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Abstract

In this paper, the dynamical behavior of some eco-epidemiological models is
investigated. Two types of prey-predator models involving infectious disease in prey
population, which divided it into two compartments; namely susceptible population S
and infected population I, are proposed and analyzed. The proposed model deals with
SIS infectious disease that transmitted directly from external sources, as well as,
through direct contact between susceptible and infected individuals. The model are
represented mathematically by the set of nonlinear differential equations .The
existence, uniqueness and boundedness of this model are investigated. The local and
global stability conditions of all possible equilibrium points are established. Finally,
using numerical simulations to study the global dynamics of the model .
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Il functional response received a lot of attention in literature, it is well known

that in nature there are different factors in any given environment, such as
disease, refuge, switches, age structure, etc. effect the dynamics of such model.
Anderson and May [1] were the first who formulated a prey—predator model
involving disease in prey species. Later on many researchers, especially in the last
two decades, have proposed and studied different types of prey-predator models in
the presence of disease in one of the species, see for example Haque and
Chattopadhyay [2] which studied the role of transmissible diseases in a prey
dependent prey-predator system with prey infection; Li et al [3] proposed the SIS
model with a limited resource for treatment. In most of the previous studies, the only
way of transmission of disease is taken as the direct contact between the individuals.
However, many diseases are transmitted to the susceptible individuals in the species
not only through direct contact, but also indirectly from environment. Das et al [4]
proposed on a prey-predator model with disease in prey that spread by contact and
external sources, included Holling type Il as a functional response. Dobson [5]
studied the situations where the behavior of the infected host is modified by the
action of a parasite. the infected prey may become weaker and less active so that they
may be easily caught by the predator (Moore , [6])

In this chapter a prey-predator model involving SIS infectious disease in prey
species is proposed and analyzed. It is assumed that the disease transmitted within the
prey population by contact and an external sources .The existence, uniqueness and
boundedness of the solution are discussed. The existence and the stability analysis of
all possible equilibrium points are studied. Finally, the global dynamics of the model
is carried out analytically as well as numerically.

Although the dynamics of two species prey-predator model with Holling type-

The mathematical model:

In this section, a prey-predator system involving an SIS epidemic disease in prey
population is proposed for study. In the presence of disease, the prey population is
divided into two classes: the susceptible individuals S(t) and the infected
individuals I(t), here S(t) represents the density of susceptible individuals at time t
while I(t) represents the infected individuals at time t. The prey population grows
logistically with intrinsic growth rate r and environmental carrying capacity
K(K > O). The existence of disease may causes death in the infected prey with
positive death rate dl- The predator species consumes the prey species (susceptible
as well as infected) according to modified Holling type-Il functional response with
predation rate P, >0 and P, >0 respectively and half — saturation constant M,
however it converts the food from susceptible and infected prey with a conversion
rates e, >0 and e, >0 respectively. Finally, in the absence of prey species the
predator species decay exponentially with a natural death rated, > 0. Now in order

to formulate our model, the following assumptions are adopted:
Consider a prey-predator system in which the density of prey at time t is denoted

by N(t) while the density of predator species at time t is denoted byY(t) . We
impose the following assumptions:



LT gl B] VRV RS KNS ()Mo IPAOUESY A study of a prey-predator system with disease
in prey

1. Only the susceptible prey can reproduce logistically, however the infected prey
can't reproduce but still has a capability to compete with the other prey individuals for
carrying capacity.

2. The susceptible prey becomes infected prey due to contact between both the
species as well as an external sources for the infection with the contact infection rate
constant S > 0 and external infection rate C - 0. However, the infected prey recover

and return to the susceptible prey with a recover rate constant y > 0. According to the

above hypothesis the dynamics of a prey-predator model involving an SIS epidemic
disease in prey population can be describe by the following set of nonlinear
differential equations:

as _ _S+1Y ___ RSy

dt_'rs(l K ) (81 +C)s + m+S +nl

dl P 1Y

— = +C)S—-dil - A -——2 .1
dt ('8 ) il =1 m+S +nl @)
d—Y=—d2Y | &PSY +ePlY

dt m+S +nl

here

n > 0 represents the preference rate constant and S(0)>0, 1(0)>0 and Y(0)>0.
Obviously the interaction functions of the system (1) are continuous and have
continuous partial derivatives on the region.
Rf = {(S 1Y ) eR3: S(O) >0,1 (0) > O,Y(O) > 0}. Therefore these functions are

Lipschitzian on Rf, and hence the solution of the system (1) exists and is unique.
Further, in the following theorem, the boundedness of the solutions of the system (1)
in R§ is established.

