On a sub branch of element in a BE-algebra حول الفرع الجزئي للعنصر في جبر-HE

Assist. Lec. Hayder Abbas Dahham University of Kufa /College of Dentistry
Department of Basic sciences
haidera.janabi@uokufa.edu.iq

Abstract

In this paper, we introduce a new notion that we call a sub branch of element $\mathrm{R}(\mathrm{a})$ in a BEalgebra, and we link this notion with notions filter and ideal of BE- algebra, We give some properties of $R(a)$ and we study properties of $R(a)$ in implication algebra, self distributive BEalgebra and transitive BE-algebra. Keywords: Sub branch of element, BE-algebra, self distributive BE-algebra, transitive BEalgebra.

المستخلص: قـمنا في هذا البحث مفهوم الفرع الجزئي للعنصر R(a) في جبر - BE , كما درسنا علاقة هذا المفهوم في مع المرشح و المثالية في جبر- BE . كما أعطينا بعض خو اصه و درسنا خواصه في الجبور الاستتناجية وجبور - BE التوزيعية الذاتية وجبور BE

INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebra and BCIalgebra, the notion of BCI-algebra was a generalization of a BCK-algebra[5,6]. In 1999, W. A . Dudek, connect between deductive system of Hilbert algebra and ideals which introduced by I .Chajda and R. Halas[12]. In 1999, J. Neggers. and H. S. Kim introduced the notion of d-algebra which is another generalization of BCK-algebra[4]. In 2006, H. S. Kim. and Y. H. Kim introduced the notion of BE-algebra and they used the notion of upper sets and give an equivalent condition of the filter in BE-algebra[7]. In 2012, A. Walendziak, introduced the notion of a normal filter in BEalgebra[2]. In 2013, A. Rezaei, A. B. Saeid. and R. A. Borzooei introduced relationship between Hilbert algebra and BE-algebra, and they show that a commutative implicative BE-algebra is equivalent to the commutative self distributive BE-algebra, therefore Hilbert algebra and commutative self distributive BE-algebra are equivalent to the notion of a normal filter in BEalgebra[1].
1.Preliminaries

In this section, we review some basic definitions and notations of BE-algebras, implication algebras, filter and ideals, that we need in our work.
Definition (1.1) [7]:
An algebra ($\mathrm{X}, * ; 1$) of type (2,0) is called a BE-algebra if
1- $\mathrm{x} * \mathrm{x}=1$ for all $\mathrm{x} \in \mathrm{X}$;
2- $x * 1=1$ for all $x \in X$;
3- $1 * x=x$ for all $x \in X$;
4- $x *(y * z)=y *(x * z) \quad$ for all $x, y, z \in X$ (exchange).

Journal of Kerbala University, Vol. 13 No. 3 Scientific . 2015

We introduce a relation " \leq " on X by $\mathrm{x} \leq \mathrm{y}$ if and only if $\mathrm{x} * \mathrm{y}=1$.
A nonempty subset S of X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.
Example (1.2) [7] :
Let $X=\{1, a, b, c, d\}$ be a set with the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

Then $(\mathrm{X} ; *, 1)$ is a BE-algebra.

Proposition (1.3) [1]:

Let X be a BE- algebra and $x, y \in X$. Then
1- $\quad \mathrm{x} *(\mathrm{y} * \mathrm{x})=1$.
$2-\quad \mathrm{y} *((\mathrm{y} * \mathrm{x}) * \mathrm{x})=1$.
Definition (1.4) [8] :
An algebras $(X, *, 1)$ of type $(2,0)$ is called an implication algebra if for all $x, y, z \in X$ the following identities hold:
1- $\quad(x * y) * x=x$;
2- $\quad(x * y) * y=(y * x) * x$;
3- $\quad x *(y * z)=y *(x * z)$.
Proposition (1.5) [13]:
Any implication algebra is a BE -algebra.
Definition (1.6) [7] :
Let $(\mathrm{X} ; *, 1)$ be a BE-algebra and F be a non-empty subset of X . Then F is said to be a filter of X if
1- $1 \in \mathrm{~F}$;
2- $\quad x * y \in F$ and $x \in F$ imply $y \in F$.
Example (1.7) [7]:
Let $X=\{1, a, b, c, d, 0\}$ be a set with the following table:

