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ABSTRACT 

Air-springs are characterized by strongly anisotropic material behavior and can simultaneously 

undergo large elastic deformations. This attribute involves an appropriate constitutive model for an 

adequate numerical simulation of these components' complex response. The present paper discusses 

the manufacturing process of an air-spring and deals with the use of anisotropic-based hyperelastic 

constitutive model in the context of thin membranes inflation. In order to investigate the capability 

of the proposed model, some finite element analysis were conducted by using ANSYS 15.0. The 

proposed model shows a good predictive ability and exhibits a good agreement when compared to 

the experimental work of the present paper. 

 

NOMENCLATURES 

 

      Right Cauchy deformation tensor                                                                               

F     Deformation gradient tensor 

  ,    Strain invariants 

  ,    Pseudo strain invarients  

  Volume ratio 

  2
nd

 Piola-Kirchhof stress    N/m
2
  

NR    Natural Rubber  
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 الخلاصة:

تتمتع النوابض الهوائية بخصائص اتجاهية وتمتاز بقابليتها على تحمل تشوهات عالية. هذه الميزات تتطلب إيجاد نموذج صالح 

لوصف تصرف هذه الأجزاء الميكانيكية. هذا البحث يهتم بدراسة طريقة تصنيع النوابض الهوائية، واشتقاق نموذج لوصف 

(، لغرض التحقق من صحة النوذج (ANSYS 15.0حليلات عددية باستخدام برنامج تصرف المرونة الشديدة فيها. تم اجراء ت

 المقترح والذي أظهر توافق جيد وبصورة مرضية عند مقانة النتائج النظرية مع النتائج العملية للبحث. 

 

1. INTRODUCTION 

The inflation of hyperelastic rubber-like membranes has been extensively studied in the past. There 

are two different approaches used to solve this type of problems: the first approach is based on the 

analytical solutions, while the second one is based on the application of the finite element method 

(FEM) to the problems of membrane inflation.                                                                                        

In the context of the first approach, the governing equations of the large strains inflation of 

axisymmetric membranes were established by (Green and Adkins, 1960). Following the same 

approach, authors, e.g., (Guo, 2001), (Kydoniefs and Spencer, 1969), (Yang and Feng, 1970) and 

(Khayat et al., 1992) attempted to solve the problem of the inflation of membranes from an 

analytical perspective. (Guo, 2001) studied the large deformation of a cylindrical hyperelastic 

membrane circumferentially bonded and sealed at each end to a rigid tube. (Kydoniefs and 

Spencer, 1969) obtained an exact general solution of the equations of finite deformations of elastic 

membranes and applied it to the problem of inflation of a cylinder of finite length sealed at each 

end by rigid plugs. (Yang and Feng, 1970) reformulated the mechanics problem concerning large 

axisymmetric deformations of nonlinear membranes in terms of a system of three    first-order 

ordinary differential equations with explicit derivatives. Moreover, (Khayat et al., 1992) detailed 

the occurrence of unstable behaviors in the inflation of Neo-Hookean membranes with non-uniform 

radius and thickness. 

In the context of the finite element method, a simple finite element formulation was presented by 

(Jiang and Haddow, 1995) for finite static axisymmetric deformation of isotropic incompressible 

hyperelastic membranes. That finite element procedure was derived from a finite deformation 

membrane theory, in which Lagrangian type equilibrium equations, expressed in terms of the Biot 

stresses were employed along with constitutive equations relating the principal components of the 

Biot stress tensor and of the principal stretches. Based on Ogden's non-linear elastic material law, 

an axisymmetrical membrane element for large deformations was developed by (Wriggers and 

Taylor, 1990). More recently, (Shi and Moita, 1996) studied post-critical response in the inflation 

of axisymmetric membranes. They performed an extensive parametric study to investigate the non-

linear response of a tube under internal pressure. (Verron and Marckmann, 2001) presented an 

axisymmetric B-spline model for the non-linear inflation of both cylindrical and spherical Mooney-

Rivlin membranes. Later on, a finite element method was presented by (Kyriacou et al., 1996) for 

geometrically and materially nonlinear orthotropic hyperelastic membranes. The constitutive 

relations were formulated in terms of the invariants of the 2D right Cauchy-Green strain tensor and 

the resulting system of nonlinear equations was solved using a Newton-Raphson approach.          