Theorem (1): All the solutions of the system (1) are uniformly bounded.
proof: Let W =S+ 1+Y then

dw dS dI dY

dt dt dt dt

W g r(l—i—l—) —d;1 —d,Y
dt K K

W s r(l—i] —d;1 —d,Y
dt K

CL—VtVs S(r+1)—S —d;l —d,Y

Let K =max{S(0),K} and d =min{l,d;,d,} then
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aw K(r +1)—dw
dt

thus t — oo itis easy to verify that 0 <W S_K(r +1)

Hence all solutions of system (1) are uniformly bounded and therefore we have
finished the proof

The stability analysis of system (1):
In this section the existence and stability analysis of all feasible equilibrium points of
system (1) are studied.

1.The trivial equilibrium point , which denoted by Eq = (0,0,0), always exists.
2. The predator free equilibrium point that denoted by E» :(§,f,0), where

2 ~
§_ZBitVB 748 g - CS ...(23)

2 di+y— /S
here
__ Cr4r(y+di+Kp) _ rK(dy+y)—Cd;K . - .
B, = " <0 and B, = 5 , exists uniquely in
the Int.RE of SI —plane provided that the following condition holds
,B§<d1+y<CT(jl ...(2b)

3. However the positive equilibrium point that denoted by E3 = (S*, 1"y *)
where

—dy(m+nl™)+e,P,1"
B d, —e;R

S*

dy &P Y =|(BI" +C)S” —dy1” _;4*]””27;”' ... (3)
2

While

| represents a positive root of the following third order polynomial equation

2.2
Agl® + Ayl % + Al + Ay =0 here %:% where H = d, —eP;

A =d2Tm{d2(2ncpl - m[ﬁﬁ+%D+ PLH(y +d1)+ poH(r —c)}

d,mP,r

(d,n2C + PyHn + nd; H J+ P, (C — r)e,P, — d,n)

e,P,P
dz(Z”_H))—PzﬁH +2P1,B(nd2 +62P2)+P27(91P1—d2)—%(

Ce,P, +H +d;H)+
Pldz

H

2.2
Ag =P, B(e,P, —dyn)+ @(ez% —2d2n)+%<d22n2 —e5P7 +(e,P, —d,n)H )+ (Plﬁ‘:f”]

exists uniquely in the Int. Rf if and only if the following conditions are hold.



LT gl B] VRV RS KNS ()Mo IPAOUESY A study of a prey-predator system with disease
in prey

Az >0,Ap >0 and Ag=<0

or
0rA3<0,A2<O and Ag>0
A3 >~0,A <0 and Ag=<0

(0]

...(3b)

r
A3 <0,A1 >0 and Ag>0

e,RP,1" > dz(m +nl *)With d, >e R ...(3¢c)
Ord,(m+n1")>e,P,1~ with e, R, >d,

Now the stability analysis of the above feasible equilibrium points of system (1)
are studied analytical with help of Linearization method. Note that it is easy to verify
that, the Jacobian matrix of system (1) at the trivial equilibrium point Ep =(0,0,0)

can be written in the form:

r-C 14 0
JE)=| C -d—-y O
0 0 —d,

Thus the characteristic equation of J(E;) can be written as

|2+ (Cr+cd; + )2 +(Cdy —(dy + 2)r)|—dy — 2), =0
Accordingly, the eigenvalues of J (El)satisfy the following relations:

Mis + Ay =1 =C—dy -y, 454y =Cdy —(dy + )1, Ay =—d; <0 ... (43)
Thus E; is locally asymptotically stable provided that the following condition
holds r—C<dy +y<S% ...(4b)

r

However, it is saddle point otherwise.
The Jacobian matrix of system (1) at the predator free equilibrium point Eo can be

written as:

2S+1 ~ -rS - -RS
rl1- —(pr+c) 22 g8+ S .
( K J ('B ) K Py m+S +nl
IE,)= Bl +C £S—dy— 7 _ =Pl
m+S +nl .
0 0 —d2+M
m+S +nl

Consequently, the characteristic equation can be written as

, @RS T &Pyl

_ — A, | =0:here
m+S +nl

(422 —TA, + D{—dz
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D =[r[1 2§K+ f] - (,BIA+C)}(,BSA —d, — ) (87 + c{_KrSAﬁsA + 7J

Clearly the eigenvalues of this Jacobian matrix satisfy the following relationships:

