 4.6.A topological space (X,) is rb−R1 if and only if for x , y in (X,) with Kerrb({x}) ≠ 

Kerrb({y}),there exist disjoint rb−open sets G and H such that Clrb({x})  G and Clrb({y})  H . 

Proof: It follows from above lemma and definition (4.1) 

 

Theorem 4.7. A topological space (X,) is rb − R0 if and only if for any element  x, y  (X,) and 

Clrb({x}) ≠ Clrb({y}), then Clrb({x}) ∩ Clrb({y}) = φ. 

Proof: Necessity: let (X,) is rb − R0 and x, y  X such that Clrb({x}) ≠ Clrb({y}), then there exist 

x0  Clrb({x}) and  x0  Clrb({y}) or x0  Clrb({y}) and x0  Clrb({x}), there exists G  RBO(X, τ) 

such that y  G and x0  G ,then x  G  ,therefore, we have  x  Clrb({y}) , thus x  [Clrb({y})]
C
  

RBO(X, τ), which implies Clrb({x})  [Clrb({y})]
C
 and Clrb({x})∩Clrb({y}) = φ. the proof for 

otherwise is similar. 

Sufficiency : let x  G such that G  RBO(X, τ) and  y  G , this mean y  G
C
 , then x ≠ y and x  

Clrb({y}) ,this shows that Clrb({x}) ≠ Clrb({y}) , from assumption, Clrb({x}) ∩ Clrb({y}) = φ, hence 

y  Clrb({x}),therefore, Clrb({x})  G  

 

Theorem 4.8. A topological space (X,) is rb−R0 if and only if for any two points x, y  X and 

KerClrb({x}) ≠ Kerrb({y}), then Kerrb({x})∩Kerrb({y})= φ. 

Proof:  let (X,) be rb − R0 ,from ( Lemma 4.3) for any two points x, y  X if Kerrb({x}) ≠ 

Kerrb({y}) , then Clrb({x}) ≠ Clrb({y}),by theorem(4.6) we get  Kerrb({x}) ∩ Kerrb({y}) = φ, let x0  

Kerrb({x}) ∩ Kerrb({y}), then x0  Kerrb({x}) and lemma 4.2, implies that x  Clrb({x0}), since x  

Clrb({x}),then by Theorem 4.6 Clrb({x}) = Clrb({x0}). Similarly, we have Clrb({y}) = Clrb({x0}) = 

Clrb({x}), this is a contradiction, therefore, we have Kerrb({x}) ∩ Kerrb({y}) = φ. 

 Conversely :assume  Clrb({x}) ≠ Clrb({y})  for each x, y  X, then by (Lemma 4.3) Kerrb({x}) ≠ 

Kerrb({y}),since Kerrb({x})∩Kerrb({y}) = φ, then Clrb({x})∩ Clrb({y}) = φ, by x0  Clrb({x}),  thus 

implies  x  Kerrb({x0}) and therefore Kerrb({x}) ∩ Kerrb({x0}) ≠ φ ,( by Theorem 4.6) (X,) is a 

rb− R0 space 

 

Theorem 4.9. For a topological space (X,)  The following properties are equivalent: 

(i) (X,) is a rb − R0 space. 

(ii)  For any A ≠ φ and G ∈ RBO(X, τ) such that A∩G ≠ φ, there exist  H ∈ RBC(X, τ) such that 

A∩H ≠ φ and H ⊂ G. 
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(iii)  Any G ∈ RBO(X, τ) ,G = ∪{H ∈ RBC(X, τ) : H ⊂ G}. 

(iv)  Any H ∈ RBC(X, τ), H = ∩{G ∈ RBO(X, τ) : H ⊂ G}. 

(v) For any x ∈ (X,),then Clrb({x}) ⊂ Kerrb({x}). 

Proof: (i) (ii)  Let A be a nonempty set of X and G  RBO(X, τ) such that A∩G ≠ φ, there exists 

x  A ∩ G, since xG and G  RBO(X, τ), Clrb({x})  G, the set H = Clrb({x}), then H RBC(X, 

τ), H  G and A∩H≠φ 

(ii) (iii) Let G ∈ RBO(X, τ ), then  ∪{H ∈ RBC(X, τ) :H ⊂ G}  G, let x0 be any point of G, 

there exists H ∈ RBC(X, τ) such that  x0 ∈ H and H ⊂ G, therefore, we have x0 ∈ H ⊂ ∪{H ∈ 

RBC(X, τ) :H⊂ G} and hence G = ∪{H ∈ RBC(X, τ) :HG}. 

(iii) (iv)  This is obvious. 

(iv)  (v) Let x be any point of X and y  Kerrb({x}),there exists G1RBO(X, τ) such that  x  G1 

and y  G1, then Clrb({y}) ∩ G1 = φ , by (iv) (∩{G RBO(X, τ): Clrb({y})  G}) ∩ G1 = φ , there 

exist G RBO(X,τ) such that  x  G and Clrb({y})  G, hence Clrb({x}) ∩ G = φ and y  Clrb({x}), 

Consequently, we obtain Clrb({x}) Kerrb({x}). 

