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Abstract 
In this paper, we introduce a new class of fuzzy open sets in fuzzy topological spaces; fuzzy i-open set and 

fuzzy iα-open set and some of their properties are obtained. 

KeywordsFuzzy i-open set, fuzzy iα-open sets, fuzzy i-continuity, fuzzy iα-continuity, fuzzy i-irresolute, 

fuzzy iα-irresolute, fuzzy i-contra-continuous, fuzzy iα-contra-continuous. 
 

 الملخص
 في هذا البحث, قدمنا انىاعا جديدة من المجاميع الضبابيت المفتىحت في الفضاء التبىلىجي الضبابي وهي المجمىعاث الضبابيت 

. وبعض الخصائص التي تم الحصىل عليها.  iα  والمجمىعاث الضبابيت المفتىحت من النىع- i -المفتىحت من النىع  
 

 
 

 

 
 

 

1. Introduction      
The fundamental concept of a fuzzy set was introduced in Zadeh [1]. Subsequently, Chang [2] 

defined the notion of fuzzy topology. An alternative definition of fuzzy topology was given by 

Lowen [3]. Bin Shahana [10], Singal [9], Azad [6], Singal [9], Ma Bao [7], Parimala ana Devi [12] 

and Erdal [8]   introduced fuzzy semi-open set, fuzzy α-open set, fuzzy semi-continuous, fuzzy α-

continuous, fuzzy-irresolute function, fuzzy α-irresolute function, fuzzy semi-contra-continuous, 

fuzzy α-contra-continuous. In this paper, we define fuzzy i-open set and fuzzy iα-open set via fuzzy 

topology. Moreover, we define fuzzy i-continuous, fuzzy iα-continuous, fuzzy i-irresolute, fuzzy iα-

irresolute, fuzzy i-contra-continuous, fuzzy iα-contra-continuous. 

2. Preliminaries  

Definition.2.1.[1] Let X be a non-empty set a fuzzy set A in X is characterized by its membership 

function μA : X   [0, 1] and μA(x) is interpreted as the degree of membership of element x in fuzzy 

set A, for eachx   X. It is clear that A is completely determined by the set of topples  

A = { (x, μA(x)): x   X}. 

 

Definition.2.2.[1] Let A = { (x, μA(x)): x   X} and B = { (x, μB(x)): x   X} be two fuzzy sets in X. 

Then their union AB, intersection AB and complement A
c
 are also fuzzy sets with the 

membership functions defined as follows: 

i)   μ(A B)(x) = max { μA(x), μB(x)},  x   X, 

ii)  μ(A B)(x) = min { μA(x), μB(x)},  x   X, 

iii) μA
c
(x) = 1- μA(x),   x   X. 

 

Definition.2.3.[1] The symbol I will denote the unit interval [0,1]. Let X be a non-empty set. Now, 

for the sake of simplicity of notation we will not differentiate between A and μA. That is a fuzzy set 

A in X is a function with domain X and values in I, i.e. an element of I
X
. The basic fuzzy sets are 

the empty set, the whole set the class of all fuzzy sets of X which will be denoted by 0X , 1X and I
X
, 

respectively. 
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Definition.2.4.[2] A family τ  I
X
 of fuzzy sets is called a fuzzy topology for X if it satisfies the 

following three axioms: 

i)   0X , 1X    τ, 

ii)  A, B   τ AB   τ, 

iii)             j J Aj   τ. 
 

The pair (X, τ) is called a fuzzy topological space or fts, for short. The elements of τ  are called 

fuzzy open sets. The fuzzy closure, the fuzzy interior and the fuzzy complement of any set in A in 

(X, τ) are denoted by 1X –A, Int(A) and Cl(A). 
 

Definition.2.5.[11] A fuzzy set which is a fuzzy point with support x X and the value λ  (0, 1] will 

be denoted by xλ . The value of a fuzzy set A for some x X will be denoted by A(x). Also, for           

a fuzzy point xλ and a fuzzy set A we shall write xλ A to mean that  λ ≤ A(x). 

 

Definition.2.6.[4] Let (X, τ) fuzzy topological space and A, B two fuzzy sets then A ≤ B if and only 

if A(x) ≤ B(x) for all x   X, and A is said to be quasi-coincident with a fuzzy set B, denoted by 

AqB, if there exists x X such that A(x) + B(x) >1.  