Tz/lzs +/12|; D=/125./12|,and /12Y =_d2+elpls_':—engl (5a)
m+S +nl
Accordingly the equilibrium point E» is locally asymptotically stable provided that:
ril— 25 + 1 <(ﬁf+C), Ky <§161P13-E62PA2| <d, ...(5b)
K r+ K m+ S +nl

However, it is a saddle point otherwise.
The Jacobian matrix of system (1) at E3 is given by J(E3)= (aij )3><3’

where:
28" + 1" PlY*!m+nl*_) —rs* . nP,S*Y ™
a, =r1-22 "1 | M, - VA, = N L LA S
11 { < J 1 M2 12 K pS +y M2
-PS”"
a.13: 1 <0
M,
*yy * * * _le*
a21=Ml+P2|2Y >O’6122:ﬁ8>k—d:|_—7/—M ap3 = M <0
M3 |\/|22 2
me; P, — (e,P, —ne P)I" . - e -
ag, = et (e2 2 0% LR a32:m92P2 +(92P22 neP)S \«; azg3=0
M3 M;
Where

M;=p1"+C and M, =m+S" +nl”
Then the characteristic equation of J(E; )can be written as:
22 +B A% +B,A+B3=0 ...(6a)
By = —(ay; +22), By = 81185 — a1p8 — 813831 — 8z383:
B3 = ag; (@138, — 815823 ) + g2 (811855 — 813851
According to Routh-Hurwitz criterion the equilibrium point E3 is locally
asymptotically stable .Provided that B; >0 ,B; >~ 0 and A=B;B, —B; >0 ,Hence
straight forward computation show That equilibrium point E3 is locally
asymptotically stable provided that

112 ... (6b)
K

and BS* <d; +y ...(6€)

2. 1%~ _Mel or g Me2Pr ...(6d)
e;P, —ne P né; p1 —€2 P2
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* * r *
4. (dl+y+MMrT_S)_ﬁs*Jp2|*>.(Ml+PZI\IAZ Jpls* ...(67)
2 2

Clearly, the condition (6b)-( 6d) guarantee that aj1,a12 and apy are negative
while a3q and agzpare positive and hence B; >0 .Further the conditions (6b)-(6e)
guarantee that B3 > 0. Finally the condition (6b)-(6f) guarantee that B;B, —B; >0

Theorem (2):
Assume that E; is a locally asymptotically stable point in Rf then El is globally

asymptotically stable in the sub region of Rf that given by:
n={8,1,Y)eR¥:K <S5 +1,Y >0}

Proof: Consider the following positive definite function:
L(S,1,Y)=S+1+Y o ()

Clearly, L:R3® — R is continuously differentiable function so that L;(0,0,0)=0

and L,(S,1,Y)>0 for all (S,1,Y)eR?> with (S,1,Y)%(0,0,0). Therefore by
differentiating this function with respect to the wvariable t we get that:

d _dS di dv Substituting the value of 9S Al ang Y-

dt  dt dt dt dt ' dt dt

dL
1 :1—S+I Clearly ,
t K

in this equation

and then simplifying the resulting terms we obtain:

—dstl <0on I and hence the function L; is a Lyapunov function. Thus E; is

globally asymptotically stable on the sub region I';, and hence the proof is finished.
|

Theorem (3): Assume that E, is a locally asymptotically stable point in Rf then

E, is globally asymptotically stable on the sub region of Rf that satisfy the
following conditions:

G,’ <4G,G, ...(8a)
Y
GU, -,GU,] =—(SPN, + IP,N ...(8b
(\/—1 1 3 2)2 m+S+nI( 1N1 2 2) (8b)
r I g r [
here G =C-r+|—+p81|l +—5, G,=y+C—-|—+ 8IS+ /4,
1 (K ﬂ) K 2=7 EK ﬁj B
Gz=d;+y-f5,
U]_:S_S andU2=|—|,N1=S+el and N2:|+e2
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Proof: Consider the following positive definite function:

L, = € ;S)z L 72|)2 +Y

Clearly, L, : Rf —> Ris continuously differentiable  function so that
L,($,7,0)=0 and L,(5,1,0)~0 forall (,1,Y)<R? with (5,1,Y)(00,).
Therefore by differentiating this function with respect to the variable t we get:
dﬁ:(s _g)9s +(I - f)d—|+d—Y Substituting the value of 95 dl ang dY j,
dt dt dt  dt dt ' dt dt
this equation and then simplifying the resulting terms we obtain:

dL2 2 2 Y

—=<-GU " +GUU, -GgU,* + ——— (SP,N; + IP,N

at Y1 2UY2 =3l m+S+nI(11 ,N,)

