ON MKC-Spaces, MLC-Spaces and MH-Spaces

*Reyadh Delfi Ali

**Adam Abdulla Abker

Abstract:

The purpose of this paper is deal with the study of MKC-spaces (spaces whose minimal KC-spaces) and MLC-spaces (spaces whose minimal LC-spaces) also we studied the relationships between minimal KC-spaces, minimal LC-spaces and minimal Hausdroff spaces.

المستخلص

تهدف هذه الورقة لدراسة فضاءات KC الصغرى و فضاءات LC الصغرى كما درسنا في هذه الورقة العلاقات بين فضاءات KC الصغرى وفضاءات LC الصغرى وفضاءات هاوزدورف الصغرى. KEYWORDS: LC - Space , EC - EC

1. Introduction:

Let P be a topological property, X be a nonempty and let P(X) denote the set of all topologies on X having the property P. P(X) is partially ordered by set inclusion. (X,T) is minimal P (P-minimal) if T is minimal in P(X). In [1] there is a good survey on minimal topologies and it stated there that every compact Hausdroff is minimal Hausdroff.

Radhi I.M. [13] introduced a new concept of minimal KC – spaces and a new concept of minimal LC – spaces and showed that compact KC – space is minimal KC – space also showed that Lindelöf LC-space is minimal LC-space.

In this paper we show that Hausdorff minimal KC-space is minimal Hausdorff, R_1 minimal KC-space is minimal Hausdorff, regular minimal KC-space is minimal Hausdorff, If X and Y are compact Hausdorff spaces then $X \times Y$ is minimal KC-space and minimal Hausdorff space, If X and Y are compact Hausdorff LC-spaces, then $X \times Y$ is minimal LC-space and minimal KC-space, If X and Y are Hausdorff Lindelof LC-spaces, then $X \times Y$ is minimal LC-spaces and if X and Y are Hausdorff Lindelöf P-spaces then $X \times Y$ is minimal LC-space if and only if X and Y are minimal LC-spaces. Our terminology is standard. The closure of a subset A of a space (X,T) is denoted by ClA. The set of all positive integer is denoted by O.

2. Minimal KC-spaces:

<u>Definition 2.1 [15]:</u> A topological space (X,T) is a KC-space if every compact subset of X is closed.

Definition 2.2 [13]: Let (X,T) be a KC-space, we say that (X,T) is a minimal KC-space iff $T^* \subset T$ implies (X,T^*) is not a KC-space, (we will use MKC to denote minimal KC-space).

Definition 2.3 [11]: Let (X,T) be a Hausdroff space, we say that (X,T) is a minimal Hausdroff space iff $T^* \subset T$ implies (X,T^*) is not a Hausdroff space, (we will use MH to denote minimal Hausdroff space).

Theorem2.4 [13]: Every compact *KC* – space is a *MKC*.

Corollary2.5: Every countably compact Lindelöf *KC* – space is a *MKC*.

Proof. Obvious by theorem 2.4

Theorem2.6 [13]: Every locally compact *MKC* is a *MH*.

Theorem2.7[13]: Every locally compact KC – space X is a Hausdorff.

Theorem2.8[13]:

- (i) Every Hausdorff space is a KC space.
- (ii) Every KC space is T_1 .

Theorem2.9[13]: For a compact KC – $Space\ X$ and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X.
- (b) Y is a compact in X.

Theorem2.10 [13]:

- (i) The property of being KC space is a topological property.
- (ii) The property of being KC space is a hereditary property.

Corollary2.11:

- (i) Every closed subspace of compact KC space is a MKC.
- (ii) Every subspace of hereditarily compact KC space is a MKC.

Proof. This is obvious by theorem 2.10and theorem 2.4.

