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ABSTRACT 

Orbital maneuver transfer time is traditionally accomplished using direct numerical 

sampling to find the mission design with the lowest delta-ʋ requirements. The availability of 

explicit time series solutions to the Lambert orbit determination problem allows for the total 

delta-ʋ of a series of orbital maneuvers to be expressed as an algebraic function of only the 

individual transfer times. Series solution was applied for Hohmann transfer and Bi-elliptic 

transfer and comparing between Hohmann transfer and Bi-elliptic transfer for long 

distance. It has been concluded that Hohmann transfer is more appropriate when the ratio 

of radius of final orbit to initial orbit ( ) is less than 11.94.   

The purpose of this work is to minimize total full requirements, as well known that no 

refueling station in space, then using the computed ∆ʋ for determining the mass propellant 

consumed   , at different specific impulse of the propellants, help us to carefully plane a 

mission to minimize the propellant mass carried on the rocket.  

Keywords: Coplanar Maneuvers. Series Solution. Hohmann Transfer Maneuver. Orbital 

Maneuver Optimization.   
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 الولخص

تم أستخدام معادلات لامبرت الزمنية لإيجاد أقل تغيير في السرعة واللازمة للأنتقال بين المدارات الواقعة في نفس 

الثنائية الأهميجية من مدارها الأولي الى مدارها النهائي وقد المستوي, وقد تم تطبيقها في أنتقالات هوهمان والأنتقالات 

)النسبة بين المدار النهائي والأولي( أقل من   هي الأنسب عندما تكون قيمة تبين من النتائج أن أنتقالات هوهمان 

)النسبة بين المدار الأكبر الى المدار الأولي( الأكثر من    الأهميجي هو الأمثل لقيم  الانتقالبينما يكون  ((11.94

((15.58 . 

)التغير في      هي الحصول عمى أقل تغير في السرعة ومنها حساب نسبة الكتمة الدافعة من البحث  وكانت الغاية

 المحمول في الرحمةالوقوديل وذلك لتقم    المستخدم  لمدفع النوعي لموقود لمركبة إلى كتمتها الكمية( كدالةكتمة ا

 الفضائية.

 تحقيق أمثلية المناورة المدارية. متسلسلات. مناورات نقل هوهمان.ال. حلول المستوي في نفسالمناورات  :دالةالكممات ال
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1. INTRODUCTION  

     Orbital maneuvers are transferring a spacecraft from one orbit to another. Orbital changes 

can be dramatic, such as the transfer from a low-earth parking orbit to an interplanetary 

trajectory. They can also be quite small, as in the final stages of the rendezvous of one 

spacecraft with another [1]. Orbital maneuvering encompasses all orbital changes after 

insertion required to place a satellite in the orbit that choose. Changing orbits requires the 

firing of onboard rocket engines [2], [3]. Orbital maneuver optimization as a function of the 

transfer time is traditionally accomplished using either classical calculus of variations 

techniques for restricted cases, or by direct numerical sampling to minimize the magnitude of 

the required changes in velocity vectors [4]. The orbit transfer maneuvers considered 

accomplished by ideal impulsive velocity changes. It was assumed that the velocity required 

achieving certain mission objectives could be attained instantaneously. The concept of an 

impulsive velocity change can be exploited to provide an excellent rocket engine steering law 

which is applicable for a wide variety of orbit transfers [5]. One of the important 

characteristics of a space maneuver (and a space mission) is the change of characteristic 

velocity needed to realize the maneuver/mission, the so-called delta-ʋ (∆ʋ). Any rocket or 

spacecraft possesses its ideal velocity- the maximal change of speed it can provide to its 

payload using the fuel onboard. So, delta-ʋ of any maneuver (and any mission in total) is 

limited by the ideal velocity of the vehicle. As it has already been mentioned, characteristic 

velocity should be treated as exponential cost of the mission in terms of mass. To provide 

heavier payloads and more complicated mission, it is critical to use the limited reserve of 

ideal velocity as efficiently as possible, thus seeking for maneuvers with smaller delta-ʋ [6]. 

Orbital transfers are usually achieved using the propulsion system onboard the spacecraft. 

