ON Locally Lindelöf Spaces,Co-Lindelöf Topologies and Locally LC-Spaces

Reyadh Delfi Ali*

Adam Abdulla Abker**

* Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan

Reyadh_delphi@yahoo.co.uk

** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan

Abstract:

The aim of this paper is to continue the study of locally Lindelöf spaces, Co-Lindelöf topologies and locally LC – spaces. We also study their relationships to L_i – spaces i = 1,2,3,4

المستخلص

تهدف هذه الورقة دراسة فضاءات Lc و المناع المراقة دراسة فضاءات LC و فضاءات Co- Lindelöf وايضا درسنا علاقة علاقة هذه الفضاءات مع الفضاءات $L_i = 1.2,3,4$ $L_i - 1.2,3,4$ **KEYWORDS:** LC - space, P - space, Lindelöf, locally Lindelöf spaces, Co- Lindelöf topologies, locally LC - spaces.

1. Introduction:

Dontchev, Ganster and Kanibir [2]introduced the class of locally Lindelöf and weakly locally Lindelöf by definitions, a topological space (X,T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of X has a closed Lindelöf (resp. Lindelöf) neighborhood.

In 1984, Gauld, Mrsevic, Reilly and Vamanamurthy [8] introduced the Co-Lindelöf topology of a given space (X,T). They showed that $l(T) = \{\phi\} \cup \{G \in T : X - G \text{ is Lindelof in } (X,T)\}$ is a topology on X with $l(T) \subseteq T$, called the Co-Lindelöf topology of (X,T).

Ganster, Kanibir and Reilly [6] introduced the class of locally LC - spaces. By definition, a topological space (X,T) is called a Locally LC - space if each point of X has a neighborhood which is an LC - subspace. In [6], the authors proved that a space (X,T) is an LC - space if each point of X has a closed neighborhood that is an LC - subspace. Thus every regular locally LC - space is an LC - space, a result first proved by Hdeib and Pareek in [10].

A set F in a topological space is called F_{σ} – *closed* if it is the union of at most countably many closed sets. A set G is called a G_{σ} – *open* if it is the intersection of at most countably many open sets [4].

In this paper, we consider and study of locally Lindelöf spaces, Co- Lindelöf topologies and locally LC – *spaces*. Furthermore, basic properties, preservation theorems and relationships of locally Lindelöf spaces, Co- Lindelöf topologies and locally LC – *spaces*, are investigated. Moreover, to obtain several characterization and properties of locally Lindelöf spaces, Co- Lindelöf topologies and locally Lindelöf spaces, Co- Lindelöf topologies and properties of locally Lindelöf spaces.

Our terminology is standard. The closure of a subset A of a space (X,T) is denoted by clA. The set of all positive integer is denoted by \mathcal{O} .

2. locally Lindelöf and weakly locally Lindelöf :

Definition2.1 [2]: A topological space (X,T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of X has a closed Lindelöf (resp. Lindelöf) neighborhood. It follows immediately from the definition that every locally Lindelöf space is a weakly locally Lindelöf.

Note that a weakly locally Lindelöf space need not be a locally Lindelöf space.

Definition2.2: A topological space (X,T) is an LC – *space* if every Lindelöf subset of X is closed [7], [13]. Notice that LC – *space* is also known under the name L – *closed* [9], [11] and [14].

Definition2.3[12]: A topological space (X,T) is called P-space if every G_{σ} - open set in X is open.

Definition 2.4 [2]: A topological space (X,T) is called

- (1) an L_1 space if every Lindelöf F_{σ} closed is closed,
- (2) an L_2 *space* if *clL* is Lindelöf whenever $L \subseteq X$ is Lindelöf,
- (3) an L_3 space s if every Lindelöf subset L is an F_{σ} closed,
- (4) an $L_4 space$ if whenever $L \subseteq X$ is Lindelöf, then there is a Lindelöf

 F_{σ} - closed F with $L \subseteq F \subseteq clL$.

Theorem2.5 [2]:

- (i) If (X,T) is an LC-space, then (X,T) is a L_i -space, i=1,2,3,4.
- (ii) If (X,T) is an L_1 space and an L_3 space, then (X,T) is an LC space.
- (iii)) Every space which is L_1 space and L_4 space is an L_2 space.
- (iv) Every L_2 space is an L_4 space and every L_3 space is an L_4 space.
- (v) Every L_3 space is T_1 .
- (vi) Every Lindelöf space is an L_2 *space*, and every L_2 *space* having a dense Lindelöf Subset is Lindelöf.
- (vii) Every P space is an L_1 space.