So by using condition (8a) we obtain that:
d

L >y
d—tzs—(\/G_lUl—\/G_?,Uz) +m(SP1N1+IP2N2)

Now according to condition (8b) it is easy to verify that dstz<0, and hence L, is a
Lyapnuov function. Thus E2 is globally asymptotically stable on the sub region of

Rf that satisfy the given conditions. ]

Theorem (4): Assume that E3 is a locally asymptotically stable point in Rf then

E3 is globally asymptotically stable on the sub region of RJ?: that satisfy the
following conditions:

Gs” < 4G,Gq ..(9a)
Vi Y Y* % *
GU,-,GU,] »———(SPN, +IP_LN,) +————\P,S"N: +P,1 'N¢/...(%b
(\/—43 \/—64) m+S+n|( iN3 +IP,N,) m+S*+n|*(l 5+ P e) (9b)
here
G4=C—r+(%+ﬂjl*+%S*,G5:—(%+ﬁ)8+ﬂl*+C+y,66=d1+7—ﬂ8,

Proof: Consider the following positive definite function:
*\2 *y 2 %2
(5-59° (-1 (Y=Y
2 2
differentiable function so that LS(S*,I*,Y*)zo and L4(S,1,Y)~0 for all

(S,1,Y)eR? with (S,1,Y)#(0,0,0). Therefore by differentiating this function with
respect to the variable t we get:

Ly = .Clearly, Ly: Rf — R is continuously
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dL, .\dS L\dl . \dY -
— B s-S* )= +I - - .Substituting the value of
e - (R R g
d_S d_l and v in this equation and then simplifying the resulting terms we
’ dt
dt dt
obtain :
dL ) . "
B GU2 46U, —-GUZ+— Y (Rs*Ng + Pyl "N)
dt m+S+nl m+S* +nl*
So, by using condition (2.93) we obtain that:
dig v Y Y* " .
—<{JGU;3-4/GgU, ) +————(SPINg +IP,N, )+ ————|\RS"N5 + P, 1 "N
at ( 493 6 4) m+S+n|( 1N + 1PNy m+S*+n|*(1 5T e)
dLg

Now according to condition (9b) it is easy to verify that <0, and hence L, is

dt
a Lyapnuov function. Thus E3 is globally asymptotically stable on the sub region of

Rf that satisfy the given conditions. [

Numerical Simulation:
In this section the dynamical behavior of system (1) is studied numerically for
different sets of parameters and different sets of initial points. The objectives of this
study are: first investigate the effect of varying the value of each parameter on the
dynamical behavior of system (1) and second confirm our obtained analytical results.
Now for the following set of hypothetical parameters values:
r=1,K=200=02C=01y=04P =1LP =1,

d1=0.1,n=1,m=50,d2 =0.1,¢1 =0.75,e2 =0.75
The trajectory of the system (1) is drawn in the Fig.(1)for different initial points.

...(10)

(2.1)

initial point
(9,4,4)

30

initial point
10,5,5,
initial point
11,6,6)

Stable point
(4.35,3.34,28.87)

20

10

12

I s

Figure(2.1): Phase plot of system (1) starting from different initial points.

In the above figure, system (1) approaches asymptotically to the stable coexistence
equilibrium point starting from different initial points. Note that in time series figures,
we will use throughout this section that: blue color for describing the trajectory of S ;
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green color for describing the trajectory of I ; red color for describing the trajectory of
Y.

Now in order to discuss the effect of varying the intrinsic rate r on the dynamical
behavior of system (1), the system (1) is solved for different values of the mortality
rates r =0.02,0.1,0.5 keeping other parameters fixed as given in Eq (10).

~ o o

Go kN w

-

@
©

Figure (2): Phase plots of system (1). for the data given by Eq.(10). (a)system (1)
approaches asymptotically to E g then. r =0.02 (b) system (1) approaches

asymptotically to predator free equilibrium point on SI-plane when r=0.1 (c) system (1)
approaches asymptotically to coexistence equilibrium point when r=0.5 (d) system (1)

approaches to periodic attractor in the interior of RE when r=25.