Corollary2.12: For a compact KC – space X and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X.
- (b) Y is a compact and MKC space in X.
- **Proof.** (a) \Rightarrow (b): Let Y be a closed in X, then Y is a compact, so Y is a compact KC-space by theorem 2.10(ii), hence Y is a MK-space by theorem 2.4.
 - (b) \Rightarrow (a): Let Y be a compact MK space in X, then Y is a compact KC space, so Y is closed.

Theorem2.13: Every Hausdorff *MKC – space* is a *MH*.

Proof. Let (X,T) be a Hausdorff MKC-space, then X is a Hausdorff KC-space. Suppose X is not a MH-space, so there exists a topology T^* on X, $T^* \subset T$ and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC-space by theorem 2.8(i) which is a contradiction, therefore (X,T) is a MH.

Theorem2.14: Every compact MH - space is a MKC.

Proof. Let X be a compact MH-space, then X is a compact Hausdorff, so X is a compact KC-space by theorem2.8,hence X is a MKC-space by theorem2.4.

Corollary2.15: For a compact Hausdorff space *X* the following are equivalent:

- (a) X is a MKC-space.
- (b) X is a MH space.

Proof. This is obvious by theorem 2.13and theorem 2.14.

<u>Definition 2.16 [4]:</u> A topological space (X,T) is a R_1 – space if x and y have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

Theorem2.17: Every R_1 *MKC* – *space* is a *MH*.

Proof. Let (X,T) be a R_1 MKC-space, then X is a R_1 KC-space, hence X is a Hausdorff by theorem2.8(ii) and definition 2.16. Suppose X is not a MH-space, so there exists a topology T^* on X, $T^* \subset T$ and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC-space by theorem 2.8(i) which is a contradiction, therefore (X,T) is a MH.

Theorem2.18: Every regular *MKC – space* is a *MH*.

Proof. Let (X,T) be a regular MKC-space, then X is a regular KC-space, hence X is a Hausdorff by theorem2.8(ii). Suppose X is not a MH-space, so there exists a topology T^* on X, $T^* \subset T$ and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC-space by theorem 2.8(i) which is a contradiction, therefore (X,T) is a MH.

Theorem2.19 [13]:

Suppose $X \times Y$ is a compact KC-space, then each of X, Y is a MKC-space.

Corollary2.20:

Suppose $X \times Y$ is a regular compact KC – space, then each of X, Y is a MH – space.

Proof. Each of X and Y is a MKC-space by theorem 2.19. Since X and Y are regular spaces, hence each of X, Y is a MH-space by theorem 2.18.

Theorem2.21: If X and Y are compact Hausdorff spaces, then $X \times Y$ is a MKC-space and a MH-space.

Proof. Since X and Y are compact Hausdorff spaces, then $X \times Y$ is a compact Hausdorff space, so $X \times Y$ is a compact KC-space by theorem 2.8 (i), hence $X \times Y$ is a MKC-space by theorem 2.4 and $X \times Y$ is a MH-space by theorem 2.13.

3. Minimal LC-spaces:

<u>Definition3.1:</u> A topological space (X,T) is an LC – space if every Lindelöf subset of X is closed [6], [10]. Notice that LC – space is also known under the name L – closed [5], [7] and [12].

Definition3.2 [13]: Let (X,T) be a LC – space we say that X is a minimal LC – space (MLC) iff $T^* \subset T$ implies (X,T^*) is not LC – space.

<u>Definition3.3 [3]:</u> A set F in a topological space is called F_{σ} – closed if it is the union of at most countably many closed sets.

A set G is called a $G_{\sigma}-open$ if it is the intersection of at most countably many open sets.

<u>Definition 3.4[8]:</u> A topological space (X,T) is called P – space if every G_{σ} – open set in X is open.

Theorem3.5 [13]: Every Lindelöf *LC* – *space* is a *MLC*.

Theorem3.6 [6]: For a Hausdorff Lindelöf space *X* the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.

Corollary3.7: For a Hausdorff Lindelöf space *X* the following are equivalent:

- (a) X is a MLC space .
- (b) X is a P-space.