Definition 2.6 [2]: A topological space (X,T) is called a Q-set space if each subset of X is an F_{σ} -closed sets.

Theorem2.7 [12]: Every Huasdorff P - space is an LC - space.

<u>Corollary2.8</u>: Every Tychonoff P - space is an LC - space.

Proof. Obvious.

Proposition2.9 [2]: Every weakly locally Lindelöf L_2 – *space* is locally Lindelöf, and so Every weakly locally Lindelöf space which is L_1 and L_4 is locally Lindelöf.

Theorem2.10 [2]:

Every locally Lindelöf space (X,T) is an L_1 – space if and only if it is a P – space.

<u>Corollary2.11 [2]</u>: Every Huasdorff, locally Lindelöf L_1 – space is an LC – space.

Corollary2.12 [2]: Every weakly locally Lindelöf LC - space(X,T) is a P - space.

<u>Corollary 2.13</u>: For a Lindelöf space X the following are equivalent:

- (a) X is locally Lindelöf.
- (b) X is a weakly locally Lindelöf.

Proof. This is obvious by definition 2.1.

<u>Corollary 2.14</u>: For an L_2 – space X the following are equivalent:

- (a) X is locally Lindelöf.
- (b) X is a weakly locally Lindelöf.
- **Proof.** (a) \Rightarrow (b): This is obvious by definition 2.1.

(b) \Rightarrow (a): This is obvious by proposition 2.9.

<u>Corollary 2.15</u>: For a LC – space X the following are equivalent:

- (a) X is locally Lindelöf.
- (b) X is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is obvious by definition 2.1.

(b) \Rightarrow (a): This is obvious by theorem 2.5(i)and proposition 2.9.

Theorem 2.16: For a Hausdorff locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an L_1 space.
- (c) X is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – space, since X is a Hausdorff locally Lindelof space,

then X is an LC-space by corollary 2.11.

(b) \Rightarrow (c) : This is obvious by theorem 2.10.

(c) \Rightarrow (b) : This is obvious by theorem 2.10.

<u>Theorem2.17</u>: For Hausdorff weakly locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.

Proof. (a) \Rightarrow (b):This is obvious by corollary 2.12.

(b) \Rightarrow (a):This is obvious by theorem 2.7.

<u>Theorem2.18</u>: Every $P \quad Q - set$ space X is an LC - space.

Proof. If L is a Lindelöf subset in X, which is a Q-set space, then L is an F_{σ} - closed set, but X is a P-space, so L is a closed set, hence X is an LC-space.

<u>Theorem2.19</u>: For a weakly locally Lindelöf Q - set space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.
- **Proof.** (a) \Rightarrow (b): This is obvious by corollary 2.12.
 - (b) \Rightarrow (a): This is obvious by theorem 2.18.

<u>Theorem2.20</u>: For a locally Lindelöf Q - set space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.
- (c) X is an L_1 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i) and theorem 2.10.

- (b) \Rightarrow (a): This is obvious by theorem 2.18.
- (b) \Rightarrow (c): This is obvious by theorem 2.10.
- (c) \Rightarrow (b): This is obvious by theorem 2.10.

<u>Corollary2.21</u>: For a weakly locally Lindelöf L_2 – *space X* the following are equivalent:

- (a) X is an $L_1 space$.
- (b) X is a P-space.

Proof. This is obvious by proposition 2.9 and theorem 2.10.

Theorem 2.22: For a locally Lindelöf L_3 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an L_1 space.
- (c) X is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): This is obvious by theorem 2.5(ii).

(b) \Rightarrow (c): This is obvious by theorem 2.10.

(c) \Rightarrow (b): This is obvious by theorem 2.10.

Corollary2.23:

- (i) Every weakly locally Lindelöf LC space is locally Lindelof.
- (ii) Every LC space having a dense Lindelöf Subset is locally Lindelof.

Proof. Obvious.

<u>Corollary2.24</u>: For a regular locally Lindelöf L_1 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is T_1 .

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a regular, then X is a Hausdorff.

Since X is a locally Lindelöf L_1 – space, then X is an LC – space by corollary 2.11.

Definition2.25[5]: A topological space (X,T) is a R_1 – space if x and y have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

<u>Corollary2.26</u>: For R_1 locally Lindelöf L_1 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is T_1 .

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a R_1 , then X is a Hausdorff by definition 2.25.