10
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Population
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Time

Population

Population

L
0 2000

L
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I .
6000 8000 10000 12000
Time

@

Figure (3): Time series for the solution of system (1). (a) time series for the attractor in
Fig.(2a) ,(b) time series for the attractor in Fig.(2b), (c) time series for the attractor in
Fig. (2¢) ,(d) time series for the attractor in Fig. (2d)

The effect of contact infection rate S on the dynamic of system (2.1)studied and the
trajectories of system (1) are drawn in Fig. (4a)-( 4c) for the values f = 0.05, 0.5,

respectively, keeping other parameters fixed as given in Eq.(10).

11
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(@) ()

Figure (4): Phase plots of system (1). for data given in Eq.(10)(a) system (1) approaches
to periodic attractor for £ =0.05, (b) system (2.1) approaches asymptotically to

coexistence equilibrium point for # =0.5, (c) system (1) approaches asymptotically to

Population

predator free equilibrium point on Sl-plane for £ =1.

(b)
(@) T

Population

L—

0 2000 4000 6000 8000 10000 12000

ZA\

h L
0 2000 4000 6000 8000 10000 12000

Time Time

©)
16

Population

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time

12



LT gl B] VRV RS KNS ()Mo IPAOUESY A study of a prey-predator system with disease
in prey

Figure (5): Time series for the solution of system (1) for the data given in Eq.(10) (a) time
series for the attractor in Fig. (4a) (b) time series for the attractor in Fig. (4b), (c) time
series for the attractor in Fig. (4c)

The effect of varying recover rate y on the dynamic behavior of system (1) is studied
and the trajectories of system (1) are drawn in Fig. (6a)-( 6c) for the values y =

0.01,0.1,0.8 respectively keeping other parameters fixed as given in Eqg. (10).

(@ (b)

Figure (6): Phase plots of system (1) for the data given in Eq.(10)(a) system (1)
approaches asymptotically to predator free equilibrium point on SI- plane for y =0.01
(b) system (1) approaches asymptotically to coexistence equilibrium point for » =0.1 (c)

system (1) approaches asymptotically to coexistence equilibrium point for y =0.8

13
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©)
45 18 @
40 16
35 14
30 12
§ 25 % 10
2 3
g g s
15 6
10 4
5 2
o o
o 0.5 1 15 2 2.5 3 o o5 1 15 2 25 3 35 4 45 5
Time % 10° Time 10
(b)
18
16f
14t
12t
S 10f
=
2
e 8r
Al
A
F—
o
o 0.5 1 1.5 2 2.5 3

Time x 10°

Figure (7): Time series for the solution of system (1). (a) time series for the attractor in
Fig. (6a) , (b) time series for the attractor in Fig. (6b) (c) time series for the attractor in
Fig. (6¢)

The effect of varying attack rate P, of infected prey species on the dynamics of
system (1) is studied and the trajectories of system (1) are drawn in Fig. (8a)-(8c) for

the values P, = 0.01,0.3,0.8 respectively

@

10 4

25

20

10

Figure (8): Phase plots of system (1)For the data given in Eq.(10)(a) system (1)
approaches asymptotically to predator free equilibrium point on Sl-plane for P, =0.01
(b) system (1) approaches asymptotically to predator free equilibrium point on Sl-axis

14
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for P, =0.3.(c) system (1) approaches asymptotically to coexistence equilibrium point

for P, =0.8.
(b)
10 (a‘) T T 25
9
8 20
7
I — g
5 g
&g % 10
3
2 5
. .
o 0
0 1 2 3 4 5 6 o 05 1 15 2 25 3

Time

Population

Figure (9): Time series for the solution of system (1). (a) time series for the attractor in
Fig. (8a) , (b) time series for the attractor in Fig.( 8b), (c) time series for the attractor in
Fig. (8¢c)

The effect of varying half-saturation constant m the dynamic behavior of system
(1) is studied and the trajectories of system (1) are drawn in Fig. (10a)-(10c) for the
values m = 10,60 respectively.

(b)

@

10

Figure (10): Phase plots of system (1)for the data given in Eq.(10) (a) system (1)
approaches to periodic attractor for m=10, (b) system (1) approaches asymptotically to
coexistence equilibrium point for m=60

15
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(b)
20 T 25 T
18
16 2
14
12 1
5"
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310 g
2 El
¢ g
8 10
6 L
4 5
LA A i
. UL U o
0 05 1 15 2 25 3 35 4 45 5 0 0.5 1 15 2 25 3
Time x10° Time x10°

Figure (11): Time series for the solution of system (1). (a) time series for the attractor in
Fig. (10a) (b) time series for the attractor in Fig. (10b) , (c) time series for the attractor in
Fig. (10c)

The effect of varying death rate of predator d o . dynamics of system (1) is studied

and the trajectories of system (1) are drawn in Fig. (12a)-(12c) for the values d, =

0.01,0.2,0.7 respectively. while their time series are drawn in Fig.(13a)-(13c)
respectively.