Proof. This is obvious by theorem 3.5 and theorem 3.6.

Corollary3.8: For a Hausdorff compact space *X* the following are equivalent:

- (a) X is a MLC space.
- (b) X is a P-space.

Proof. This is obvious by theorem 3.5and theorem 3.6.

Theorem3.9 [8]: Every Huasdorff P – space is an LC – space.

Corollary3.10: Every Hausdorff Lindelöf P – space is a MLC.

Proof. This is obvious by theorem 3.9and theorem 3.5.

Theorem3.11[13]:

- (i) Every LC space is a KC space.
- (ii) Every LC space is a T_1 space.

Theorem3.12: For a compact P – space X the following are equivalent:

- (a) X is a MH space.
- (b) X is a Hausdorff MLC space.

Proof. (a) \Rightarrow (b): Let X be a MH-space, then X is a Hausdorff, so X is an LC-space by theorem3.9,hence X is a MLC-space by theorem3.5. (b) \Rightarrow (a): Let X be a Hausdorff MLC-space, then X is a Hausdorff LC-space, so X is a Hausdorff KC-space by theorem3.11 (i). Since X is a compact, then X is a MKC-space by theorem2.4, hence X is a MH-space by theorem2.13.

Corollary3.13:

- (i) Every compact MLC space is a MKC.
- (ii) Every compact LC space is a MKC.
- (iii) Every countably compact Lindelöf LC space is a MKC.

Proof. This is obvious by theorem 3.11(i) and theorem 2.4.

Theorem3.14 [13]:

- (i) The property of being LC space is a topological property.
- (ii) The property of being LC space is a hereditary property.

(iii)

Corollary3.15:

- (i) Every closed subspace of compact LC space is a MLC and a MKC.
- (ii) Every closed subspace of Lindelöf LC space is a MLC.
- (iii) Every subspace of hereditarily Lindelöf LC space is a MLC.

Proof. This is obvious by theorem 3.14(ii), theorem 3.5, theorem 3.11 (i) and theorem 2.4.

Theorem3.16: For a compact P – space X the following are equivalent:

- (a) X is a MKC-space .
- (b) X is a MLC space.

Proof. (a) \Rightarrow (b): Let X be a MKC-space, then X is a KC-space, so X is a Hausdorff by theorem2.7. Since X is a P-space, then X is an LC-space by theorem3.9, hence X is a MLC-space by theorem 3.5.

(b) \Rightarrow (a): Let X be MLC-space, then X is an LC-space, so X is KC-space by theorem 3.11(i), hence X is a MKC-space by theorem 2.4.

Definition3.17 [2]: A topological space (X,T) is called

- (1) an L_1 space if every Lindelöf F_{σ} closed is closed,
- (2) an L_2 space if clL is Lindelöf whenever $L \subseteq X$ is Lindelöf,
- (3) an L_3 space's if every Lindelöf subset L is an F_{σ} closed,
- (4) an $L_4-space$ if whenever $L\subseteq X$ is Lindelöf, then there is a Lindelöf $F_\sigma-closed\ F\ \ {\rm with}\ L\subseteq F\subseteq clL\ .$

Theorem3.18 [2]:

- (i) If (X,T) is an LC space, then (X,T) is an L_i space, i=1, 2, 3, 4.
- (ii) If (X,T) is an L_1 space and an L_3 space, then (X,T) is an LC space.
- (iii) Every Q set space is an L_3 space.

<u>Definition3.19 [2]:</u> A topological space (X,T) is called a Q-set space if each subset of X is an F_{σ} - closed sets.

Corollary3.20: Every Q-set L_1 -space is an LC-space.

Proof. Let X be Q-set space, then X is an L_3 -space by theorem 3.18(iii), since X is an L_1 -space, then X is an LC-space by theorem 3.18(ii).

Theorem3.21: Every P Q – set space X is an LC – space.