Since the propellant mass on board is limited, it is very crucial for mission planning to 

estimate the propellant required for every transfer. The overall need for propulsion is usually 

expressed in terms of spacecraft total velocity change, or (delta-ʋ) budget as shown in Figure 

(1). The propulsion was assumed is applied impulsively, i.e. the velocity change will be 

acquired instantaneously. This assumption is reasonably valid for high-thrust propulsion.  
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(1) (3)(2)
 

Figure (1): delta-ʋ budget [2]. 

 

     Speed change needed for a particular change in orbit parameters. The direction and size of 

the delta-ʋ determines which orbit parameters are most affected, and by how much. The 

general definition of delta-ʋ is as follows:   ∫ | |  ⁄
 

 
   Where   is the instantaneous 

thrust,   is the instantaneous mass of spacecraft and   the time from the start of the 

maneuver/mission. The magnitude    of the velocity increment is related to   , the mass of 

propellant consumed, by the formula   ⁄                    Where   is the mass of the 

spacecraft before the burn,    is the sea-level standard acceleration of gravity [1]. 

     The problem of two position vectors and the time of flight between them are usually 

known as Lambert's problem because Lambert first formed the solution [2]. In the Lambert 

problem, the initial position, final position, and the desired time for the transfer between the 

two positions is known. Solving Lambert’s problem should define the orbital elements of the 

desired transfer orbit (allowing the calculation of the velocities at the initial and final 

positions) [7]. The original Lambert's problem is one of the most important and popular topics 

in celestial mechanics. Several important authors worked on it, trying to find better ways to 

solve the numerical difficulties involved (Breakwell et al Battin; Lancaster et al; Lancaster & 

Blanchard; Herrick; Prussing; Sun & Vinh; Taff & Randall; Gooding). It can be defined as: 

"A Keplerian orbit, about a given gravitational center of force is to be found connecting two 

given points (   and   ) in a given time ∆t"[8]. The Lambert problem may be expressed in 

terms of the Lagrange trajectory equations, which equate the transfer time t to transcendental 

functions of the unknown semi-major axis. Recently, time series solutions have been found to 

solve all orbital cases of the Lambert problem by analytically reversing the functional 

dependence of the Lagrange trajectory equations from   to    The availability of the complete 

set of time series solutions for the Lambert orbit determination problem allows for the total ∆ʋ 



         Kirkuk University Journal /Scientific Studies (KUJSS)   
Volume 10, Issue 3, September 2015 , p.p(155-170) 

ISSN 1992 - 0849 

 

 
Web Site: www.kujss.com   Email: kirkukjoursci@yahoo.com,      

kirkukjoursci@gmail.com  

 
159 

 

magnitude for a series of orbital maneuvers to be written as a single algebraic expression, an 

explicit function of only the individual transfer times [9]. 

     The purpose of this work is to minimize total full requirements, as well known that no 

refueling station in space, then using the computed ∆ʋ for determining the mass propellant 

consumed   , at different specific impulse of the propellants, help us to carefully plane a 

mission to minimize the propellant mass carried on the rocket.  

 

2. COPLANAR MANEUVERS 

     Coplanar maneuvers don't change the orbital plane, as the name implies, so the initial and 

final orbits lie in the same plane. These maneuvers can change the orbit's size and shape and 

the location of the line of apsides. Coplanar burns are either tangential or non-tangential. The 

burns allowed doing two types of coplanar changes: Hohmann transfers (two tangential burns) 

and general transfers (two non-tangential burns). Consider the simple tangential transfer of 

Figure (2). The both orbits are tangent at the transfer point. As a result, the velocity vectors 

are parallel, and then the required change in velocity has been directly found as:   

∆ʋ =                   ⋯⋯⋯ (1)          

 

Figure (2): Tangential Orbit Transfer Theoretical approach [1] 

     The direction of firing can be determined by the sign of the change in velocity. For 

instance, the left orbit in Figure (2) has a positive    because the velocity is added in the 

same direction as the original velocity vector. In the other orbit, the change in velocity is 

applied opposite to the direction of motion, and the satellite slows down to the circular orbit 

as shown.  