Since X is a locally Lindelöf L_1 – space, then X is an LC – space by corollary 2.11.

Theorem2.27:

For a Tychonoff weakly locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12.

(b) \Rightarrow (a):This is obvious by corollary 2.8.

<u>Theorem2.28</u>: For P - space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an $L_3 space$.
- **Proof.** (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let L be a Lindelöf subset of X ,then L is F_{σ} - closed set (since

X is an L_3 – space), so L is closed set(since X is a P-space), hence X is

an LC-space.

<u>Theorem2.29</u>: For a weakly locally Lindelöf L_3 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12.

(b) \Rightarrow (a):This is obvious by theorem 2.28.

<u>Corollary2.30</u>: Every weakly locally Lindelöf $P L_3 - space$ is locally Lindelöf.

Proof. Obvious.

Theorem2.31: For a Hausdorff locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space and an $L_2-space$.

Proof. (a) \Rightarrow (b): Let X be an LC - space, then X is an L_2 - space and an L_1 - space

. Since X is a locally Lindelöf, then X is a P-space by theorem 2.10.

(b) \Rightarrow (a):Let *L* be a Lindelöf subset of (X,T) and let $x \notin L$.Since (X,T) is

Hausdorff, for each $y \in L$ there exist an open set V_y containing y with $x \notin clV_y$.

Clearly $\{V_y : y \in L\}$ is a cover of L and so there exists a countable set $C \subseteq L$

such that $L \subseteq \bigcup_{y \in C} V_y \subseteq \bigcup_{y \in C} clV_y$. For each $y \in C$, $L \cap clV_y$ is Lindelöf and

so $cl(L \cap clV_y)$ is Lindelöf since (X,T) is an L_2 – space.

Furthermore, if $W = \bigcup_{y \in C} cl(L \cap clV_y)$ then W is a Lindelöf F_{σ} – *closed* set and, since (X, T) is a P – *space*, W is a closed Lindelöf set not containing x. Thus $x \notin clL$. This shows that L is closed in (X, T).

<u>Theorem2.32</u>: Every Q – set L_1 – space is an L_2 – space.

Proof. Let L be a Lindelöf subset of X, then L is an F_{σ} – closed set (since X is a Q – set space), so L is closed set(since X is an L_1 – space), then L = clL and clL is a Lindelöf. Hence X is an L_2 – space.

Theorem2.33: For a locally Lindelöf Q – set space X the following are equivalent:

- (a) X is an L_1 space.
- (b) X is a P-space and an $L_2-space$.

Proof. (a) \Rightarrow (b): Let X be an L_1 – space, since X is a Q – set space, then X is

an L_2 – space by theorem 2.32. Since X is a locally Lindelöf L_1 – space, then X is a

P-space by theorem 2.10.

(b) \Rightarrow (a): This is obvious by theorem 2.5(vii).

Definition2.34 [2]: A topological space (X,T) is called aweak P – *space* if any countable union of regular closed sets is closed. One can show easily that (X,T) is aweak P – *space* if and only if for every countable family $\{U_n : n \in \omega\}$ of open sets, $cl\left(\bigcup_{n \in \omega} U_n\right) = \bigcup_{n \in \omega} clU_n$.

<u>Corollary2.35</u>: Every P - space(X,T) is a weak P - space.

Proof. Let F be a countable union of regular closed sets in P – space (X,T), then F is an

is an F_{σ} - closed set, so F is a closed set(since X is a P - space), hence X is a weak P - space.

Corollary2.36:

(i) Every locally Lindelöf LC - space(X,T) is weak P - space.

- (ii) Every weakly locally Lindelöf LC space(X,T) is weak P space.
- (iii) Every Lindelöf LC space(X,T) is weak P space.

Proof. Obvious.

<u>Corollary2.36</u>: For a Hausdorff locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space and an $L_2-space$.
- (c) X is an L_1 space.

Proof. This is obvious by theorem 2.16 and theorem 2.33.

Theorem 2.37: Every locally Lindelöf weak P - space(X,T) is $L_4 - space$.

Proof. Let *L* be a Lindelöf subset of (X,T). Each point of *L* has an open neighborhood U_x such that clU_x is Lindelöf. Pick accountable subset *C* of *L* such that $L \subseteq \bigcup_{x \in C} U_x$. Since (X,T) is aweak P-space we have $clL \subseteq \bigcup_{x \in C} clU_x = W$. Since *W* is Lindelöf we conclude that clL is Lindelöf and closed, so clL is Lindelöf F_{σ} - closed set, hence (X,T) is an L_4 - space.