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then $(X ; *, 1)$ is a BE-algebra, and $F_{1}=\{1, a, b\}$ is a filter of X, but $F_{2}=\{1, a\}$ is not a filter of X, since $a * b \in F_{2}$ and $a \in F_{2}$, but $b \notin F_{2}$.
Definition (1.8) [9] :
A non-empty subset I of X is called an ideal of X if it satisfies:
1- $\quad \forall \mathrm{x} \in \mathrm{X}$ and $\forall \mathrm{a} \in \mathrm{I}$ imply $\mathrm{x} * \mathrm{a} \in \mathrm{I}$, i.e, $\mathrm{X} * \mathrm{I} \subseteq \mathrm{I}$;
2- $\quad \forall \mathrm{x} \in \mathrm{X}, \forall \mathrm{a}, \mathrm{b} \in \operatorname{I} \operatorname{imply}(\mathrm{a} *(\mathrm{~b} * \mathrm{x})) * \mathrm{x} \in \mathrm{I}$.
Lemma (1.9) [10]:
A nonempty subset I of X is an ideal of X if and only if it satisfies
1- $1 \in \mathrm{I}$;
2- $(\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})(\forall \mathrm{z} \in \mathrm{I})(\mathrm{x} *(\mathrm{y} * \mathrm{z}) \in \mathrm{I} \Rightarrow \mathrm{x} * \mathrm{z} \in \mathrm{I})$.
Definition (1.10) [10] :

Journal of Kerbala University , Vol. 13 No. 3 Scientific . 2015

A BE-algebra X is said to be transitive if for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}, \mathrm{y} * \mathrm{z} \leq(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})$.
Proposition (1.11) [3]:
If X is a transitive BE -algebra, then it satisfies the following condition:
For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, if $\mathrm{x} \leq \mathrm{y}$, then $\mathrm{z} * \mathrm{x} \leq \mathrm{z} * \mathrm{y}$ and $\mathrm{y} * \mathrm{z} \leq \mathrm{x} * \mathrm{z}$.
Definition (1.12) [7]:
A BE-algebra X is said to be self distributive if $\mathrm{x} *(\mathrm{y} * \mathrm{z})=(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Example (1.13) :
Consider the BE-algebra in example (1.2), Then X is a self distributive but a BE algebra in example (1.7) is not self distributive.

Proposition (1.14) [11]:
If X is a self distributive $B E-$ algebra, then for all $x, y, z \in X$ the following statement hold:
1- if $x \leq y$, then $z * x \leq z * y$.
2- $\mathrm{y} * \mathrm{z} \leq(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})$.
Definition (1.15) [13] :
A BE-algebra X is called commutative if $(x * y) * y=(y * x) * x$ for any $x, y \in X$.
Definition (1.16) [9]:
Let X be a BE-algebra and let $x, y \in X$. Define $A(x, y)=\{z \in X \mid x *(y * z)=1\}$
We call $A(x, y)$ an upper set of x and y.
2.The Main Results:

In this section, we define the notion of a sub branch of element of BE-algebra, and link the notion with another notions in BE-algebra.

Definition (2.1):
Let X be a $B E$-algebra, we define a sub branch of element $a \in X$ is the set $R(a)=\{x \in X: a * x=1\}$.
Example (2.2):
Let $\mathrm{X}=\{1, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ be a set with the following table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	1	1	d
b	1	c	1	c	d
c	1	b	b	1	d
d	1	a	b	c	1

Then X is a BE-algebra, and
$R(1)=\{1\}, R(a)=\{1, a, b, c\}, R(b)=\{1, b\}, R(c)=\{1, c\}, R(d)=\{1, d\}$.
Proposition (2.3):
Let X be a BE-algebra. Then
1- $\quad 1 \in \mathrm{R}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$
2- $\quad R(1)=\{1\}$
3- $x \in R(x) \forall x \in X$

Proof :

1- Since $\mathrm{x} * 1=1 \quad \forall \mathrm{x} \in \mathrm{X} \quad$ [definition (1.1)(2)]
$\Rightarrow 1 \in \mathrm{R}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{X}$.
2- Let $x \in R(1)$ such that $x \neq 1 \Rightarrow 1 * x=1$
and this contradiction since $1 * x=x, \forall x \in X$. [definition (1.1)(3)]
$\Rightarrow R(1)=\{1\}$.
3- Since $\mathrm{x} * \mathrm{x}=1 \quad \forall \mathrm{x} \in \mathrm{X}$. [definition (1.1)(1)]
$\Rightarrow \mathrm{x} \in \mathrm{R}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$.
Theorem (2.4):

Let X be a self distributive BE-algebra, Then $\forall \mathrm{a} \in \mathrm{X}, \mathrm{R}(\mathrm{a})$ is a filter.