Proof. If L is a Lindelöf subset in X, which is a Q-set space, then L is an F_{σ} -closed set, but X is a P-space, so L is a closed set, hence X is an LC-space.

Theorem3.22[3]: Countable union of Lindelöf subset is Lindelöf.

Theorem3.23: Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup_{n \in \omega} A_n$, then

 A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem 3.22. Since X is an L_1 – space, then A is closed in X, hence X is a P – space.

Theorem3.24: Every PL_3 – space is an LC – space ...

Proof . Let $\ L$ be a Lindelöf subset of $\ X$, then $\ L$ is $\ F_{\sigma}-closed$ set (since

X is an $L_3-space$),so L is closed set(since X is a P- space) ,hence X is an LC-space .

Corollary3.25:

- (i) Every Lindelöf L_1L_3 space is a MLC.
- (ii) Every Hausdorff Lindelof L_1 space is a MLC.
- (iii)Every Lindelof Q-set L_1 -space is a MLC.
- (iv) Every LC-space having dense Lindelöf subset is a MLC.
- (v) Every 2^{nd} countable (C_{11}) LC-space is a MLC.
- (vi) Every Lindelöf P Q set space is a MLC.

- (vii) Every Lindelöf PL_3 space is a MLC.
- (viii) Every compact LC space is a MLC.

Proof. Obvious

Corollary3.26:

- (i) Every compact Hausdorff space is a MKC.
- (ii) Every compact $R_1T_1 space$ is a MKC.
- (iii) Every compact Tychonoff P space is a MKC.
- (iv) Every compact P = Q set space is a MKC.
- (v) Every compact Q set L_1 space is a MKC.
- (vi) Every compact L_1L_3 space is a MKC.
- (vii) Every compact L_1L_3 space is a MKC.
- (viii) Every compact PL_3 space is a MKC.

Proof. Obvious

Theorem3.27 [4]: If X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space.

Theorem 3.28: If X and Y are compact Hausdorff LC – spaces, then $X \times Y$ is

a MLC – space and a MKC – space.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem 3.27, so $X \times Y$ is a compact LC – space, hence $X \times Y$ is a MLC – space by corollary 3.25(viii) and $X \times Y$ is a MKC – space by corollary 3.13(ii).

Theorem3.29 [6]: If X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an LC – space.

Theorem3.30: If X and Y are compact LC – spaces and either X or Y is regular, then $X \times Y$ is a MLC – space and a MKC – space.

Proof. Since X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an LC – space by theorem 3.29, so $X \times Y$ is a compact LC – space, hence $X \times Y$ is

a MLC – space by corollary 3.25(viii) and $X \times Y$ is a MKC – space by corollary 3.13(ii).

Corollary3.31[4]: If X and Y are R_1 LC – spaces, then $X \times Y$ is an LC – space.

Theorem3.32: If X and Y are compact R_1 LC-spaces, then $X \times Y$ is

a MLC – space and a MKC – space.

Proof. Since X and Y are R_1 LC-spaces, then $X \times Y$ is an LC-space by corollary 3.31, so $X \times Y$ is a compact LC-space, hence $X \times Y$ is a MLC-space by corollary 3.25(viii) and $X \times Y$ is a MKC-space by corollary 3.13(ii).

Theorem3.33[14](Nobles Theorem):

If X and Y are Lindelöf P – space, then $X \times Y$ is a Lindelöf.

Theorem3.34[6]: Every Lindelof LC – space is a P – space.

Theorem3.35:

If X and Y are Hausdorff Lindelöf LC - spaces, then $X \times Y$ is a MLC - space.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem3.27. Since X and Y are Lindelöf LC – spaces, then X and Y are P – space by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $X \times Y$ is a MLC – space by theorem3.5.

Theorem 3.36:

If X and Y are Lindelöf R_1 LC-spaces, then $X \times Y$ is a MLC-space.