3. Co- Lindelöf Topologies:

<u>Theorem3.1 [2]</u>: For a *space* (X,T) the following are equivalent:

- (a) (X,T) is an L_1 -space.
- (b) (X, l(T)) is a P-space.

<u>Corollary3.2</u>: If (X,T) is Lindelöf space then l(T) = T.

Proof: Obvious.

<u>Corollary3.3</u>: If (X,T) is an LC-space then (X,l(T)) is a P-space.

Proof: This is obvious by theorem 2.5(i) and theorem 3.1.

<u>Theorem3.4</u>: For a L_3 – space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is an L_3 – space, then (X,T) is an LC – space by theorem 2.5(ii).

Theorem3.5 [1]: Every Q - set space is an L_3 - space.

<u>Corollary3.6</u>: Every Q-set L_1 -space is an LC-space.

Proof. Let X be Q-set space, then X is an $L_3-space$ by theorem 3.5, since X

is an L_1 – space, then X is an LC – space by theorem 2.5(ii).

Theorem3.7: For a Q-set space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Q-set space, then (X,T) is an LC-space by corollary 3.6.

<u>Theorem3.8</u>: For a locally Lindelöf space (X,T) the following are equivalent:

- (a) (X,T) is a P-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): Let (X,T) be a *P*-space. Since (X,T) is a locally Lindelof space, then

(X,T) is an L_1 - space by theorem 2.10, hence (X, l(T)) is a *P*-space by theorem 3.1.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a locally Lindelöf space, then (X,T) is an *P*-space by theorem 2.10.

Definition3.9 [1]: A topological space (X,T) is said to be anti – Lindelöf if each Lindelof subset of X is countable.

<u>Theorem3.10 [2]</u>: Every T_1 anti-Lindelöf space is an L_3 -space. Hence every T_1 , anti-Lindelöf L_1 -space is an LC-space.

Theorem3.11: For a T_1 anti- Lindelöf space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

- (b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem
- 3.1. Since (X,T) is T_1 anti-Lindelöf space, then (X,T) is an LC space by theorem 3.10.

Theorem3.12 [2]: For a Hausdorff space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an L_1 space and an L_2 space.

Theorem3.13: For a Hausdorff L_2 – space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Hausdorff L_2 – space, then (X,T) is an LC – space by theorem 3.12.

<u>Theorem3.14 [4]</u>: Acountable union of Lindelöf subset is Lindelöf.

<u>Theorem3.15</u>: Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup_{n \in \omega} A_n$, then A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem3.14. Since X is an L_1 – space, then A is closed in X, hence X is a P – space.

Theorem3.16: For a Hausdorff Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an L_1 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – space, since X is a Lindelöf space, then X is

- a P-space by theorem 3.15.Since X is a Hausdorff space, then X is
- an LC-space by theorem 2.7.

Theorem3.17: For a Hausdorff Lindelöf space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof: (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Hausdorff Lindelöf space, then (X,T) is an LC – space by theorem 3.16.

Theorem3.18: For a Hausdorff locally Lindelöf space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof: (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space theorem 3.1.

Since (X,T) is a Hausdorff locally Lindelöf space, then (X,T) is an *LC*-space by corollary 2.11.

<u>Corollary3.19</u>: If (X,T) is an L_1 – space then (X,l(T)) is an L_1 – space.

Proof. Let (X,T) be an L_1 – space, then (X,l(T)) is a P – space by theorem 3.1. Hence

(X, l(T)) is an L_1 – space by theorem 2.5(vii).

Definition3.20[7]: A topological space (X,T) is *cid* – *space* if every countable subset of X is closed and discrete.

<u>Remark3.21[7]</u>: Every LC - space is cid - space.

Theorem3.22: For anti – Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is cid space.

Proof. (a) \Rightarrow (b): This is obvious by remark 3.21.

(b) \Rightarrow (a): Let L be a Lindelöf subset of X, then L is countable (since X

is anti – Lindelöf), so *L* is a closed set(since *X* is cid - space), hence *X* is an *LC* – *space*.

<u>Corollary3.23</u>: If (X,T) is a anti-Lindelöf *cid* – *space* then (X,l(T)) is a *P* – *space*.

Proof: Let (X,T) be a anti-Lindelöf *cid* – *space*, then (X,T) is an *LC* – *space* by theorem 3.22. Hence (X, l(T)) is a *P* – *space* by corollary 3.3.