(Resse et al., 2001) developed a model to describe the hypereleastic material behavior of 

pneumatic membrane reinforced with roven-woven fibers. The numerical simulation of a 

cylindrical membrane was developed for anisotropic hyperelastic materials by (Marvalová and 

Nam, 2003). Recently, (Abdessalem et al., 2011) described a general finite element 

implementation framework for the constitutive modeling of biological soft tissues. 

The aim of the present paper is to manufacture an inflated air-spring membrane and propose an 

anisotropic-based hyperelastic constitutive model that predicts the complex behavior of the 

membrane. Moreover, performing some finite element analyses is another goal of this paper, in 
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order to compare the theoretical response of the membrane with the experimental one and check the 

validity of the model in solving such a type of problems. 

 

2. EXPERIMENTAL WORK 

2.1 The Fabrication of the Air-Spring 

Typically, an air-spring consists of two basic components; a flexible member (the rubbery 

component) and fixation parts (metal components). The first step of the experimental procedure in 

this part was to make a mold for manufacturing the flexible member of the air spring according to 

the desired dimensions. The mold, as shown in Figure 1, was manufactured from steel and 

consisted of two major parts; the drum, and the top cover. The cavity of the mold is situated 

between the drum and the top cover.  

The manufacturing steps used for manufacturing the air-spring are briefly summarized in the 

following steps: 

 The rubber blend recipe, shown in Table 1, was mixed together by using a 2-roll 

calendering machine according to the rules followed in such processes until reaching 

complete homogenous blend. The rubber liner produced from calendaring process was 

coated with a chemical solution prepared by dissolving pieces of the same rubber blend into 

Heptane to enhance the adhesion between the layer of fibers and the rubber liner, as shown 

in               Figure 2-a. 

 A layer of Polyester fibers was oriented in 45° with respect to the vertical direction above 

the rubber liner (Figure 2-b), and again the chemical solution was added to the fibers,              

Figure 2-c. 

 Another liner of rubber blend was placed above the layer of fibers forming the first ply of 

fiber-reinforced rubber composite, Figure 2-d. 

 Another ply of fiber-reinforced rubber composite was fabricated in the same manner and 

placed on the first one in such a way that the layers of fibers were perpendicular to each 

other, i.e. the layers of fibers were [45/-45] with respect to the vertical. 

 The mold was coated with a demoulding spray in order to facilitate the demounting of the 

flexible member of the air-spring out of the mold after curing process. 

 The two fabricated uncured plies of fiber-reinforced rubber composite were then applied to 

the building drum of the mold as shown in Figure 2-e. The excessive parts of the uncured 

plies were removed, Figure 2-f. 

 Heat and pressure were applied to effect vulcanization of the spring as shown in Figure 2-g. 

The cured flexible member was then removed from the mold and inspected, Figure 2-h. 

 The metal components and the fixation parts for the flexible member were designed and 

manufactured and then assembled together with the flexible member, Figure 2-i, in such a 

way that the lower end of the air spring is fixed and the upper one is moveable. The air is to 

be supplied from the lower end via a one-way valve. 

 

2.2 Samples Preparation and Tensile Tests 

The samples preparing processes and tests were done in Babylon Tire Factory laboratories. One of 

the manufactured flexible members, shown in Figure 2-h, was used to harvest the fiber-rubber 

composite dumbbell specimens. These specimens were cut in each direction of each layer of fibers 

as shown in Figure 3. 
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This test was carried out by using Monsanto Tensometor 10. The effective length of the sample is 

the distance between the two holders, which was fixed at length (25 mm) according to the ASTM 

D412. The composite specimens were tested under a quasi-static speed. The mechanical response 

of the specimens is shown in Figure. 4. 

 

2.3 The Test Rig 

In order to check the validity of the proposed model, the air-spring was manufactured in order to be 

used in a test rig. Generally, air-springs are used for actuation and isolation tasks within industrial 

equipment and within vehicle suspensions. They can replace the metal springs resulting in lighter 

vehicles and softer riding. 

The loading for the test rig was meant to mimic the working conditions for an air-spring. Firstly, 

the manufactured air-spring was gradually subjected to internal pressure of 0.1 MPa via the valve 

on the fixed lower end of the air-spring. This test was carried out by using the tensile test 

instrument by which an axial displacement was exerted on the moveable upper end of the air-

spring. The pressurized air-spring was placed between the jaws of the tensile test instrument. The 

experimental tests were carried out at four different positions of the air-spring. Before each stage of 

loading the inner pressure of the air-spring was measured by using a dial gauge in order to make 

sure that the pressure was still at the desired value. The mounting plates of the air-spring were at 

the free height position of the air-spring and then the upper jaw of the tensile test instrument was 

given a downward movement at a very low speed to fix the upper end of the air-spring at the 

distance of 5, 10 and 15 mm shorter than the free height. 

A high-definition digital camera was fixed on a fixed tripod in such a way that the plane of the lens 

of the camera was facing the air-spring and was perpendicular to the ground as depicted in     

Figure 5. For each case, the inflation profile was captured by the fixed digital camera as shown in 

Figure 6. The captured images were fed to Plot Digitizer ver. 1.9 to track the deformed side profile 

of the air-spring. The images were calibrated via three non-collinear points of which the Cartesian 

coordinates are known, then by clicking multiple points on the path of interest, a table of data 

representing the deformed side profile of the air-spring was created. That table was exported to MS 

Excel and the corresponding deformation of the inflated air-spring was calculated and plotted as 

shown in Figure 7, in order to be compared later with that to be obtained from ANSYS. 

 

3. Constitutive Modeling 

The composite elastomers is considered as an anisotropic hyperelastic and continuous solid, which 

can be described by the coordinates system X in undeformed state. After deformation the body may 

be described by the coordinate system x. The deformation gradient, F, defined as         , and 

the volume ratio, J, expressed as    | |   . 

The deformation gradient can be decomposed into volumetric and distortional deformation,       

  (    ) ̅. Similarly, for the right Cauchy-Green tensor  

 

      (    )  ̅           ̅   ̅  ̅                                                                                       (1) 

 

The Helmholtz free energy can be decoupled into the volumetric and isochoric parts. Furthermore, 

the isochoric part can be divided into an isotropic (independent of fiber orientations) and an 

anisotropic part: 
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      ( )      ( ̅)        ( ̅        )                                                                   (2) 

 

where   and   are two fiber directions in the undeformed configuration, Figure 8, characterizing 

the anisotropic behavior of the material, and | |        | |   . 

The isochoric part of the strain energy functions can be written in terms of strain invariants, the 

isotropic part in terms of   ̅. Additionally, the anisotropic part was written in terms of pseudo-

invariants,   ̅ and   ̅ only, since they are the squares of the stretches in the directions of the fibers, 

and therefore have a physical interpretation (Holzapfel et al., 2000). The strain energy in terms of 

the modified invariants will be: 

 

      ( )      (  ̅)        (  ̅   ̅)                                                                               (3) 

 

where    ̅      ̅,   ̅     ̅ , and   ̅     ̅ . 

The volumetric part of the strain energy function is given by: 

 

  ( )  
 

 
(   )                                                                                                                  (4) 

 

The isotropic part of the strain energy function used in this paper is the two term Yeoh model 

(Yeoh, 1993):  

 

    (  ̅)=   (  ̅–3)+    (  ̅–  )
                                                                                           (5)  

 

While the anisotropic part of the strain energy function; i.e. the energy function in the fibers, is 

assumed in the form of an exponential form (Holzapfel, 2000, Hamzah, 2013): 

 

      (  ̅   ̅)  
  

   
[   (  (  ̅   )

   )]  
  

   
[   (  (  ̅   )

   )]                          (6) 

 

where    and    are stress-like material parameters and    and    are dimensionless parameters 

(Holzapfel, 2000). 

In order to determine the constitutive equations for anisotropic hyperelastic materials in term of 

strain invariants, the strain energy function,     is differentiated with respect to tensor C. By means 

of the chain rule, the second Piola-Kirchhoff stress (2nd PK),  , can be obtained by decomposing it 

into volumetric and the deviatoric stress : 

 

                                                                                                            (7) 

 

Where      and      are the volumetric and the deviatoric stress, which they can be expressed as: 

 

          
  ,                                                                                                                       (8) 

 

      
    ( ̃  

 

 
( ̅  ̃) ̅  )                                                                                             (9) 
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and, 

 

 ̃   
     

  ̅
  ∑

     

   ̅

  
         

   ̅

  ̅
                                                                                        (10) 

 

The derivatives of the modified invariants with respect to the deviatoric part of the right Cauchy-

Green tensor are written as:  

 
   ̅

  ̅
   

   ̅

  ̅
          

   ̅

  ̅
                                                                                        (11a) 

 

The derivatives of the deviatoric part of the strain energy function with respect to the deviatoric 

part of the strain invariants;  

 
     

   ̅
               (  ̅   )           

  
     

   ̅
   (  ̅   )     (  (  ̅   )

 )

     

   ̅
   (  ̅   )     (  (  ̅   )

 )

                                                                                    (11b) 

 

The Cauchy (true) stress can be computed from the 2nd PK as, 

 

                                                                                                                                   (12) 

 

For uniaxial tension, assuming full incompressibility, i.e., J=1,      and,        
    , 

therefore 

 

  [
   
       
       

] 

The derivatives of the modified invariants will be, 

 
   ̅

  ̅
   

   ̅

  ̅
 [

    (  )     (  )    (  )  

    (  )    (  )     (  )  
   

] 

       
   ̅

  ̅
 [

    (  )     (  )    (  )  

    (  )    (  )     (  )  
   

]  

 

where    and    are the angles of the first layer and the second layer of fibers, respectively, 

measured in counterclockwise direction from 1-axis, Figure 8. 

Using the above equations with equation (7) obtain: 
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[

         
         
         

]    [
     
   
   

]    [

 ̃   ̃   ̃  
 ̃   ̃   ̃  
 ̃   ̃   ̃  

]  
   ̃    

  ( ̃    ̃  )

 
[
     
   
   



Since the stresses in the 2 and 3-axes are zero in the case of the uniaxial test, therefore an 

expression for the hydrostatic pressure can be obtained from equation (13), then substituting the 

obtained expression of the hydrostatic pressure for the stress     in 1-axis, this yields the following 

constitutive relation,  

 

     ̃   
 ̃  

  
                                                                                                                       (14) 

 

where  

 ̃                 (  ̅   )   [  (  ̅   )    (  (  ̅   )
 )]    (  )   

 [  (  ̅   )     (  (  ̅   )
 )]    (  )  

 ̃                  (  ̅   ) 

The material parameters identification was achieved by means of non-linear least-square and a 

Levenberg-Marquardt type algorithm to find the best fit for the proposed model,  Figure 9.  All of 

the obtained material parameters are shown in Table 2. 

 

4. Finite Element Analysis 

The simulation of deformation was implemented in the finite element method, using ANSYS 15.0. 

After creating the geometry of the flexible member of the air-spring, the model was meshed with 

element type SOLID186 which supports hyperelasticity. The direction of the layers of fibers of       

[45/-45] with respect to the vertical direction and the material parameters of the proposed model 

were fed into ANSYS via AHYPER command, this APDL (ANSYS Parametric Design Language) 

command is used to solve the problems of anisotropic hyperelasticity materials. The command 

receives the material parameters table through TB command for volumetric part, the isochoric part 

and the material directions. 

The boundary conditions were applied as follows: the lower end of the model was fixed, while the 

upper one was fixed at its free height position. A pressure of 0.1 MPa was applied to the inner 

surface of the model. All the previous steps were repeated for axial displacements of 5, 10 and 15 

mm. 

For each state of loading, a path on the line in interest was defined by choosing multiple nodes on 

the side profile of the deformed shape of the model. This path was mapped onto the amount of 

deformation in the radial direction. The data resulted from that procedure were fed to MS Excel and 

compared to that obtained in the experimental test rig for each stage of loading as shown in          

Figure. 7. 

Being concerned with the maximum deformation, as one of the criteria for designing the flexible 

member of the air-spring, the maximum value of predicted deformations are compared to that 

obtained from the experimental test rig for each stage of loading. Table 3 summarizes the accuracy 

achieved by the proposed model by using the following equation: 

 

                 
                                  

               
                                                (15) 
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5. Conclusions 

 The proposed anisotropic hyperelastic constitutive model was based on the decomposition 

of the strain energy function into isotropic and anisotropic components. The isotropic 

component was described by a polynomial form of strain energy (Yeoh model) with two 

material parameters. While, an exponential form of the strain energy function with two 

material parameters for each layer of fibers were used for the anisotropic component. 

 The discrepancies between test data and simulated data might not vanish completely, which 

are due to, the fact that the mathematical model cannot completely describe the mechanical 

behavior of the material, probable imperfections during the manufacturing process and 

uncertainties in laboratory tests. 

 The proposed hyperelastic model gave a very good agreement with the experimental results 

with relatively low number of material parameters to be determined from only a uniaxial 

extension. 
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Table (1): The rubber blend recipe. 

 

PHR Material 

011 NR 

1.0 Renacit 

5 Zinc Oxide 

1.9 Stearic Acid 

46.5 Carbon N326 

6.89 Process oil 

0.55 Phenol tack resin 

1.59 Recorcinol 

1.1 TMQ 

0.53 MBS 

0.21 CTP-100 

0.84 HMT 

3.39 Insoluble Sulphur 
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Table (2): Material parameters obtained from curve fitting process. 

 

   (MPa)    (MPa)   (MPa)      (MPa)    

1.653 -0.3287 63.33 -0.06319 63.33 -0.06319 

 

 

 

 

Table (3): Comparison of maximum deformation between the experimental test rig and FEA 

analysis. 

 

 At free height 
Displacements 

5 mm 10 mm 15 mm 

experimental deformation 3.131 4.688 7.035 9.279 

predicted deformation 3.444 5.104 7.448 9.695 

Error % 9.088 8.15 5.545 4.291 

 

 

 

 

 
                                                        (a)                                               (b) 

Figure (1): The manufactured mold, (a) the drum, (b) the top cover. 
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Figure (2):  Manufacturing steps of the air spring. 

 

 
 

Figure (3): The fiber-rubber specimens cut in each fibers' direction. 
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Figure (4): The mechanical behavior of the fiber-reinforced rubber composites tested at a quasi-static 

speed. 

 

 

 

 

 

 

 

 

  
Figure (5): Schematic for the experimental rig. 
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Figure (6): Loading stages of the inflated air-spring pressurized with 0.1 MPa, (a) at free height, 

(b) displaced 5 mm, (c) displaced 10 mm, (d) displaced 15 mm. 

 

 

 

     a 

  

 

   b 
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     c 
 

     d 
Figure (7): A comparison between the experimental and the predicted deformations of the flexible 

member of the air-spring pressurized with 0.1 MPa, (a) at free height, (b) displaced 5 mm, (c) 

displaced 10 mm, (d) displaced 15 mm. 

 
Figure (8): The fibers' orientation inside the rubber. 

 

 
Figure (9): Curve fitting procedure. 