     The Hohmann transfer is the most energy efficient two-impulse maneuver for transferring 

between two coplanar circular orbits sharing a common focus [1]. The resulting Hohmann 

transfer orbit between two circular orbits is elliptical; the transfer between two elliptical orbits 
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may be circular or elliptical depending on the geometry of the initial and final orbits. Walter 

Hohmann proposed a theory which suggested the minimum-energy (and therefore most 

efficient) transfer could be achieved between orbits by using two tangential burns. Although 

his original work considered only transfer between circular orbits, other authors have 

explored transfers between coaxially aligned elliptical orbits and concluded the transfer 

energy was lowest using two tangential burns. The initial and final orbits will have velocities 

as shown from Figure (3). 

 

Figure (3): Hohmann transfer [1] 
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The velocities of initial and final transfer orbits are 
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The changes in velocity for Hohmann transfer are  

                      ⋯⋯⋯    
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                    ⋯⋯⋯    

   |   |  |   |  ⋯⋯⋯    

 

     The semi-major axis of the transfer is readily defined, the transfer time,        for the 

Hohmann transfer is simply half the orbital period of the transfer orbit 

       
               

 
  ⋯⋯⋯    

 

       
      

 
  √

      
 

 
  ⋯⋯⋯     

 

     If the pass from one circular orbit to another coplanar circular orbit is needed the radius of 

which is significantly larger, a more economical alternative to Hohmann transfer is the bi-

parabolic transfer.  It means that the spacecraft may be first send to the infinity providing it 

with the escape velocity, and then with an infinitely small impulse return it back along a 

parabolic path tangential to the target orbit [7]. A variant of the Hohmann transfer is a method 

which actually performs two Hohmann transfers in series. Figure (4) shows the Bi-elliptic 

transfer as a transfer into the transfer ellipse,        , at point a, followed by a transfer into a 

second transfer ellipse,        , at point b, and a transfer into the final orbit at point c. There is 

an intermediate circular orbit between the two elliptical transfer orbits. The middle velocity- 

change was simplifying calculation by determining it using the two elliptical orbits, rather 

than two separate circular orbits. 

 

 

 

 

 

 

 

Figure (4): Bi-elliptic Transfer [1]. 
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    The transfer time for the maneuver is now the sum of the two Hohmann-like transfer times. 

        √
       
 

 
  √

       
 

 
  ⋯⋯⋯     

Then:  

        
           

 
  ⋯⋯⋯     

And:  

        
         

 
  ⋯⋯⋯     

The bi-elliptic transfer can reduce the total ∆ʋ necessary for the transfer. 

   |   |  |   |  |   | ⋯⋯⋯     

Where: 

                       ⋯⋯⋯     

                       ⋯⋯⋯     

                     ⋯⋯⋯     

 

3. SERIES SOLUTION OF LAMBERTS TIME FUNCTION 

     The Lambert problem may be expressed in terms of the Lagrange trajectory equations, 

which equate the transfer time t to transcendental functions of the unknown semi-major axis 

[9], [10]. Where the Lagrange coefficient functions        ̇   ̇ are given by: 

 

    
 

  
             ⋯⋯⋯     

         √
  

 
              ⋯⋯⋯     

 ̇  
 √         

   
  ⋯⋯⋯     

 ̇    
 

 
             ⋯⋯⋯     

     The change in eccentric anomaly    can be found by using the Lagrange parameters 𝛼 and 

𝛽, depending on the type of orbit transfer. To obtain Lambert's Time Function the Integration 

of energy equation for a two-body orbit produces 
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√ 
∫

   

√       

 

   

 ⋯⋯⋯     

     Where   the radial distance between the two bodies,   is the semimajor axis, and   is the 

time. Lambert's Time Function for an elliptic trajectory depends on the transfer angle and a 

flight time less than the minimum energy transfer time as shown 

  √
  

 
[                 ]  ⋯⋯⋯     

     To find the unknown semi-major axis   first define the quantity       ⁄    as a non-

dimensional time parameter, where    is the desired flight time and    is the known parabolic 

flight time between the two given position vectors 

   
 

 
√
  

 
{  (

   

 
)

 
 
} ⋯⋯⋯     

     After some algebraic manipulation, Lambert's Time Function has been expressed by using 

hypergeometric series definition for        and √     [7]. Then Lambert's time function 

could be expressed as [2] 
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The terms     are Pochhammer symbols, which are defined by                   

     

To determine the semi-major axis, the reciprocal of the series may be found [10], then 
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The    coefficients can be treated as a vector, where      

And the elements of   could be found from the following recursive expressions [2]: 

         
   

       ∑                                         

   

   

 

       ∑(
  

  
)

   

   

                  

The total delta-ʋ that required for transformation is the sum of the   vector differences. The 

sum of the magnitudes of the total delta-ʋ is then given by  

∑     √  ̇      ̇         ̇      ̇         ̇      ̇      
     

   

⋯     

Velocity and there component is given by     

 ̇     
 

  
     

  
  

    ⋯⋯⋯     

 ̇     
 

  
     

  
  

    ⋯⋯⋯     

 ̇     
 

  
     

  
  

    ⋯⋯⋯     

 ̇    ̇     ̇  ̇      ⋯⋯⋯      

 ̇    ̇     ̇  ̇      ⋯⋯⋯     

 ̇    ̇     ̇  ̇      ⋯⋯⋯     

     The goal is how to minimize the    to obtain the transfer orbit with less fuel consumed as 

well as     is the time of transfer is not very long. 

Let   is a function of the velocity vector  ⃑ , therefore  

         ⋯⋯⋯     

4. APPLICATION AND DISCUSSION 

     For coplanar transfer the vectors input data are (  = 8839.683 km and   = 18689.09 km) 

and using the Lambert's theorem at a given flight time the velocity computed and given in 

Table (1). There is a unique value for semi-major axis associated with the arc of conic section, 

express the major axis in terms of transfer time to solve orbital cases, Table (2) show the 
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computed velocity component and the total minimum ∆ʋ by using the analytical optimization 

with assistant of Matlab program. Table (3) show the computed (   ⁄ ) at different    . 

Table (1): position vector for coplanar transfer 

position vector components (km) 

    6250.6  ̂ + 6250.6  ̂ + 0  ̂ 

   = - 18372  ̂ - 3428.1  ̂ + 0  ̂ 

 

Table (2): Velocity Computed at given flight time 

velocity vector components (km/s) flight time (sec) 

   = - 8.135  ̂ + 4.05064  ̂ + 0.0  ̂ 

3600    = - 3.47465  ̂ – 4.7942  ̂ – 0.0  ̂ 

   = 4.66035  ̂ – 8.84484  ̂ – 0.0  ̂ 

 

Table (3): computed the minimum change in velocity for the transfer and the time meets it 

velocity vector components (km/s) Transfer time (sec)     (deg) ε (      ) 

    = - 8.76093  ̂ + 3.66464   ̂ + 0.0  ̂ 
3302 

 

-22.875 

 

-3.799 

 
    = - 4.19057  ̂ – 5.00941  ̂ + 0.0  ̂ 

   = 4.57036  ̂ – 8.67405   ̂ – 0.0  ̂ 

 

Table (4): Specific impulses and the change in (   ⁄ ) 

(   ⁄ ) Propellant          

0.9936 Cold gas 50 

0.5817 Solid propellant 290 

0.4262 Liquid oxygen/liquid hydrogen 455 

0.66679 Monopropellant 230 

0.557527 Nitric acid/monomethylhydrazine 310 
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     The purpose of this work is to minimize total full requirements, as well known that no 

refueling station in space, then using the computed ∆ʋ in Table (3) for determining the mass 

propellant consumed   , at different specific impulse of the propellants, help us to carefully 

plane a mission to minimize the propellant mass carried on the rocket, Table (4) show the 

computed (   ⁄ ) at different    . 

     From Table (4) using the propellant Liquid Oxygen /Liquid hydrogen at     455 second 

and assumer the mass of spacecraft equal to 2000    , the computed. 

                        

While if we use Cold gas with    =50      

We get                        

 

Figure (5): Relationship    in units (sec) and      propellant ratio at ∆ʋ=9.8 km/sec 

     Figure (5) represent, the relationship between the     Specific Impulse of the propellants in 

unit of second and      (propellant mass ratio). As seen from figure at constant ∆ʋ the 

     (propellant mass ratio) decreases with increasing the propellant Specific Impulse 

therefore this lead to minimize the propellant mass carried all aloft in favor of payload. 

     Tables (5,6) list position vectors in two different orbits and the computed minimum delta-ʋ 

using series solution with the suitable equations (4) to (8) for Hohmann and (14) to (16) for 

Bi- elliptic transfer. 
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Table (5): Hohmann transfer 

position vector components (km) (delta-ʋ) (km/s) Flight time (sec)   

               ̂       ̂       ̂ 

2.438 42840 5.2                ̂       ̂

      ̂ 

 

Table (6): Bi-elliptic transfer 

position vector components (km) (delta-ʋ) (km / s) Flight time (sec)    

               ̂       ̂       ̂ 

6.8 86400 7.06 
          ̂       ̂      

               ̂       ̂

      ̂ 

 

     The Hohmann transfer is the minimum-energy transfer between most but not all coplanar 

orbits. In some cases, the Bi-elliptic transfer may use less energy [2]. The computed change in 

velocity show that the less change in velocity required in Hohmann than that in Bi-elliptic 

transfer. 

     In Tables (7,8,9) list position vector sin two different or bits with    ratio much than     , 

the change in velocity required by Bi-elliptic transfer is smaller than that computed in 

Hohmann transfer also, therefore from the above concludes that for   ratio less than       

the Hohmann transfer is Appropriate, while for   greater than      the Bi-elliptic saves    

with an extreme in time. 

Table (7): Hohmann transfer 

position vector components (km) 
(delta-ʋ) 

(km/s) 

Flight time 

(sec) 

Semi-major axis 

(km) 
  

                 ̂       ̂       ̂ 

3.17          282718 58.2 

               ̂       ̂       ̂ 



         Kirkuk University Journal /Scientific Studies (KUJSS)   
Volume 10, Issue 3, September 2015 , p.p(155-170) 

ISSN 1992 - 0849 

 

 
Web Site: www.kujss.com   Email: kirkukjoursci@yahoo.com,      

kirkukjoursci@gmail.com  

 
168 

 

Table (8): Bi-elliptic transfer 

position vector components (km) 
(delta-ʋ) 

(km/s) 

Flight time 

(sec) 

Semi-major axis 

(km) 
   

                 ̂       ̂       ̂ 

0.987          391344 60.8            ̂       ̂      

               ̂       ̂       ̂ 

 

Table (9): Bi-elliptic transfer 

position vector components (km) 
(delta-ʋ) 

(km/s) 

Flight time 

(sec) 

Semi-major 

axis (km) 

   

                 ̂       ̂

      ̂ 

0.794          456344 80.6               ̂       ̂      

               ̂       ̂

      ̂ 

 

     The Bi-elliptic transfer requires much longer transfer time computed to the Hohmann 

transfer. However Bi-elliptic is more efficient for long distance the change in velocity for 

long distance orbit transfer at different    (the ratio of apogee radius of transfer orbit to initial 

orbit) in Bi-elliptic at the same value of the ration  . 

     The results in Table (7, 8, and 9) show that the Bi-elliptic transfer requires much longer 

transfer time computed to the Hohmann transfer. However Bi-elliptic is more efficient for 

long distance the change in velocity for long distance orbit transfer at different    (the ratio of 

apogee radius of transfer orbit to initial orbit) in Bi-elliptic at the same value of the ration  . 

The results agree with concept that when    is increase the ∆ʋ decrease as given in the 

reference [1].  
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Figure (6): the change in velocity for Bi-elliptic transfer orbit at different    

     Figure (6) represent the relationship between the minimum changes in velocity    with 

respect to    show that the minimum changes in velocity    decreases with the increasing    

which is agree with the concept that the Bi-elliptic transfer perform better as increasing    

ratio.   

5. CONCLUSION 

     With a complete set of series solutions available for every case of Lambert’s Theorem, it is 

possible to apply it for coplanar orbit transfer and gives good results in magnitude of change 

of velocity. Using analytical methods for multiple-impulse missions to minimize total fuel 

requirements. Computed change in velocity for different types of maneuvers (Hohmann and 

Bi-elliptic). The results show that the Hohmann transfer is saves fuel by reduce the change in 

velocity and extreme in time. 
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