Proof :

1- $\quad 1 \in \mathrm{R}(\mathrm{a}) \forall \mathrm{a} \in \mathrm{X}$. \quad [proposition (2.3)(1)]
2- Let $x * y \in R(a)$ and $x \in R(a)$
$\Rightarrow \mathrm{a} *(\mathrm{x} * \mathrm{y})=1$ and $\mathrm{a} * \mathrm{x}=1$,
Now, $\mathrm{a} * \mathrm{y}=1 *(\mathrm{a} * \mathrm{y}) \quad[$ since $(1 * \mathrm{x}=\mathrm{x})$ definition (1.1)(3)]

```
=(a*x)*(a*y) [ since a*x=1]
    =a*(x*y)\quad[ since X is a self distributive definition (1.12)]
    =1
```

$\Rightarrow y \in R(a)$.
$\Rightarrow R(a)$ is a filter.
Theorem (2.5):
Let X be a self distributive BE-algebra. Then $\forall a \in X, R(a)$ is an ideal.
Proof:
1- Let $x \in X$ and $c \in R(a)$
$\Rightarrow \mathrm{x} \in \mathrm{X}$ and $\mathrm{a} * \mathrm{c}=1$,
Now, $a *(x * c)=(a * x) *(a * c)$ [since X is a self distributive definition (1.12)] $=(a * x) * 1=1 \quad[$ since $a * c=1]$
$\Rightarrow \mathrm{x} * \mathrm{c} \in \mathrm{R}(\mathrm{a})$.
2- Let $x \in X$ and $c, d \in R(a)$

$$
\begin{array}{ll}
& \Rightarrow x \in X, a * c=1, a * d=1 \\
& \\
\text { Now, } a *((c *(d * x)) * x) & \\
= & a *(c *(d * x)) *(a * x) \\
=((a * c) *(a *(d * x)) *(a * x) & {[\text { since } X \text { is a self distributive definition }(1.12)]} \\
=(1 *(a *(d * x)) *(a * x) & {[\text { since } a * c=1]} \\
=((a * d) *(a * x)) *(a * x) & {[\text { since } X \text { is a self distributive def.(1.12)] }} \\
=(1 *(a * x)) *(a * x) & {[\text { since } a * d=1]} \\
=(a * x) *(a * x) & {[\text { since }(1 * x=x) \text { def.(1.1)(3)] }} \\
=1 & {[\text { since } x * x=1]} \\
\Rightarrow & ((c *(d * x)) * x) \in R(a)
\end{array}
$$

$\Rightarrow R(a)$ is an ideal.

Proposition (2.6):

Let X be a BE-algebra. Then $\forall a \in X, R(a)$ is a subalgebra.

Proof :

Let $x, y \in R(a) \Rightarrow a * x=1, a * y=1$
Now,

```
a*(x*y)=x*(a*y) [definition (1.1)(4)(exchange)]
    =x*1 [ since a*y=1]
    =1
[definition(1.1)(2)]
```

$\Rightarrow x * y \in R(a)$.
Proposition (2.7):
Let X be a transitive $B E-$ algebra. Then, if $y \in R(x)$,then $x * z \in R(y * z) \forall z \in X$.

Proof:

Let $y \in R(x)$ and $z \in X$
$\Rightarrow \mathrm{x} * \mathrm{y}=1 \Rightarrow \mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{y} * \mathrm{z} \leq \mathrm{x} * \mathrm{z} \quad$ [proposition (1.11)]

$$
\Rightarrow(\mathrm{y} * \mathrm{z}) *(\mathrm{x} * \mathrm{z})=1
$$

$\Rightarrow \mathrm{x} * \mathrm{z} \in \mathrm{R}(\mathrm{y} * \mathrm{z})$.
Proposition (2.8):
Let X be a transitive $B E-$ algebra. If $y \in R(x)$, then $z * y \in R(z * x) \forall z \in X$.