Theorem3.24 [2]: Every $T_1 L_1$ – space is cid.

Theorem3.25: For a T_1 anti- Lindelöf space (X,T) the following are equivalent:

- (a) (X,T) is *cid*-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): Let (X,T) be *cid* – *space*. Since (X,T) is a anti-Lindelof space,

Then (X,T) is an L_1 – space by theorem 3.22 and theorem 2.5(i), hence (X, l(T)) is a P – space by theorem 3.1.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is T_1 space, then (X,T) is *cid* – *space* by theorem 3.24.

Theorem3.26: If (X, l(T)) is a Lindelöf LC - space then (X, T) is an L_1 - space.

Proof. For each $n \in \omega$, let A_n be closed and Lindelöf in (X,T) and let $A = \bigcup_{n \in \omega} A_n$. Since (X, l(T)) is a Lindelöf LC – *space*, then each A_n is closed and Lindelöf in (X, l(T)) and so A is also closed and Lindelöf in (X, l(T)) by theorem3.14. Hence A is closed in (X, T) and so (X, T) is an L_1 – *space*.

4. Locally LC- spaces:

Definition 4.1 [6]: A topological space (X,T) is called a Locally LC – space if each point of X has a neighborhood which is an LC – subspace.

Clearly every LC - space is locally LC - space. In general the converse needs not be true [5], however every regular locally LC - space is LC - space.

Definition4.2[6]: A topological space (X,T) is called an LC-space if each point of X has a closed neighborhood that is an LC-subspace.

<u>Theorem4.3[3]</u>: Every locally LC – space is T_1 . **<u>Theorem4.4</u>**: For a regular P – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.
- (c) X is an T_1 space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

(b) \Rightarrow (a): This is obvious by definition 4.1.

(b) \Rightarrow (c):This is obvious by theorem 4.3.

(c) \Rightarrow (b):Let X be a T_1 – space, since X is a regular, then X is a Hausdorff.

Since X is a P-space, then X is an LC-space by theorem 2.7, hence X

is a locally LC - space by definition 4.1.

Corollary4.5: For a Finite topological *space X* the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.

Proof. Obvious .

<u>Theorem4.6</u>: For a R_1 *P*-space *X* the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.
- (c) X is $T_1 space$.
- (d) X is a Hausdorff space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

- (b) \Rightarrow (a): This is obvious by theorem 4.3, definition 2.25 and definition 4.1.
- (b) \Rightarrow (c): This is obvious by theorem 4.3.

(c) \Rightarrow (b): Let X be a T_1 – space, since X is a R_1 , then X is a Hausdorff by definition 2.25. Since X is a P – space, then X is an LC – space by theorem 2.7, hence X is a locally LC – space by definition 4.1.

- (c) \Rightarrow (d):This is obvious by definition2.25.
- (d) \Rightarrow (c):Obvious .

<u>Theorem4.7</u>: For a regular L_1 L_2 – space X the following are equivalent:

- (a) X is a locally LC-space.
- (b) X is T_1 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a regular L_1 L_2 – space, then X

is an LC – space by theorem 3.12, hence X is a locally LC – space by definition 4.1.

Theorem4.8: For a regular locally Lindelöf L_1 – space X the following are equivalent:

- (a) X is a locally LC-space.
- (b) X is $T_1 space$.

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a regular locally Lindelöf L_1 – space,

then X is an LC – space by corollary 2.11, hence X is a locally LC – space by definition 4.1.

Theorem 4.9 [3]: Every locally compact Hausdorff space is T_3 .

Theorem 4.10: For a locally compact R_1 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

(b) \Rightarrow (a): Let X be a locally LC – *space*, then X is a T_1 – *space* by theorem 4.3. Since X is a R_1 – *space*, then X is a Hausdorff by definition 2.25. Since X is a locally compact, so X is a regular by theorem 4.9, hence X is an LC – space by

definition 4.1.

Proposition4.11 [3]: For a *space X* the following are equivalent:

- (a) X is a locally LC-space.
- (b) Every point of X has an open neighborhood, which is an LC subspace of X.

Theorem4.12: Every 2^{nd} countable (C_{11}) , a locally LC – space is discrete.

Proof. Let (X,T) be 2^{nd} countable and a locally LC – *space*. We may assume that every point $x \in X$ has an open neighborhood U that is both hereditarily Lindelöf and an LC – *space* (since X is a 2^{nd} countable and by Proposition 4.11). But this means that U is an open discrete subspace of (X,T). Hence (X,T) is discrete.