(v) (i) Let x  G and G RBO(X, τ), assume y  Kerrb({x}), then xClrb({y}) and  yG, this 

implies that Clrb({x})  Kerrb({x})  G, hence (X,)is rb − R0 

 

Corollary 4.10. For a topological space(X,) The following properties are equivalent: 

(i) (X,) is a rb – R0 space . 

(ii) Clrb({x}) = Kerrb({x}) for all x ∈ (X,). 

Proof: (i)(ii) Suppose X is rb−R0 , by Theorem 4.8, Cl({x}) = Kerrb({x}) for all x  X,let y  

Kerrb({x}), then x  Clrb({y}) and by Theorem 4.6  we get Clrb({x}) = Clrb({y}),therefore, y  

Clrb({x}) and hence Kerrb({x})  Clrb({x}), this shows that Clrb({x}) = Kerrb({x}). 

 (ii)(i): This is obvious by Theorem 4.8 

 

Theorem 4.11. For a topological (X,) the following properties are equivalent: 

(i) (X,) is a rb − R0 space. 

(ii) x ∈ Clrb({y}) if and only if y ∈ Clrb({x}), for any points x and y in X. 

Proof: (i) (ii) Let x  Clrb({y}) and y  G RBO(X,), now by hypothesis, x  G , therefore, 

every rb−open set which contain y contains x, hence y  Clrb({x}). 

 (ii)(i) Let x ∈ G and G ∈ RBO(X,), if y G , then x Clrb({y}) and hence y CLrb({x}), this 

implies that Clrb({x}) ⊂ G , hence (X, )is rb−R0, we observed that by Definition 3.7 and Theorem 

4.10 the notions of rb−symmetric and rb − R0 are equivalent 

 

Theorem 4.12. For a topological (X,) the following properties are equivalent: 

(i) (X,)is a rb − R0 space . 

(ii) If S is rb−Closed; then S = Kerrb(S) . 

(iii) If S is rb−Closed and x ∈ S, then Kerrb({x}) ⊆ S 

(iv) If x  (X,), then Kerrb({x})  Clrb({x}). 

Proof: (i)  (ii) If x  S and S RBC(X), thus S
C
 is rb−open and contains x ,since X is rb − R0, 

then Clrb({x})  S
C
 , this mean Clrb({x}) ∩ S = φ and by lemma (2.1)(vii) x  Kerrb(S), therefore, 

Kerrb(S) = S. 

(ii)  (iii) If A  B implies that  Kerrb(A)  Kerrb(B), therefore, it follows from (ii) that Kerrb({x}) 

 Kerrb(S) = S. 

(iii)  (iv) Since x  Clrb({x}) and Cl({x}) is rb−Closed, by (iii) Kerrb({x})  Clrb({x}). 

 (iv) (i) We show the implication by using Theorem 4.10, let x  Clrb({y}), then by Lemma 4.2  y 

 Kerrb({x}), since x  Clrb({x}) and Clrb({x}) is rb−Closed, by (iv) we obtain y  KerClrb({x})  
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Clrb({x}), therefore, x  Clrb({y}) implies that y  Clrb({x}), the converse is obvious and X is rb – 

R0 

 

 

Theorem 4.13. For a topological (X,) the following statements are equivalent: 

(i) (X,) is a rb − R0 space . 

(ii)  If x, y ∈ (X,), then y ∈ Clrb({x}) if and only if every net in X rb−converging to y 

rb−converges to x. 

Proof: (i)   (ii) Let x, y  X such that  y  Clrb({x}), suppose {xα}α Λ is a net in (X,)  such that  

{xα}αΛ rb−converges to y, since y  Clrb({x}), by theorem 4.6 we have Clrb({x}) = Clrb({y}), 

therefore, x  Clrb({y}), this means that {xα}αΛ rb−converges to x, Conversely, let x, y  X such 

that every net in X rb-converging to y rb−converges to x, then x  Cl({y}), by theorem (4.6), we 

have Clrb({x}) = Clrb({y}), therefore, y  Clrb({x}). 

(ii)(i) Assume x and y are any two points of X such that  Cl({x}) ∩Clrb({y}) ≠  φ, let x0∈ 

Clrb({x}) ∩ Clrb({y}), so there exist a net {xα}α∈Λ in Clrb({x}) such that  {xα}α∈ Λ rb−converges to 

x0, since x0 ∈ Clrb({y}), then {xα}α∈Λ rb−converges to y, it follows that y ∈ Clrb({x}). Similarly we 

obtain x ∈ Clrb({y}), therefore, Clrb({x}) = Clrb({y}) and by theorem (4.6), (X,) is rb − R0  
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