Proof :

Let $y \in R(x)$ and $z \in X$
$\Rightarrow \mathrm{x} * \mathrm{y}=1 \Rightarrow \mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{z} * \mathrm{x} \leq \mathrm{z} * \mathrm{y} \quad$ [proposition (1.11)]

$$
\Rightarrow(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y})=1
$$

$\Rightarrow \mathrm{z} * \mathrm{y} \in \mathrm{R}(\mathrm{z} * \mathrm{x})$.
Proposition (2.9):
Let X be a BE-algebra. Then
1- $\mathrm{y} * \mathrm{x} \in \mathrm{R}(\mathrm{x}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.
2- $\quad(\mathrm{y} * \mathrm{x}) * \mathrm{x} \in \mathrm{R}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Proof :

1- \quad Since $\mathrm{x} *(\mathrm{y} * \mathrm{x})=1$

> [proposition (1.3)(1)]

$$
\Rightarrow \mathrm{y} * \mathrm{x} \in \mathrm{R}(\mathrm{x}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}
$$

2- Since $\mathrm{y} *((\mathrm{y} * \mathrm{x}) * \mathrm{x})=1 \quad$ [proposition (1.3)(2)]

$$
\Rightarrow(y * x) * x \in R(y) \forall x, y \in X
$$

Proposition (2.10):
Let X be a self distributive BE-algebra. Then $(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z}) \in \mathrm{R}(\mathrm{y} * \mathrm{z}), \forall \mathrm{z} \in \mathrm{X}$.

Proof :

Since X is a self distributive, then
$\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}, \mathrm{y} * \mathrm{z} \leq(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z}), \quad$ [proposition (1.14)(2)]
$\Rightarrow(\mathrm{y} * \mathrm{z}) *((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z}))=1$,
$\therefore((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) \in \mathrm{R}(\mathrm{y} * \mathrm{z})$.
Proposition (2.11):
Let X be a self distributive BE-algebra. If $x \in R(a)$, then $y \in R(a), \forall y \in R(x)$.

Proof :

Let $x \in R(a), y \in R(x)$
$\Rightarrow a * x=1, x * y=1$
Now, ($\mathrm{a} * \mathrm{y}$) $=1 *(\mathrm{a} * \mathrm{y})$
[definition (1.1)(3)]

$$
=(a * x) *(a * y)
$$

$$
=a *(x * y) \quad[\text { since } \mathrm{X} \text { is a self distributive definition (1.12)] }
$$

$$
=\mathrm{a} * 1 \quad[\mathrm{x} * \mathrm{y}=1]
$$

$$
=1 \quad[\text { definition }(1.1)(2)]
$$

$\Rightarrow \mathrm{a} * \mathrm{y}=1$
$\Rightarrow \mathrm{y} \in \mathrm{R}(\mathrm{a})$.
Proposition (2.12):
Let X be a $B E$-algebra. If $y * z \in R(x)$, then $x * z \in R(y), \forall x, y, z \in X$.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}, \mathrm{y} * \mathrm{z} \in \mathrm{R}(\mathrm{x})$
$\Rightarrow \mathrm{x} *(\mathrm{y} * \mathrm{z})=1$
$\Rightarrow \mathrm{y} *(\mathrm{x} * \mathrm{z})=1$
[definition (1.1)(4)]
$\Rightarrow \mathrm{x} * \mathrm{z} \in \mathrm{R}(\mathrm{y})$.

Proposition (2.13):

Let X be a self distributive $B E-$ algebras, if $y * z \in R(x)$, then $\forall x, y, z \in X$.
1- $x * z \in R(x * y)$
2- $y * z \in R(y * x)$
3-

Journal of Kerbala University , Vol. 13 No. 3 Scientific . 2015

Proof :

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{y} * \mathrm{z} \in \mathrm{R}(\mathrm{x})$,
1- \quad since $y * z \in R(x) \Rightarrow x *(y * z)=1$

$$
\begin{aligned}
& \Rightarrow(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})=1 \quad \quad[\text { since } \mathrm{X} \text { is a self distributive definition (1.12)] } \\
& \Rightarrow \mathrm{x} * \mathrm{z} \in \mathrm{R}(\mathrm{x} * \mathrm{y}) .
\end{aligned}
$$

2- \quad since $\mathrm{y} * \mathrm{z} \in \mathrm{R}(\mathrm{x}) \Rightarrow \mathrm{x} *(\mathrm{y} * \mathrm{z})=1$
$\Rightarrow \mathrm{y} *(\mathrm{x} * \mathrm{z})=1$
[definition (1.1)(4)]
$\Rightarrow(\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{z})=1 \quad[$ since X is a self distributive definition (1.12)]
$\Rightarrow \mathrm{y} * \mathrm{z} \in \mathrm{R}(\mathrm{y} * \mathrm{x})$.

