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Abstract:
The aim of this paper is to continue the study of locally Lindel6f spaces,Co- Lindelof
topologies and locally LC — spaces . We also study their relationships to L, —spaces  i=12,34
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1. Introduction:

Dontchev, Ganster and Kanibir [2]introduced the class of locally Lindel6f and weakly

locally Lindel6f by definitions, a topological space (X,T) is called locally Lindelof (resp. weakly
locally Lindelof) if each point of X has a closed Lindel6f (resp. Lindel6f) neighborhood.

In 1984, Gauld, Mrsevic, Reilly and Vamanamurthy [8] introduced the Co- Lindel6f topology
of a given space(X,T).They showed that I(T)={p}U{GeT:X -G is Lindelof in (X,T)}is
atopology on X with(T)< T, called the Co- Lindelsf topology of (X,T).


mailto:Reyadh_delphi@yahoo.co.uk

Ganster, Kanibir and Reilly [6] introduced the class of locally LC —spaces .By definition, a
topological space (X,T) is called a Locally LC —space if each point of X has a neighborhood

which is an LC —subspace. In[6], the authors proved that a space (X, T) is an LC —space if each
point of X has a closed neighborhood that is an LC — subspace.Thus every regular locally
LC —spaceis an LC — space ,a result first proved by Hdeib and Pareek in[10].

A setF in atopological space is called F, —closed if it is the union of at most countably

many closed sets. A setG iscalleda G_ — Oopen ifitis the intersection of at most countably

many open sets [4]

In this paper, we consider and study of locally Lindelof spaces, Co- Lindel6f topologies and
locally LC — spaces .Furthermore, basic properties, preservation theorems and relationships of

locally Lindel6f spaces, Co- Lindelof topologies and locally LC —spaces, are investigated.

Moreover, to obtain several characterization and properties of locally Lindel6f spaces, Co- Lindelof
topologies and locally LC —spaces .

Our terminology is standard. The closure of a subset A of a space (X ,T) is denoted by clA
.The set of all positive integer is denoted by @ .

2. locally Lindelof and weakly locally Lindel6f :

Definition2.1 [2]: A topological space (X,T) is called locally Lindelof (resp. weakly locally

Lindelof) if each point of X has a closed Lindelof (resp. Lindelof) neighborhood. It follows
immediately from the definition that every locally Lindel6f space is a weakly locally Lindelof.

Note that a weakly locally Lindel6f space need not be a locally Lindel6f space.

Definition2.2: A topological space (X,T) is an LC —space if every Lindelof subset of X is
closed[7],[13].Notice that LC — spaceis also known under the name L —closed [9].[11]and [14].

Definition2.3[12]: A topological space (X, T )is called P —space if everyG_ — open

setin X isopen .

Definition2.4 [2]: A topological space (X,T) is called

(1) an L, —space if every Lindeléf F_ —closed is closed,

(2) an L, —spaceif clL is Lindelof whenever L < X is Lindelof,
(3) an L, —spaces if every Lindel6f subsetL isan F_ —closed ,

o2

(4) an L, —space if whenever L < X is Lindel6f, then there is a Lindelof

F_—closed F withLc F ccIL.



Theorem?2.5 [2]:

(i)  If(X,T)isan LC—space, then (X,T)isa L, —space, i=1,2,3,4.

(i)  If (X,T)isan L, —space and an L, —space, then(X,T) is an LC — space.

(iii) ) Every space which is L, —space and L, —space isanL, —space.

(iv)  Every L, —space isan L, —Space and every L, —spaceis an L, —space.

(v)  Every Ly —spaceisT,.

(vi)  Every Lindelof space is an L, —space ,and every L, —space having a dense Lindelof

Subset is Lindelof.

(vii) Every P — spaceisan L, —space.

Definition2.6 [2]: A topological space (X,T) is called a Q — Set space if each subset of X

isan F_ —closed sets.

Theorem?2.7 [12]: Every Huasdorff P —spaceis an LC —space.

Corollary2.8: Every Tychonoff P —space isanLC —space.

Proof. Obvious.

Proposition2.9 [2]: Every weakly locally Lindel6f L, —space is locally Lindel6f,and so

Every weakly locally Lindel6f space which is L andL, is locally Lindel6f.