Theorem4.13: If (X,T) a regular space has an open cover by locally LC – subspaces,

then X is an LC - space.

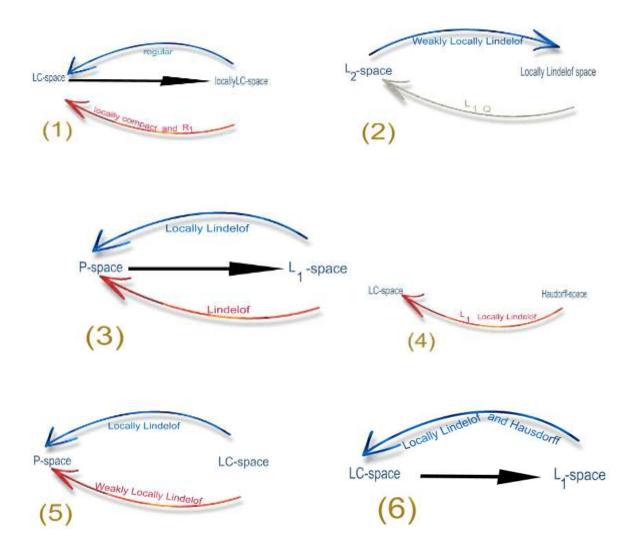
Proof. Let $X = \bigcup_{i \in I} G_i$ be an open cover of X where each G_i is a locally LC - space, and let $x \in X$. Choose $j \in I$ such that $x \in G_j$. If U_j is an open and closed neighborhood(since X is a regular) of x in G_j such that U_j is an LC - space of G_j , then U_j is also open and closed in (X,T). By definition 4.2, (X,T) is an LC - space.

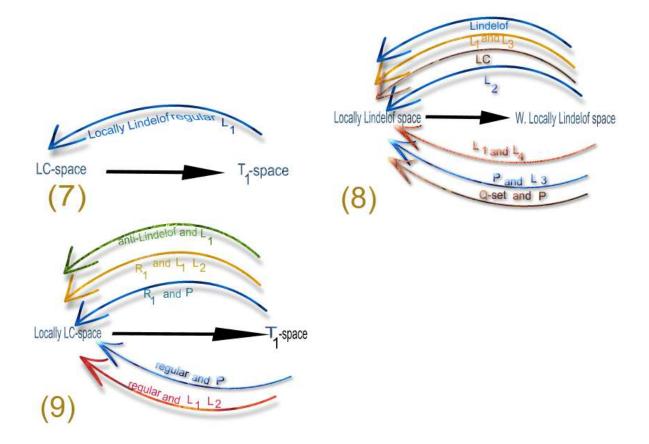
Theorem 4.14: If (X,T) a regular space has an open cover by LC – subspaces,

then X is an LC - space.

Proof. Let $X = \bigcup_{i \in I} G_i$ be an open cover of X where each G_i is LC - space, and let $x \in X$. Choose $j \in I$ such that $x \in G_j$. If U_J is a closed neighborhood (since X is a regular) of x in G_j such that U_J is an LC - space of G_j , then U_J is also closed in (X, T). By definition 4.2, (X, T) is an LC - space.

We have the following diagrams:





Refereces

[1]Bankston P., The total negation of a topological property, Illinois J. Math. 23 (1979),

241-255.

- [2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC- spaces, Acta Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.
- [3] Dontchev J., Ganster M. and Kanibir A., On locally LC- spaces, Math.GN. Vol. arXiv,7(1998), pp. 1-5.
- [4] Engelking R. ,General Topology. Heldermann Verlag, Berlin, revised and completed edition,1989.
- [5] Dontchev J., Ganster M., On the product of LC *spaces*, Q & A in General Topology15 (1997), 71–74.

- [6] Ganster M., Kanibir A., Reilly I., Two Comments Concerning Certain Topological Spaces ,Indian J., Pure Appl. Math.29(9)965-967, September1998..
- [7] Ganster M. and Jankovic D., On spaces whose Lindelöf subsets are closed, Q & A in General Topology 7 (1989), 141–148
- [8] Gauld D. B., Mrsevic M., Reilly I. and Vamanamurthy M. K., Co-Lindelof topologies and I-continuous functions, Glasnik Mat. 19(39) (1984),297-308.
- [9] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67-72.
- [10] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in

General Topology 4 (1986), 3-13. [11] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.

- [12] Misra A. K., A topological view of P-spaces, Topology & Appl.2(1972),349-362.
- [13] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.
- [14]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141-143.