(b)

@

©)

16
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Figure (12): Phase plots of system (1)for the data given in Eq. (10)(a) system (1)

approaches to periodic attractor for d 2 =0.01, (b) system (1) approaches asymptotically

to coexistence equilibrium point ford

=0.2 (c) approaches asymptotically to predator

free equilibrium point on Sl-plane for d 2=0.7

(@)
60
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40

30

Population

20

ANAANANAAARNAAAANARNARNAARNAANARBARANAR
0.5 1 15 2 25

Time

25

3

x 10°

©)

Population

(b)

Time

20

15

Population

10

15
Time

x 10°

The effect of varying conversion rates €, of infected prey species on the dynamic
behavior of system (1) is studied and the trajectories of system (1) are drawn in Fig.
(14a)-(14c) for the values e, = 0.9,0.3,0.01 keeping other parameters fixed as given

in Eq. (20).
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Figure(14): Phase plots of system (1) for the data given by Eq. (10) (a) system (1)
approaches to asymptotically to coexistence equilibrium point for e , =0. 9, ((b) system
(1) approaches asymptotically to coexistence equilibrium point for e , =0.3, (c)

approaches asymptotically to predator free equilibrium point on SI -Plane for e , =0.01.
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Figure(15): Time series for the solution of system (1). (a) time series for the attractor in
Fig. (14a) (b) time series for the attractor in Fig. (14b) (c) time series for the attractor in
Fig. (14c).

Discussion and conclusion:

In this chapter, we proposed and analyzed an eco-epidemiological model that
describe the dynamical behavior of a prey-predator model with linear functional
response. The model consisting of three non-linear differential equations that describe
the dynamics of three different populations namely predator Y, susceptible prey S,
infected prey I. The boundedness of the system (1) has been discussed. The
conditions for existence and stability of each equilibrium points are obtained. To
understand the effect of varying each parameter on the dynamical behavior of the
system a numerically simulation has been used and the obtained results can be
summarized as follow
1. Decreasing the intrinsic growth rate r in the range r <0.02 causes that extinction
in all populations and the system (1) approaches asymptotically to the vanishing

equilibrium point E,. However for 0.02 <r <0.24 it is observed that the system

(1) approaches asymptotically to the predator free equilibrium point E2 . More over

increasing the intrinsic growth rate in the range 0.24<r <2.4 causes to
coexistence of all populations and the system (1) approaches asymptotically stable to

E3. Finally, for r > 2.4 the coexistence equilibrium point E; loses its stability and

the system approaches asymptotically to the periodic dynamic in the Int.Rf
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2. Decreasing the values of contact infection rate £ in the range £ <0.08 leads to

periodic dynamic in the Int.R>. However for 0.08 < £ < 0.7 it is observed that the
system (1) approaches asymptotically stable to the coexistence point E,. Finally
increasing S in the range 0.7 < <1 causes extinction in predator species and the

system (1) approaches asymptotically to the predator free equilibrium point E2 .
3.Decreasing the recover rate y in the range  <0.055 causes extinction in predator
species and the system (1) approaches asymptotically to the predator free equilibrium

point Ez. However, as J increases the trajectory of system (1) approaches
asymptotically to the coexistence equilibrium point

4. Decreasing values of half-saturation constant m in the range m <23, leads to the
periodic dynamic in the Int.Rf. However, as m increases the trajectory of system (1)
approaches asymptotically to the coexistence equilibrium point

5. For the values of the death rate of predator d o inthe range d, <0.02 the system

(1) periodic dynamic in the Int.R®. However for the range 0.3<d, <1 the
predator species faces extinction and the system approaches asymptotically to the

predator free equilibrium point Ez
6. Decreasing the values of predation rate P, in the range P, <0.34 causes extinction
in predator species and the system (1) approaches asymptotically to the predator free

equilibrium point Ez.
7. Decreasing the values coefficient €5 in the range € <0.25 has the same effects

as that of P,.

8. Finally it is observed that, varying each of the values of parameters
K,C,n,P, e, dl has no effect on the dynamical behavior of the system (1) and the
system still approaches asymptotically to coexistence equilibrium point.
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