Theorem?2.10 [2]:

Every locally Lindelsf space(X,T) isanL, —space if and only if it is a P — space.

Corollary2.11 [2]: Every Huasdorff , locally Lindel6f L, —space is an LC —space.

Corollary2.12 [2]: Every weakly locally Lindelsf LC —space (X,T) isa P —space.

Corollary 2.13: For a Lindeldf space X the following are equivalent:

(@ X s locally Lindeldf.
(b) X isaweakly locally Lindelof.

Proof. This is obvious by definition 2.1,

Corollary 2.14: Foran L, —space X the following are equivalent:
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(@ X s locally Lindeldf.
(b) X isaweakly locally Lindelof .
Proof. (a) = (b): This is obvious by definition 2.1.
(b) = (a): This is obvious by proposition 2.9.

Corollary 2.15: Fora LC —space X the following are equivalent:

(@ X islocally Lindeldf .
(b) X isaweakly locally Lindelof .
Proof. (a) = (b): This is obvious by definition 2.1.
(b) = (@) : This is obvious by theorem 2.5(i)and proposition 2.9.

Theorem 2.16: For a Hausdorff locally Lindelof space X the following are equivalent:

(@ Xisan LC—space .
(b) Xisan L, —space.
(c) Xisa P—space.
Proof. (a) = (b): This is obvious by theorem 2.5(i).
(b) = (@): Let X be an L, —space,since X is a Hausdorff locally Lindelof space,
then X isan LC —space by corollary 2.11.

(b) = (c) : This is obvious by theorem 2.10.

(c) = (b) : This is obvious by theorem 2.10.

Theorem2.17: For Hausdorff weakly locally Lindelof space X the following are equivalent:

(@) X isan LC—space.
(b) X isa P—space.
Proof. (a) = (b):This is obvious by corollary 2.12.
(b) = (a):This is obvious by theorem 2.7.

Theorem2.18: Every P Q—setspace X isan LC—space .

Proof. If L isa Lindelof subsetin X ,whichisa Q —set space, then L is anF_ —closed set, but
X isa P—space,soLis aclosedset, hence X is an LC —space .
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Theorem?2.19: For a weakly locally Lindeléf Q —set space X the following are equivalent:

(@) X isan LC—space.
(b) X isa P—space.
Proof. (a) = (b): This is obvious by corollary 2.12.
(b) = (a): This is obvious by theorem 2.18.

Theorem2.20: For a locally Lindelof Q —set space X the following are equivalent:

(@) X isan LC —space.
(b) X isa P—space.
(c) X isan L, —space.
Proof. (a) = (b): This is obvious by theorem 2.5(i)and theorem2.10.
(b) = (a): This is obvious by theorem 2.18.

(b) = (c): This is obvious by theorem 2.10.

(c) = (b): This is obvious by theorem 2.10.

Corollary2.21: For a weakly locally Lindelof L, —space X the following are equivalent:

(@) Xisan L, —space.
(b) X'isa P —space.
Proof. This is obvious by proposition 2.9 and theorem 2.10.

Theorem 2.22: For a locally Lindel6f L, —space X the following are equivalent:

(@) X isan LC—space.
(b) X isan L, —space.
(c) X isaP—space.
Proof. (a) = (b): This is obvious by theorem 2.5(i).
(b) = (a): This is obvious by theorem 2.5(ii).
(b) = (c): This is obvious by theorem 2.10.

(c) = (b): This is obvious by theorem 2.10.



Corollary2.23:

(i) Every weakly locally Lindeléf LC —space is locally Lindelof.
(ii)  Every LC —space having a dense Lindelf Subset is locally Lindelof.
Proof. Obvious.

Corollary2.24: For aregular locally Lindel6f L, —space X the following are equivalent:

(@) X isan LC—space.
(b) X is T,.
Proof. (a) = (b): Obvious.
(b) = (a): Let X be a T, —space since X isaregular, then X is a Hausdorff .

Since X isa locally Lindelof L, —space, then X isan LC —space by corollary 2.11.

Definition2.25[5]: A topological space (X,T)is a R, —space ifx and y have disjoint
neighborhoods whenever  cl{x}=cl{y} .Clearly a space is Hausdorff if and only if its
T, and R;.

Corollary?.26: For R, locally Lindelof L, —space X the following are equivalent:

(@) X isan LC—space.
(b) Xis T,.
Proof. (a) = (b): Obvious.
(b) = (a): Let X be a T, —space since X isaR, ,then X is a Hausdorff by definition2.25.
Since X isa locally Lindel6f L, —space then X is an LC —space by corollary 2.11.

Theorem?2.27:

For a Tychonoff weakly locally Lindel6f space X the following are equivalent:
(@) X is an LC—space.
(b) X is a P— space.

Proof. (a) = (b):This is obvious by corollary 2.12.

(b) = (a):This is obvious by corollary 2.8.



Theorem?2.28: For P —space X the following are equivalent:

(@ X isan LC-—space .
(b) X isan L, —space.
Proof. (a) = (b): This is obvious by theorem 2.5(i).
(b) = (a): Let L bea Lindel6f subset of X ,then L is F_ —closed set (since
Xis an L; —space),so L is closed set( since X isa P —space) ,hence X is
an LC —space .

Theorem2.29: For a weakly locally Lindeléf L, —space X the following are equivalent:

(@) X isan LC—space.
(b) X isa P—space.
Proof. (a) = (b): This is obvious by corollary 2.12.
(b) = (@):This is obvious by theorem 2.28.

Corollary2.30: Every weakly locally Lindelof P L, —space is locally Lindel6f.

Proof. Obvious.

Theorem?2.31: For a Hausdorff locally Lindelf space X the following are equivalent:

(@) X isan LC—space.
(b) X isa P—space andanL,—space.
Proof. (a) = (b): Let X be anLC —space, then X isanL, —space andan L, —space
.Since X isalocally Lindelof, then X isa P —space by theorem 2.10.
(b) = (a):Let L be a Lindelof subset of (X,T) and letx ¢ L.Since(X,T) is

Hausdorff, for each y e L there exist an open set V, containingy withx ¢ clV, .

Clearly {\/y ye L}is a cover of L and so there exists a countable setC c L

such thatL =  JV, = | Jclv, ForeachyeC , LNclV, is Lindeléf and

yeC yeC

so cl (L N C|Vy) is Lindelof since (X, T )is an L, —space.
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Furthermore, ifW = | JcI(LNclV, )thenW is a Lindelof F, — closed set and, since (X, T)

yeC

isaP —space,W isa closed Lindel6f set not containing X . Thus x ¢ clL .This shows that L
is closed in (X, T).

Theorem?2.32: EveryQ —set L, —spaceis an L, —space.

Proof. Let L be a Lindel6f subset of X , thenLisan F_ —closed set (since X isa
Q —set space),so Lis closed set(since X isan L, —space),thenL =clLandclL is
aLindelof. Hence X is anL, —space.

Theorem2.33: For a locally Lindelof Q —set space X the following are equivalent:

(@ X isan L, —space.
(b) X isa P—spaceand anL, —space.
Proof. (a) = (b): Let X be an L, —space ,since X isaQ —set space, then X is

an L, —space by theorem 2.32. Since X is a locally Lindelof L, —space, then X is a
P —space by theorem 2.10.

(b) = (@): This is obvious by theorem 2.5(vii).

Definition2.34 [2]: A topological space (X,T) is called aweak P —space if any countable

union of regular closed sets is closed. One can show easily that (X,T)is aweak P —space if and

only if for every countable family {U, :n e o}of open sets, Cl[UU nj = UClU .
nNew New

Corollary2.35: Every P —space (X,T) is a weak P — space .

Proof. Let F be a countable union of regular closed sets in P —space (X,T), then F s an
isan F_ —closed set, soF is a closed set(since X isaP —space ),hence X is a weak
P —space.

Corollary?2.36:

(i) Every locally Lindelsf LC —space (X,T) is weak P — space .



(ii) Every weakly locally Lindelof LC —space (X ,T) is weak P — space .
(iiii) Every Lindelsf LC —space (X,T) is weak P — space .
Proof. Obvious.

Corollary2.36: For a Hausdorff locally Lindel6f space X the following are equivalent:

(@) X isan LC—space.
(b) X isa P—spaceand an L, —space.
(c) X isanl, —space.
Proof. This is obvious by theorem 2.16 and theorem 2.33.

Theorem?2.37: Every locally Lindel6f weak P — space (X,T)is L, —space.

Proof. Let L be a Lindel6f subset of(X,T).Each point of L has an open neighborhoodU, such that
clU, is Lindelof. Pick accountable subsetC of Lsuch thatL UUx .Since (X,T)is aweak

xeC

P —space we haveclL UC|U « =W SinceW is Lindel6f we conclude thatclL is Lindel6f and

xeC

closed ,s0 clL is Lindelof F, —closed set hence(X,T) isanL, —space.

3. Co- Lindelof Topologies:

Theorem3.1 [2]: Fora space (X,T) the following are equivalent:

@ (X,T) isan L, —space.
(b) (X,I(T)) isa P —space.

Corollary3.2: If (X,T)is Lindelsf space thenI(T)=T .

Proof: Obvious.

Corollary3.3: If (X,T)is an LC —space then(X,I(T)) is aP — space..

Proof: This is obvious by theorem 2.5(i) and theorem 3.1.

Theorem3.4: For a L, —space (X,T)the following are equivalent:

@ (X,T) isan LC—space.
(b) (X,1(T)) is a P—space.

Proof. (a) = (b): This is obvious by corollary 3.3.
9



(b) = (a): Let (X,I(T)) be a P—space,then (X,T)isan L, —space by theorem 3.1.
Since (X,T) isan L,—space,then(X,T)isan LC—space by theorem 2.5(ii).

Theorem3.5 [1]: Every Q—setspaceisan L, —space.

Corollary3.6: Every Q—set L, —space isan LC —space.

Proof. Let X be Q—setspace, then X isan L; —space by theorem3.5,since X
isan L, —space,then X is an LC —space by theorem?2.5(ii).

Theorem3.7: Fora Q —set space (X, T )the following are equivalent:

@ (X,T) isan LC—space.

(b) (X,I(T)) isa P—space.

Proof. (a) = (b): This is obvious by corollary 3.3.
(b) = (a): Let (X,I(T)) be a P —space then (X,T)isan L, —space by theorem 3.1.
Since (X,T) isa Q—set space, then (X,T)isan LC —space by corollary 3.6.

Theorem3.8: For a locally Lindelsf space (X, T )the following are equivalent:

@ (X,T) isa P—space.
(b) (X,I(T))isa P —space.
Proof. (a) = (b): Let (X,T) bea P —space.Since (X,T) is a locally Lindelof space,then
(X,T)isan L, —space by theorem 2.10,hence (X,I(T)) isa P —space by theorem 3.1.
(b) = (a): Let (X,I(T)) be a P —space then (X,T)isan L, —space by theorem 3.1.
Since (X,T) is a locally Lindel6f space, then (X,T )isan P —space by theorem 2.10.

Definition3.9 [1]: A topological space (X,T) is said to be anti — Lindeldf if each Lindelof
subset of X is countable.

Theorem3.10 [2]: Every T, anti- Lindelof space is an L, —space .Hence every T, anti-

Lindelof L, —space is an LC—space .

Theorem3.11: For a T, anti- Lindelsf space (X,T)the following are equivalent:
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@) (X,T) isan LC—space.
(b) (X,I(T))isa P —space.
Proof. (a) = (b): This is obvious by corollary 3.3.
(b) = (a): Let (X,I(T)) be a P—space,then (X,T)isan L, —space by theorem
3.1. Since (X, T) is T, anti- Lindelsf space, then(X,T)isan LC —space by
theorem 3.10.

Theorem3.12 [2]: For a Hausdorff space X the following are equivalent:

(@ Xisan LC—space .
(b) XisanL, —spaceand anL, —space.

Theorem3.13: For a Hausdorff L, —space (X,T )the following are equivalent:

@ (X,T) isan LC—space.
(b) (X,I(T))isa P —space.
Proof. (a) = (b): This is obvious by corollary 3.3.
(b) = (a): Let (X,I(T)) be a P —space,then (X,T)isan L, —space by theorem 3.1.
Since (X,T) is a Hausdorff L, —space, then (X,T)isan LC —space by theorem 3.12.

Theorem3.14 [4]: Acountable union of Lindel6f subset is Lindel®f.

Theorem3.15: Every Lindelof L, —space is aP —space.

Proof. For eachN € @, let A, be closed in Lindelof L, —space X and A= UAn then A is

New

a Lindelof subset in X and thus A is a Lindelof subset in X by theorem3.14. Since X is an
L, —space, then Aisclosed in X ,hence X isa P —space.

Theorem3.16: For a Hausdorff Lindelof space X the following are equivalent:

(@ X isan LC-—space .
(b) X isan L, —space.
Proof. (a) = (b): This is obvious by theorem 2.5(i).

(b) = (@): Let X be an L, —space,since X isa Lindelof space ,then X is
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a P —space by theorem 3.15.Since X is a Hausdorff space, then X is

an LC —space by theorem 2.7.

Theorem3.17: For a Hausdorff Lindelsf space (X, T )the following are equivalent:

@ (X,T) isan LC—space.
(b) (X,I(T)) isa P —space.
Proof: (a) = (b): This is obvious by corollary 3.3.
(b) = (a): Let (X,I(T)) be a P —space,then (X,T)isan L, —space by theorem 3.1.
Since(X,T) is a Hausdorff Lindelof space, then (X, T )is an LC — space by theorem3.16.

Theorem3.18: For a Hausdorff locally Lindelof space (X ,T)the following are equivalent:

@) (X,T) isan LC—space.
(b) (X,I(T))isa P —space.
Proof: (a) = (b): This is obvious by corollary 3.3.
(b) = (a): Let (X,I(T)) be a P—space,then (X,T)isan L, —space theorem 3.1.
Since (X,T) is a Hausdorff locally Lindelsf space, then (X,T)isan LC —space by
corollary 2.11.

Corollary3.19: If (X,T)isan L, —space then(X,I(T)) isan L, —space.

Proof. Let (X,T) be anL, —space, then (X,I(T))isaP —space by theorem3.1.Hence
(X,I(T)) isan L, —space by theorem 2.5(vii).

Definition3.20[7]: A topological space(X,T) is cid — space if every countable subset of X is
closed and discrete.

Remark3.21[7]: Every LC —space iscid —space .

Theorem3.22: For anti — Lindel6f space X the following are equivalent:

(@ X isan LC—space .
(b) X is cid —space.
Proof. (a) = (b): This is obvious by remark 3.21.
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(b) = (a): Let L be a Lindelof subset of X , thenL is countable ( since X

is anti — Lindelof), so L is a closed set(since X iscid —space), hence X is an LC — space.

Corollary3.23: If (X,T)is a anti- Lindelsf cid —space then(X,1(T)) is aP —space .

Proof: Let (X,T) be aanti- Lindelsf cid —space, then (X, T )is an LC — space by
theorem 3.22.Hence (X,I(T)) isa P —space by corollary 3.3.

Theorem3.24 [2]: Every T, L, — spaceis cid.

Theorem3.25: For a T, anti- Lindel6f space (X, T )the following are equivalent:

@ (X,T) is cid —space.
(b) (X,1(T)) isa P —space.
Proof. (a) = (b): Let (X,T) be cid —space .Since (X,T) isa anti-Lindelof space,
Then(X,T)isan L, —space by theorem 3.22and theorem 2.5(i), hence (X,I(T)) is
a P—space by theorem 3.1.
(b) = (a): Let (X,I(T)) be a P—space,then (X,T)is an L, —space by theorem3.1.
Since (X,T) is T, space, then(X,T) is cid —space by theorem 3.24.

Theorem3.26: If (X,I(T))is a Lindelsf LC —space then(X,T) isan L, —space.

Proof. For eachN € @, let A, be closed and Lindelsf in (X,T) and let A=A, . Since

new

(X,I(T)) is a Lindelsf LC —space, then each A, is closed and Lindelofin (X,1(T)) and so A is

also closed and Lindelsf in (X,1(T)) by theorem3.14. .Hence A is closed in (X,T)and so(X,T)

isan L, —space.

4. Locally LC- spaces:

Definition4.1 [6]: A topological space (X,T) is called a Locally LC —space if each point

of X has a neighborhood which is an LC — subspace.

Clearly every LC —space is locally LC —space .In general the converse needs not be true[5],

however every regular locally LC —space is LC —space .
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Definition4.2[6]: A topological space (X,T) is called an LC —space if each point of X
has a closed neighborhood that is an LC —subspace.

Theorem4.3[3]: Every locally LC —space is T,.
Theorem4.4: Foraregular P—space X the following are equivalent:

(@ X isan LC—space .
(b) X isa locally LC —space .
(c) X isan T, —space .
Proof. (a) = (b): This is obvious by definition4.1.
(b) = (a): This is obvious by definition4.1.
(b) = (c):This is obvious by theorem 4.3.
(c) = (b):Let X be a T, —space,since X isaregular ,then X is a Hausdorff.

Since X isa P —space, then X isan LC —space by theorem 2.7, hence X

is a locally LC —space by definition4.1.

Corollary4.5: For a Finite topological sSpace X the following are equivalent:

(@) X isan LC—space.
(b) X isalocally LC —space.
Proof. Obvious .

Theorem4.6: Fora R, P —space X the following are equivalent:

(@ X isan LC—space .
(b) X isa locally LC —space .
(c) X is T, —space.
(d) X is aHausdorff space .
Proof. (a) = (b): This is obvious by definition4.1.
(b) = (a): This is obvious by theorem 4.3, definition2.25and definition4.1.

(b) = (c): This is obvious by theorem 4.3.
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(c) = (b): Let X be a T, —space,since X isa R, ,then X is a Hausdorff by

definition 2.25.Since X isa P —space, then X isan LC —space by theorem 2.7,

hence X is a locally LC —space by definition4.1.
(c) = (d):This is obvious by definition2.25.
(d) = (c):Obvious .

Theorem4.7: Foraregular L, L, —space X the following are equivalent:

(@) Xisa locally LC —space .
(b) X'is T, —space.
Proof. (a) = (b): This is obvious by theorem 4.3
(b) = (a): Let X be a T, —space,since X isaregular L, L, —space ,thenX

isan LC —space by theorem 3.12, hence X is a locally LC — space by definition4.1.

Theorem4.8: For aregular locally Lindelof L, —space X the following are equivalent:

(@ X isa locally LC —space .
(b) X isT, —space.

Proof. (a) = (b): This is obvious by theorem 4.3.

(b) = (a) : Let X be aT, —space,since X is a regular locally Lindeléf L, —space ,

then X is an LC — space by corollary 2.11 hence X is a locally LC — space by definition4.1.

Theorem4.9 [3]: Every locally compact Hausdorff space is T, .

Theorem4.10: For alocally compact R, —space X the following are equivalent:

(@ X isan LC-—space .
(b) X isa locally LC —space .
Proof. (a) = (b): This is obvious by definition4.1.

(b) = (@) : Let X be alocally LC —space,then X isaT, —space by theorem 4.3.

Since X isa R, —space ,then X is a Hausdorff by definition2.25. Since X is
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a locally compact, so X is a regular by theorem 4.9  hence X is an LC — space by

definition 4.1.

Proposition4.11 [3]: For a space X the following are equivalent:

(@ X isa locally LC—space .

(b) Every point of X has an open neighborhood, which is an LC — subspace of X .

Theorem4.12: Every2™ countable(C,, ), alocally LC —space is discrete.

Proof. Let(X,T) be2™ countable and a locally LC —space . We may assume that every point
X € X has an open neighborhoodU that is both hereditarily Lindel6f and an LC — space (since X

is a2™ countable and by Proposition 4.11).But this means thatU is an open discrete subspace of
(X,T).Hence(X,T) is discrete.

Theorem4.13: If (X ,T) a regular space has an open cover by locally LC — subspaces,

then X isan LC —space.

Proof. Let X = UGi be an open cover of X where eachG,; is a locally LC —space,and letx € X

iel
.Choose j € | suchthatx € G, .IfU; is an open and closed neighborhood(since X is a regular)of
X inG; such that U,is anLC —space of G, thenU; is also open and closed in(X,T). By

definition4.2, (X,T) is an LC — space.

Theorem4.14: If (X,T) a regular space has an open cover by LC — subspaces,

then X is an LC —space.

Proof. Let X = UGi be an open cover of X where eachG, is LC —space,and letx € X .Choose

iel
jel suchthatx e G;.IfU, is a closed neighborhood(since X is a regular)ofx inG; such that
U,isan LC —space of G, thenU; isalso closed in(X,T). By definition4.2, (X,T) is an
LC —space.

We have the following diagrams:
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