Proof. Since X and Y are R_1 LC-spaces, then $X \times Y$ is an LC-space by corollary 3.31. Since X and Y are Lindelöf LC-spaces, then X and Y are P-space by theorem 3.34, so $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC-space by theorem 3.5.

Theorem 3.37:

If X and Y are Lindelöf LC – spaces and either X or Y is regular, then $X \times Y$ is a MLC – space.

Proof. Since X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an LC – space by theorem 3.29, Since X and Y are Lindelöf LC – spaces, then X and Y are P – space by theorem 3.34, so $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC – space by theorem 3.5.

Theorem 3.38: If X and Y are Hausdorff Lindelöf P – spaces,

then $X \times Y$ is a MLC – space if and only if X and Y are MLC – spaces.

Proof. Let $X \times Y$ be a MLC-space, then $X \times Y$ is an LC-space, so X and Y are LC-spaces by theorem 3.14(i)and(ii), hence X and Y are MLC-spaces by theorem 3.5.

Conversely, Let X and Y are MLC-spaces, then X and Y are LC-spaces, so $X \times Y$ is an LC-space by theorem 3.27. Since X and Y are Lindelöf P-spaces, then $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC-space by theorem 3.5.

Theorem3.39 [9]: Let X and Y be topological spaces. If A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Theorem3.40 [9]: *X* is Hausdorff spaces if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

Theorem 3.41: Let X and Y be Hausdorff Lindelöf LC – spaces.

If A is closed in X and B is closed in Y, then $A \times B$ is a MLC.

Proof. Since X and Y are Hausdorff LC-spaces, then $X \times Y$ is an LC-space by theorem3.27.Since X and Y are Lindelöf LC-spaces, then X and Y are P-space by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $A \times B$ is a MLC by theorem3.39 and theorem3.15(ii).

Theorem3.42: If *X* is a Hausdorff Lindelöf LC – space, then the diagonal $\Delta = \{(x, x) : x \in X\}$ is a MLC.

Proof. Since X is a Hausdorff LC – spaces, then $X \times X$ is an LC – space by theorem 3.27. Since X is a Lindelöf LC – spaces, then X is a P – space by theorem 3.34, so $X \times X$ is a Lindelöf by theorem 3.33, hence the diagonal $\Delta = \{(x, x) : x \in X\}$ is a MLC by theorem 3.40 and theorem 3.15(ii).

References

- [1] Cameron, D. E., Maximal and Minimal Topologies, Trans. Amer. Math.Soc.Vol 160, Oct.1971.
- [2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC- spaces, Acta Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.
- [3] Engelking R., General Topology. Heldermann Verlag, Berlin, revised and completed edition, 1989.
- [4] Dontchev J., Ganster M., On the product of *LC spaces*, Q & A in General Topology15 (1997), 71–74.
- [5] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67-72.
- [6] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in General Topology 4 (1986), 3-13.
- [7] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.
- [8] Misra A. K., A topological view of P spaces ,Topology & Appl.2(1972),349-362.
- [9] Muhammad I.B.., Order Properties of Product Spaces and Quotient Spaces of Ordered Topological Linear Spaces, A Dissertation submitted to the Department of Mathematic/University of Engineering and Technology, Lahore-Pakistan for Degree of Doctorate of Philosophy in the subject of Mathematics, 2006.
- [10] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.
- [11] Munkres, J., Topology, 2^{nd} ed Pearson Education (2001).
- [12]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141–143.
- [13] Radhi I. M., Minimal KC spaces and Minimal LC spaces, Tishreen University Journal for studies and scientific Research-Basic science series Vol.(28) No(1) 2006.
- [14] Vaughan J. E.., Products of Topological Spaces, General Topology and its Applictions , Vol.(28), Issu3, April 1978, Page 207-217.
- [15] Wilansky A., Between T_1 and T_2 , Amer. Math. Monthly 74 (1967), 261-266.
 - *Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan Reyadh_delphi@yahoo.co.uk
 - ** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan