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Abstract 
    In this paper, the dynamical behavior of some eco-epidemiological models is 
investigated. Two types of prey-predator models involving infectious disease in prey 
population, which divided it into two compartments; namely susceptible population S 
and infected population I, are proposed and analyzed. The proposed model deals with 
SIS infectious disease that transmitted directly from external sources, as well as, 
through direct contact between susceptible and infected individuals. The model are 
represented mathematically by the set of nonlinear differential equations .The 
existence, uniqueness and boundedness of this model are investigated. The local and 
global stability conditions of all possible equilibrium points are established. Finally, 
using numerical simulations to study the global dynamics of the model . 
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ة المصابة /المفترسسدراسة نظام الفری  

                                                              الخلاصة
المفترس -في ھذه الرسالة ,تم بحث السلوك الدینامیكي لبعض النماذج الوبائیة.نوعان من نموذج الفریسة     

تمع الفریسة الى قسمین رئسیین الافراد السلیمة و تتضمن مرض معدي في مجتمع الفریسة ,والذي یقسم افراد مج
والذي ینتقل من الافراد السلیمة   معدي أن النموذج المقترح یتعامل مع مرض اقترحت وحلتالافراد المصابة 

 .                       الى الافراد المصابة عن طریق المصدرالخارجیة  والا تصا ل المباشر
ضیا بمجموعة من المعادلات التفاضلیة الاعتیادیة غیر الخطیة .  وجود, وحدانیة الحل تم تمثیل النوذج ریا     

شروط  الاستقراریة المحلیة و الشاملة لكل نقاط التوازن  الممكنة وضعت . واخیرا ووقیود الحل للنموذج بحثت 
 قمنا با لمحاكة العددیة لدراسة ا لدینامیكیة الشاملة في النموذج .   
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lthough the dynamics of two species prey-predator model with Holling type-
II functional response received a lot of attention in literature, it is well known 
that in nature there are different factors in any given environment, such as 

disease, refuge, switches, age structure, etc. effect the dynamics of such model. 
Anderson and May [1] were the first who formulated a prey–predator model 
involving disease in prey species. Later on many researchers, especially in the last 
two decades, have proposed and studied different types of prey-predator models in 
the presence of disease in one of the species, see for example Haque and 
Chattopadhyay [2] which studied the role of transmissible diseases in a prey 
dependent prey-predator system with prey infection; Li et al [3] proposed the SIS 
model with a limited resource for treatment. In most of the previous studies, the only 
way of transmission of disease is taken as the direct contact between the individuals. 
However, many diseases are transmitted to the susceptible individuals in the species 
not only through direct contact, but also indirectly from environment. Das et al [4] 
proposed on a prey-predator model with disease in prey that spread by contact and 
external sources, included Holling type II as a functional response. Dobson [5] 
studied the situations where the behavior of the infected host is modified by the 
action of a parasite. the infected prey may become weaker and less active so that they 
may be easily caught by the predator (Moore , [6])  
    In this chapter a prey-predator model involving SIS infectious disease in prey 
species is proposed and analyzed. It is assumed that the disease transmitted within the 
prey population by contact and an external sources .The existence, uniqueness and 
boundedness of the solution are discussed. The existence and the stability analysis of 
all possible equilibrium points are studied. Finally, the global dynamics of the model 
is carried out analytically as well as numerically.  
                                     
The mathematical model: 
      In this section, a prey-predator system involving an SIS epidemic disease in prey 
population is proposed for study. In the presence of disease, the prey population is 
divided into two classes: the susceptible individuals ( )tS  and the infected 
individuals ( )tI , here ( )tS  represents the density of susceptible individuals at time t 
while ( )tI  represents the infected individuals at time t. The prey population grows 
logistically with intrinsic growth rate r  and environmental carrying capacity 
( )0>KK . The existence of disease may causes death in the infected prey with 

positive death rate 1d .
 
 The predator species consumes the prey species (susceptible 

as well as infected) according to modified Holling type-II functional response with 
predation rate 01 >P  and 02 >P  respectively and half – saturation constant m , 
however it converts the food from susceptible and infected prey with a conversion 
rates 01 >e  and 02 >e  respectively. Finally, in the absence of prey species the 
predator species decay exponentially with a natural death rate 02 >d . Now in order 
to formulate our model, the following assumptions are adopted: 
     Consider a prey-predator system in which the density of prey at time t  is denoted 
by ( )tN   while the density of predator species at time t  is denoted by ( )tY  . We 
impose the following assumptions:     

A 
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1. Only the susceptible prey can reproduce logistically, however the infected prey 
can't reproduce but still has a capability to compete with the other prey individuals for 
carrying capacity.  
2. The susceptible prey becomes infected prey due to contact between both the 
species as well as an external sources for the infection with the contact infection rate 
constant 0β  and external infection rate 0C . However, the infected prey recover 
and return to the susceptible prey with a recover rate constant 0γ . According to the 
above hypothesis the dynamics of a prey-predator model involving an SIS epidemic 
disease in prey population can be describe by the following set of nonlinear 
differential equations:  
 

( )
nISm

SYPISCI
K

ISrS
dt
dS

++
−++−






 +
−= 11 γβ  

( )
nISm

IYPIIdSCI
dt
dI

++
−−−+= 2

1 γβ                                           …(1) 

nISm
IYPeSYPeYd

dt
dY

++
+

+−= 2211
2  

 here  
0>n  represents the preference rate constant and  ( ) 00 ≥S , ( ) 00 ≥I   and  ( ) 00 ≥Y . 

Obviously the interaction functions of the system (1) are continuous and have 
continuous partial derivatives on the region. 

( ) ( ) ( ) ( ){ }.00,00,00:,, 33 ≥≥≥∈=+ YISRYISR  Therefore these functions are 

Lipschitzian on 3
+R , and hence the solution of the system (1) exists and is unique. 

Further, in the following theorem, the boundedness of the solutions of the system (1) 

in 3
+R   is established.   

 
Theorem (1): All the solutions of the system (1) are uniformly bounded. 
proof: Let YISW ++=  then 

       
dt
dY

dt
dI

dt
dS

dt
dW
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      YdId
K
I

K
SrS

dt
dW
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












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YdId

K
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dt
dW
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
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Let  ( ){ }KSK ,0maxˆ =  and { }21,,1min ddd =  then 
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      ( ) dWrK
dt

dW
−+≤ 1ˆ                                                                                                                             

thus  ∞→t   it is easy to verify that ( )
d
rKW 1ˆ

0 +
≤≤   

Hence all solutions of system (1) are uniformly bounded and therefore we have 
finished the proof 
 
The stability analysis of system (1): 
In this section the existence and stability analysis of all feasible equilibrium points of 
system (1) are studied. 
1.The trivial equilibrium point , which denoted by ( )0,0,01 =E ,  always exists. 

2. The predator free equilibrium point that denoted by ( )0,ˆ,ˆ2 ISE = , where 

2
4ˆ 2

2
11 BBB

S
−+−

=  and 
Sd

SCI ˆ
ˆˆ

1 βγ −+
=                             …(2a)          

here  

0)(
1

1 β
βγ

r
KdrCrB +++−=  and 

β
γ
r

KCddrKB 11 )(
2

−+= , exists uniquely in 

the 2. +RInt  of −SI plane provided that the following condition holds 

r
CddS 11ˆ <+< γβ                                                                                 …(2b)                  

3. However the positive equilibrium point that denoted by ( )∗∗∗= YISE ,,3   
where  

[ ]
∗
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∗∗∗∗∗

∗∗
∗ ++

−−+=≠
−

++−
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S
2

1112
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γβ … (3a)                     

 While 

 ∗I  represents a positive root of the following third order polynomial  equation           

001
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2
3
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H
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0 =   where 112 PedH −=  
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 exists uniquely in the 3. +RInt  if and only if the following conditions are hold.  
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














0001,03

0001,03

0002,03

0002,03









AandAA
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AandAA
or
or

AandAA

                                                              …(3b) 

 
( )∗∗ +> nImdIPe 222 with 112 Ped >                                               …(3c) 

Or ( ) ∗∗ >+ IPenImd 222  with 211 dPe >                                                        
    
    Now the stability analysis of the above feasible equilibrium points of system (1) 
are studied analytical with help of Linearization method. Note that it is easy to verify 
that, the Jacobian matrix of system (1) at the trivial equilibrium point ( )0,0,01 =E  
can be written in the form: 

 ( )
















−
−−

−
=

2
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d
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EJ γ

γ
 

Thus the characteristic equation of  ( )1EJ  can be written as 
( ) ( )( )[ ]( ) 0121111

2
1 =−−+−++++−+ λγλγλ drdCddCr  

Accordingly, the eigenvalues of ( )1EJ satisfy the following relations: 
0,)(., 211111111 drdCddCr YISIS −=+−=−−−=+ λγλλγλλ                   … (4a)                                                                                                                                          

Thus  1E  is  locally asymptotically  stable provided that the following condition 
holds       

r
CddCr 1

1 <+<− γ                                                           …(4b) 

However, it is saddle point otherwise.  
The Jacobian matrix of system (1) at the predator free equilibrium point 2E  can be 
written as: 
 

 J( 2E )= 
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Consequently, the characteristic equation can be written as  
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Clearly the eigenvalues of this Jacobian matrix satisfy the following relationships: 

IST 22 λλ += ;   ISD 22 .λλ= ,and 
InSm

IPeSPedY ˆˆ
ˆˆ

2211
22

++

+
+−=λ            …(5a) 

Accordingly the equilibrium point 2E  is locally asymptotically stable provided that:              
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However, it is a saddle point otherwise. 
The Jacobian matrix of system (1)   at 3E   is given by ( ) ( ) 333 ×

= ijaEJ , 

 where: 
( )

2
2

1
111

21
M

nImYPM
K

ISra
∗∗∗∗ +

−−







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2
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1
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M
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K
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++−

−
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0
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1
13 <

−
=

∗

M
SPa            
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2

2
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M
YIPMa ,

2
2

)(2122
M

SmYPdSa
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2

2
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2
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)( ∗
∗−+

= Y
M

SPnePePmea 2
2

112222
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)( ; 033 =a   

Where 
 CIM += ∗β1  and ∗∗ ++= nISmM 2  
 Then the characteristic equation of ( )3EJ can be written as: 

032
2

1
3 =+++ BBB λλλ                                                        …(6a)     

( )22111 aaB +−= , 32233113211222112 aaaaaaaaB −−−=
( ) ( )211323113223122213313 aaaaaaaaaaB −+−=  

     According to Routh-Hurwitz criterion the equilibrium point 3E  is locally 
asymptotically stable .Provided that 01 B  , 03 B  and 0321 BBB −=∆  ,Hence 
straight forward computation show That equilibrium point 3E  is locally 
asymptotically stable provided that 

1. 
K

IS ∗∗ +21                                                                                         … (6b) 

and  γβ +∗
1dS                                                                                    …(6c) 

2. 
1122

11
PnePe

PmeI
−

∗  Or    
2211

22
pepne

pmeS
−

∗                                          …(6d)                
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3. ( ) ∗∗∗








−






 +−+ IP

K
rSPSd 211 γββγ                                                          ...(6e) 

4. ( ) ∗
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∗∗
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









+










−

+
++ SP

M
YIPMIPS

M
SmYPd 12

2

2
122

2

2
1 βγ                          …(6f)  

     Clearly, the condition (6b)-( 6d) guarantee that 12,11 aa  and 22a   are negative 
while 31a   and 32a are positive  and hence 01 B  .Further the conditions (6b)-(6e) 
guarantee that   03 B . Finally the condition (6b)-(6f) guarantee that 0321 BBB −                                                                                    
 
Theorem (2): 
   Assume that 1E  is a locally asymptotically stable point in  3

+R  then 1E  is globally 

asymptotically stable in the sub region of 3
+R  that given by: 

{ }0,:),,( 3
1 ≥+∈=Γ + YISKRYIS         

 
Proof: Consider the following positive definite function: 

( ) YISYISL ++=,,1                                                                              … (7)  

    Clearly, RRL →+
3:  is continuously differentiable function so that ( ) 00,0,01 =L  

and 0),,(1 >YISL  for all ( ) 3,, +∈ RYIS   with ( ) ( )0,0,0,, ≠YIS . Therefore by 
differentiating this function with respect to the variable t we get that: 

dt
dY

dt
dI

dt
dS

dt
dL

++=1  Substituting the value of 
dt
dI

dt
dS ,  and dt

dY  in this equation 

and then simplifying the resulting terms we obtain: 
K

IS
dt

dL +
−= 11   Clearly , 

01 
dt

dL on 1Γ  and hence the function 1L  is a Lyapunov function. Thus 1E  is 

globally asymptotically stable on the sub region 1Γ , and hence the  proof is finished.                                       
■                                                                                                                                                                                                                       
Theorem (3): Assume that 2E  is a locally asymptotically stable point in  3

+R  then 

2E  is globally asymptotically stable on the sub region of 3
+R  that satisfy the 

following conditions: 

31
2

2 4 GGG <                                                                                               …(8a) 

 ( ) ( )2211
2

2311 NIPNSP
nISm

YUGUG +
++

−                                          …(8b) 

here  S
K
rI

K
rrCG ˆˆ

1 +





 ++−= β , IS

K
rCG ˆ

2 ββγ +





 +−+= , 

SdG βγ −+= 13 ,  
SSU ˆ

1 −=  and IIU ˆ
2 −= , 11

ˆ eSN +=   and 22
ˆ eIN +=  
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Proof: Consider the following positive definite function: 
YIISSL +

−
+

−
=

2
)ˆ(

2
)ˆ( 22

2
  

Clearly, RRL →+
3

2 : is continuously differentiable function so that 

( ) 00,ˆ,ˆ
2 =ISL  and ( ) 00,,2 ISL   for all ( ) 3,, +∈RYIS  with ( ) ( )0,0,0,, ≠YIS .  

    Therefore by differentiating this function with respect to the variable t  we get:  

( ) ( )
dt
dY

dt
dIII

dt
dSSS

dt
dL

+−+−= ˆˆ2  .Substituting the value of 
dt
dI

dt
dS ,  and dt

dY  in 

this equation and then simplifying the resulting terms we obtain: 

( )2211
2

23212
2

11
2 NIPNSP

nISm
YUGUUGUG

dt
dL

+
++

+−+−≤     

So, by using condition (8a) we obtain that:         

( ) ( )2211
2

2311
2 NIPNSP

nISm
YUGUG

dt
dL

+
++

+−−≤                   

Now according to condition (8b) it is easy to verify that 02 <dt
dL , and hence 2L  is a 

Lyapnuov function. Thus 2E  is globally asymptotically stable on the sub region of 
3
+R  that satisfy the given conditions.                         ■                                                           

 

Theorem (4): Assume that 3E  is a locally asymptotically stable point in  3
+R  then 

3E  is globally asymptotically stable on the sub region of 3
+R  that satisfy the 

following conditions:  

64
2

5 4 GGG <                    ...(9a) 

( ) ( ) ( )62514231
2

4634 NIPNSP
nISm

YNIPNSP
nISm

YUGUG ∗∗
∗∗

∗
+

++
++

++
−  ...(9b) 

here  
∗∗ +






 ++−= S

K
rI

K
rrCG β4 , γββ +++






 +−= ∗ CIS

K
rG5 , SdG βγ −+= 16 ,                                                                                                                                    

∗−= SSU3  and ∗−= IIU 4 , ∗∗ += YeSN 13 , ∗∗ += YeIN 24 , ∗+= YeSN 15  and 
∗+= YeIN 26  

 
Proof: Consider the following positive definite function: 

2
)(

2
)(

2
)( 222

3

∗∗∗ −
+

−
+

−
=

YYIISSL  .Clearly, RRL →+
3

3 :  is continuously 

differentiable function so that ( ) 0,,3 =∗∗∗ YISL  and ( ) 0,,3 YISL  for all 

( ) 3,, +∈RYIS  with ( ) ( )0,0,0,, ≠YIS . Therefore by differentiating this function with 
respect to the variable t we get: 
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     ( ) ( ) ( )
dt
dYYY

dt
dIII

dt
dSSS

dt
dL ∗∗∗ −+−+−=3   .Substituting the value of  

dt
dI

dt
dS ,  and dt

dY  in this equation and then simplifying the resulting terms we 

obtain : 

( )6251
2
46435

2
34

3 NIPNSP
nISm

Y
nISm

YUGUUGUG
dt

dL ∗∗
∗∗

∗
+

++++
+−+−≤   

So, by using condition (2.9a) we obtain that:                       

( ) ( ) ( )62514231
2

4634
3 NIPNSP

nISm
YNIPNSP

nISm
YUGUG

dt
dL ∗∗

∗∗

∗
+

++
++

++
+−−≤

 Now according to condition (9b) it is easy to verify that 03 <dt
dL

, and hence 2L  is 

a Lyapnuov function. Thus 3E  is globally asymptotically stable on the sub region of 
3
+R  that satisfy the given conditions.                                                                ■ 

 
Numerical Simulation:  
      In this section the dynamical behavior of system (1) is studied numerically for 
different sets of parameters and different sets of initial points. The objectives of this 
study are: first investigate the effect of varying the value of each parameter on the 
dynamical behavior of system (1) and second confirm our obtained analytical results. 
Now for the following set of hypothetical parameters values:  

75.02,75.01,1.02,50,1,1.01

,12,11,4.0,1.0,2.0,200,1
======

=======
eedmnd

PPCKr γβ
                  …(10) 

The trajectory of the system (1) is drawn in the Fig.(1)for different initial points. 
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Figure(2.1): Phase plot of system (1) starting from different initial points. 

 
     In the above figure, system (1) approaches asymptotically to the stable coexistence 
equilibrium point starting from different initial points. Note that in time series figures, 
we will use throughout this section that: blue color for describing the trajectory of S ; 
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green color for describing the trajectory of I ; red color for describing the trajectory of 
Y . 
Now in order to discuss the effect of varying the intrinsic rate r on the dynamical 
behavior of system (1), the system (1) is solved for different values of the mortality 
rates 5.0,1.0,02.0=r  keeping other parameters fixed as given in Eq (10).  
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Figure (2): Phase plots of system (1). for the data given by Eq.(10). (a)system (1) 

approaches asymptotically to E 0 then. 02.0=r  (b) system (1) approaches 
asymptotically to predator free equilibrium point on SI-plane when r=0.1 (c) system (1) 
approaches asymptotically to coexistence equilibrium point when r=0.5 (d) system (1) 

approaches to periodic attractor in the interior of 3
+R  when   r = 2.5. 
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Figure (3): Time series for the solution of system (1). (a) time series for the attractor in 
Fig.(2a) ,(b) time series for the attractor in Fig.(2b), (c) time series for the attractor in 

Fig. (2c) ,(d) time series for the attractor in Fig. (2d)    
 

The effect of contact infection rate β  on the dynamic of system (2.1)studied and the 
trajectories of system (1) are drawn in Fig. (4a)-( 4c) for the values β  = 0.05, 0.5, 
respectively, keeping other parameters fixed as given in Eq.(10).    
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Figure (4): Phase plots of system (1). for data given in Eq.(10)(a) system (1) approaches 

to periodic attractor for β =0.05, (b) system (2.1) approaches asymptotically to 
coexistence equilibrium point for β  =0.5, (c) system (1) approaches asymptotically to 

predator free equilibrium point on SI-plane for β =1. 
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Figure (5): Time series for the solution of system (1) for the data given in Eq.(10) (a) time 
series for the attractor in Fig. (4a) (b) time series for the attractor in Fig. (4b) , (c) time 

series for the attractor in Fig. (4c) 
The effect of varying recover rate γ  on the dynamic behavior of system (1) is studied 
and the trajectories of system (1) are drawn in Fig. (6a)-( 6c) for the values γ  = 
0.01,0.1,0.8 respectively keeping other parameters fixed as given in Eq. (10).  
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Figure (6): Phase plots of system (1) for the data given in Eq.(10)(a) system (1) 

approaches asymptotically to predator free equilibrium point on SI- plane forγ  = 0.01 
(b) system (1) approaches asymptotically to coexistence equilibrium point for γ =0.1 (c) 

system (1) approaches asymptotically to coexistence equilibrium point for γ =0.8  
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Figure (7): Time series for the solution of system (1). (a) time series for the attractor in 
Fig. (6a) , (b) time series for the attractor in Fig. (6b) (c) time series for the attractor in 

Fig. (6c) 
The effect of varying attack rate P 2  of infected prey species on the dynamics of 
system (1) is studied and the trajectories of system (1) are drawn in Fig. (8a)-(8c) for 
the values P 2 = 0.01,0.3,0.8 respectively 
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Figure (8): Phase plots of system (1)For the data given in Eq.(10)(a) system (1) 

approaches asymptotically to predator free equilibrium point on SI-plane for P 2 =0.01 
(b) system (1) approaches asymptotically to predator free equilibrium point on SI-axis 
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for   P 2 =0.3.(c) system (1) approaches asymptotically to coexistence equilibrium point 

for P 2 =0.8. 
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Figure (9): Time series for the solution of system (1). (a) time series for the attractor in 
Fig. (8a) , (b) time series for the attractor in Fig.( 8b), (c) time series for the attractor in 

Fig. (8c) 
     The effect of varying half-saturation constant m the dynamic behavior of system 
(1) is studied and the trajectories of system (1) are drawn in Fig. (10a)-(10c) for the 
values m = 10,60 respectively. 
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Figure (10): Phase plots of system (1)for the data given in Eq.(10) (a) system (1) 
approaches to periodic attractor for m=10, (b) system (1) approaches asymptotically to 

coexistence equilibrium point for m=60 
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Figure (11): Time series for the solution of system (1). (a) time series for the attractor in 

Fig. (10a) (b) time series for the attractor in Fig. (10b) , (c) time series for the attractor in 
Fig. (10c) 

    
     The effect of varying death rate of predator 2d . dynamics of system (1) is studied 
and the trajectories of system (1) are drawn in Fig. (12a)-(12c) for the values d 2  = 
0.01,0.2,0.7 respectively. while their time series are drawn in Fig.(13a)-(13c) 
respectively. 
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Figure (12): Phase plots of system (1)for the data given in Eq. (10)(a) system (1) 

approaches to periodic attractor for d 2 =0.01, (b) system (1) approaches asymptotically 

to coexistence equilibrium point for d 2 =0.2 (c) approaches asymptotically to predator 
free equilibrium point on SI-plane for 2d =0.7                       
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The effect of varying conversion rates 2e  of infected prey species on the dynamic 
behavior of system (1) is studied and the trajectories of system (1) are drawn in Fig. 
(14a)-(14c) for the values e 2  = 0.9,0.3,0.01 keeping other parameters fixed as given 
in Eq. (10).  
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Figure(14): Phase plots of system (1) for the data given by Eq. (10) (a) system (1) 

approaches to asymptotically to coexistence equilibrium point for e 2 =0. 9, ((b) system 

(1) approaches asymptotically to coexistence equilibrium point for e 2 =0.3, (c) 

approaches asymptotically to predator free equilibrium point on SI -Plane for e 2 =0.01.     
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Figure(15): Time series for the solution of system (1). (a) time series for the attractor in 
Fig. (14a) (b) time series for the attractor in Fig. (14b) (c) time series for the attractor in 

Fig. (14c). 
Discussion and conclusion: 
        In this chapter, we proposed and analyzed an eco-epidemiological model that 
describe the dynamical behavior of a prey-predator model with linear functional 
response. The model consisting of three non-linear differential equations that describe 
the dynamics of three different populations namely predator Y, susceptible prey S, 
infected prey I. The boundedness of the system (1) has been discussed. The 
conditions for existence and stability of each equilibrium points are obtained. To 
understand the effect of varying each parameter on the dynamical behavior of the 
system a numerically simulation has been used and the obtained results can be 
summarized as follow                                                            
 1. Decreasing the intrinsic growth rate r in the range 02.0≤r  causes that extinction 
in all populations and the system (1) approaches asymptotically to the vanishing 
equilibrium point 1E . However for 24.002.0 ≤r  it is observed that the system 
(1) approaches asymptotically to the predator free equilibrium point 2E . More over 
increasing the intrinsic growth rate in the range 4.224.0  r  causes to 
coexistence of all populations and the system (1) approaches asymptotically stable to 

3E . Finally, for 4.2≥r  the coexistence equilibrium point 3E  loses its stability and 

the system approaches asymptotically to the periodic dynamic in the 3. +RInt  
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2. Decreasing the values of contact infection rate β  in the range 08.0≤β  leads to 

periodic dynamic in the 3. +RInt .  However for 7.008.0  β  it is observed that the 
system (1) approaches asymptotically stable to the coexistence point 3E . Finally 
increasing β  in the range 17.0 ≤≤ β  causes extinction in predator species and the 

system (1) approaches asymptotically to the predator free equilibrium point 2E  . 
3.Decreasing the recover rate γ  in the range 055.0≤γ  causes extinction in predator 
species and the system (1) approaches asymptotically to the predator free equilibrium 
point 2E .  However, as γ  increases the trajectory of system (1) approaches 
asymptotically to the coexistence equilibrium point 
4. Decreasing values of half-saturation constant m in the range 23≤m , leads to the  
periodic dynamic in the 3. +RInt . However, as m increases the trajectory of system (1) 
approaches asymptotically to the coexistence equilibrium point 
5. For the values of the death rate of predator 2d  in the range  02.02 ≤d  the system 

(1) periodic dynamic in the 3. +RInt .  However for the range 13.0 2 d≤  the 
predator species faces extinction and the system approaches asymptotically to the 
predator free equilibrium point 2E   
6. Decreasing the values of predation rate 2P  in the range 34.02 ≤P  causes extinction 
in predator species and the system (1) approaches asymptotically to the predator free 
equilibrium point 2E . 

7. Decreasing the values coefficient 2e  in the range  25.02 ≤e  has the same effects 
as that of 2P .    
8. Finally it is observed that, varying each of the values of parameters 

,,,,, 11 ePnCK 1d  has no effect on the dynamical behavior of the system (1) and the 
system still approaches asymptotically to coexistence equilibrium point.  
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