Proposition (2.14):

Let X be a commutative BE-algebra. If $y \in R(x * y)$, then $x \in R(y * x), \forall x, y \in X$.
Proof :
Let $\mathrm{y} \in \mathrm{R}(\mathrm{x} * \mathrm{y}) \Rightarrow(\mathrm{x} * \mathrm{y}) * \mathrm{y}=1$
$\Rightarrow(\mathrm{y} * \mathrm{x}) * \mathrm{x}=1 \quad[$ since X is a commutative definition (1.15)]
$\Rightarrow \mathrm{x} \in \mathrm{R}(\mathrm{y} * \mathrm{x})$.

Proposition (2.15):

Let X be an implication algebra. Then
1- if $x \in R(x * y)$, then $x=1$.
2- if $y \in R(x * y)$, then $x \in R(y * x) \forall x, y \in X$.

Proof :

1- Let $\mathrm{x} \in \mathrm{R}(\mathrm{x} * \mathrm{y}) \Rightarrow(\mathrm{x} * \mathrm{y}) * \mathrm{x}=1$
but $(\mathrm{x} * \mathrm{y}) * \mathrm{x}=\mathrm{x} \quad$ [definition (1.4)(1)]
$\Rightarrow \mathrm{x}=1$.
2- Let $\mathrm{y} \in \mathrm{R}(\mathrm{x} * \mathrm{y}) \Rightarrow(\mathrm{x} * \mathrm{y}) * \mathrm{y}=1$
$\Rightarrow(\mathrm{y} * \mathrm{x}) * \mathrm{x}=1 \quad$ [definition (1.4)(2)]
$\Rightarrow \mathrm{x} \in \mathrm{R}(\mathrm{y} * \mathrm{x})$.
Theorem (2.16):
Let X be a BE-algebra. Then $R(x)=A(1, x)$.
Proof :
Let $\mathrm{z} \in \mathrm{R}(\mathrm{x}) \Rightarrow \mathrm{x} * \mathrm{z}=1$

$$
\begin{aligned}
& \Rightarrow 1 *(\mathrm{x} * \mathrm{z})=1 \quad \text { [definition }(1.1)(3)] \\
& \Rightarrow \mathrm{z} \in \mathrm{~A}(1, \mathrm{x})
\end{aligned}
$$

$\Rightarrow \mathrm{R}(\mathrm{x}) \subseteq \mathrm{A}(1, \mathrm{x})$.
Now,
Let $\mathrm{z} \in \mathrm{A}(1, \mathrm{x}) \Rightarrow 1 *(\mathrm{x} * \mathrm{z})=1$

$$
\Rightarrow \mathrm{x} * \mathrm{z}=1 \quad[\text { definition }(1.1)(3)]
$$

$\Rightarrow \mathrm{z} \in \mathrm{R}(\mathrm{x})$
$\Rightarrow A(1, x) \subseteq R(x)$.
$\Rightarrow \mathrm{R}(\mathrm{x})=\mathrm{A}(1, \mathrm{x})$.
Theorem (2.17):
Let X be a self distributive BE-algebra. Then $R(x)=A(x, y) \forall y \in R(x)$.

Journal of Kerbala University , Vol. 13 No. 3 Scientific . 2015

Proof :

Let $\mathrm{z} \in \mathrm{R}(\mathrm{x}), \mathrm{y} \in \mathrm{R}(\mathrm{x})$
$\Rightarrow \mathrm{x} * \mathrm{z}=1, \mathrm{x} * \mathrm{y}=1$
Now, $\mathrm{x} * \mathrm{z}=1$

$$
\begin{array}{ll}
\Rightarrow 1 *(\mathrm{x} * \mathrm{z})=1 & {[\text { definition }(1.1)(3)]} \\
\Rightarrow(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})=1 & {[\mathrm{x} * \mathrm{y}=1]}
\end{array}
$$

$\Rightarrow \mathrm{x} *(\mathrm{y} * \mathrm{z})=1$
$\Rightarrow \mathrm{z} \in \mathrm{A}(\mathrm{x}, \mathrm{y})$
$\therefore \mathrm{R}(\mathrm{x}) \subseteq \mathrm{A}(\mathrm{x}, \mathrm{y})$.
Now,
Let $\mathrm{z} \in \mathrm{A}(\mathrm{x}, \mathrm{y})$

$$
\Rightarrow \mathrm{x} *(\mathrm{y} * \mathrm{z})=1
$$

$\Rightarrow(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})=1 \quad[$ since X is a self distributive definition (1.12)]
$\Rightarrow 1 *(\mathrm{x} * \mathrm{z})=1$

$$
[\mathrm{x} * \mathrm{y}=1]
$$

$\Rightarrow \mathrm{x} * \mathrm{z}=1 \quad$ [definition (1.1)(3)]
$\Rightarrow \mathrm{z} \in \mathrm{R}(\mathrm{x})$
$\Rightarrow \mathrm{A}(\mathrm{x}, \mathrm{y}) \subseteq \mathrm{R}(\mathrm{x})$.
$\Rightarrow \mathrm{R}(\mathrm{x})=\mathrm{A}(\mathrm{x}, \mathrm{y})$.

Proposition (2.18):

Let X, Y be two BE-algebras, and f be a homomorphism's from X to Y, if $x \in R(y)$ in X, then $f(x) \in R(f(y))$ in Y.

Proof :

Let $\mathrm{x} \in \mathrm{R}(\mathrm{y}) \Rightarrow \mathrm{y} \mathrm{x}=1$,
Now,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y} \quad \mathrm{x})=\mathrm{f}(1)=\mathrm{f}(\mathrm{x} \quad \mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{x})=1 \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{R}(\mathrm{f}(\mathrm{y})) .
\end{aligned}
$$

Proposition (2.19):

Let X, Y be two BE-algebras, and f be a monomorphism from X to Y. If $x \in X$, then $R(f(x))=\{f(c)$ $: c \in R(x)\} \forall x \in X$.
Proof:
If $c \in R(x) \Rightarrow x c=1$
$\Rightarrow \mathrm{f}(\mathrm{x} \mathrm{c})=\mathrm{f}(1) \Rightarrow \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{c})=1$
$\Rightarrow \mathrm{f}(\mathrm{c}) \in \mathrm{R}(\mathrm{f}(\mathrm{x}))$
Now, suppose $f(c) \in R(f(x))$ such that $c \notin R(x)$,
$\Rightarrow \mathrm{x} \mathrm{c} \neq 1$
$\Rightarrow \mathrm{f}(\mathrm{x} \quad \mathrm{c}) \neq \mathrm{f}(1)$
$\Rightarrow \mathrm{f}(\mathrm{x}$ c) $\neq 1$
$\Rightarrow \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{c}) \neq 1$
$\Rightarrow \mathrm{f}(\mathrm{c}) \notin \mathrm{R}(\mathrm{f}(\mathrm{x}))$
and this contradiction!
$\Rightarrow \mathrm{R}(\mathrm{f}(\mathrm{x}))=\{\mathrm{f}(\mathrm{c}): \mathrm{c} \in \mathrm{R}(\mathrm{x})\} \forall \mathrm{x} \in \mathrm{X}$.

Journal of Kerbala University , Vol. 13 No. 3 Scientific . 2015

References

1- A. Rezaei, A. Borumand saeid and R. A. Borzooei, Relation between Hilbert algebras and BEalgebras, Application and Applied Mathematics Vol. 8 Iss. 2 (2013) 573-584.
2- A. Walendziak, On normal filter and congruence relation in BE- algebras, Commentationes Mathematics Vol. 52 No. 2 (2012) 199-205.
3- B. L. Meng, On filters in BE-algebras, Scientiae Mathematicae Japonicae 71 (2010), 201-207.
4- J. Neggers and H. S. Kim, "On d-algebras", Math. Slovaco, 49, 19-26, 1999.
5- K. Is'eki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978),1-26.

6- K. Iśeki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
7- Kim H. S. and Kim Y. H., On BE-Algebras, Sci. Math. Jpn. Online e-2006, 1299-1302.
8- R. A. Borzooei and S. Khosravi Shoar, Implication algebras are eguivalent to the dual implicative BCK-algebras, Sci. Math. Jpn. 63(2006), 429-431.
9- S. S. Ahn and K. S. So, On generalized upper sets in BE-Algebras, Bull, math. Soc. 46(2009), no. 2, 281-287.
10- S. S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68(2008), no. 2, 279-285.
11- Smarandache Florentin, Special Algebrasic Structures, 78-81, in Collected Papers, Vol. III, Abaddaba, Oradea, 2000.
12- W. A. DUDEK, On ideals in Hilbert algebras, Acta Universities Palackianae Olomuciensis 38 (1999), 31-34.

13- Walendziak A., On commutative BE-algebras, Sci. Math. Jpn. online e-(2008), 585-588.