 

Definition.2.7.[4] A fuzzy set V in (X, τ) is called a q-neighborhood (q-nbd, for short) of a fuzzy 

point xλ if and only if there exists a fuzzy open set U such that xλ qU ≤ V. We will denote the set of 

all q-nbd of xλ in (X, τ) by Nq(xλ).  
 

Definition.2.8.[10] A fuzzy subset A of a fuzzy topological space (X, τ) is said to be 

i)  fuzzy semi-open set, if A ≤ Cl(Int(A)) [10], 

ii) fuzzy α-open set, if A ≤ Int(Cl(Int(A))) [9]. 

The family of all fuzzy semi-open (resp. fuzzy α-open) sets of an fuzzy topological space is denoted 

by FSO(X)(resp. FαO(X)). The complement of fuzzy semi-open (resp. fuzzy α-open) sets of                

a fuzzy topological space (X, τ) is called fuzzy semi-closed (resp. fuzzy α-closed) sets. 

 

Definition.2.9. Let X and Y be a fuzzy topological spaces, a function f: X Y is said to be 
 

i) fuzzy semi-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy semi-open  

    subset in X  [6], 
 

ii) fuzzy α-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy α-open subset  

    in X [9], 

iii) fuzzy-irresolute if the inverse image of every fuzzy semi-open subset of Y is a fuzzy semi-open  

      subset in X  [7], 
 

iv) fuzzy α-irresolute if the inverse image of every fuzzy α-open subset of Y is a fuzzy α-open 

subset   

     in X [9], 

v) fuzzy-contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy closed  

    subset in X [8], 
 

vi) fuzzy semi-contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy 

     semi-closed subset in X [8],  

vii) fuzzy α-contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy α- 

      closed subset in X [12]. 
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 3. Fuzzy i-open sets and fuzzy iα-open sets 

Definition.3.1. A fuzzy subset A of a fuzzy topological space (X, τ) is said to be fuzzy i-open set if 

there exists a non-empty fuzzy open subset U of X such that A ≤ Cl(AᴧU). The complement of the 

fuzzy i-open set is called fuzzy i-closed. We denote the family of all fuzzy i-open sets of a fuzzy 

topological space (X, τ) by FiO(X). 

Example.3.1. Let X={a, b} and A, B be a fuzzy sets of X defined as follows: 

 

                                        A(a)=0.1        A(b)=0.9            

                                        B(a)=0.5         B(b)=0.8 

 

We put  τ ={0X, 1X, A}. Then B is a fuzzy i-open set. 
 

Theorem.3.1. In a fuzzy topological space (X, τ) the following statements hold: 

i) Every fuzzy open set is fuzzy i-open set, 

ii) Every fuzzy semi-open set is fuzzy i-open set, 

iii) Every fuzzy α-open set is fuzzy i-open set. 

Proof. i) It is easy and therefore omitted. 

ii) Let A be a fuzzy semi-open set, then we have A ≤ Cl(Int(A))=Cl(Int(A)ᴧA), since Int(A) a fuzzy 

open set and U any fuzzy open set, we choose Int(A)=U, then A ≤ Cl(AᴧU) (U  ). Therefore, A is 

fuzzy i-open set. 

iii) Let A be a fuzzy α-open set, then we have A ≤ Int(Cl(Int(A)))  ≤ Cl(Int(A)) ≤ Cl(AᴧU), wher 

U=Int(A). Therefore, A is fuzzy i-open set. 

Remark.3.1. The converse of Theorem 3.1. is not true as show by the following examples. 

Example.3.2. Let X={a, b, c} and A, B be a fuzzy sets of X defined as follows: 

                                     A(a)=0.2         A(b)=0.7         A(c)=0.4      

                                     B(a)=0.7         B(b)=0.9         B(c)=0.1 

We put  τ ={0X, 1X, A}. Then B is a fuzzy i-open set, but B is not fuzzy open set. 

Example.3.3. Let X={a, b, c} and A, B be a fuzzy sets of X defined as follows: 

                                  A(a)=0.2         A(b)=0.7         A(c)=0.4      

                                  B(a)=0.7         B(b)=0.9         B(c)=0.5 

We put  τ ={0X, 1X, A}. Then B is a fuzzy i-open set, but B is not fuzzy semi-open set and fuzzy α-

open set. 

Remark.3.2. The intersection of a fuzzy i-open set is not necessary to be a fuzzy i-open set. 

Example.3.4. Let X={a, b, c} and A, B, C  be a fuzzy sets of X defined as follows: 

                                  A(a)=0.6         A(b)=0.3         A(c)=0.4    

                                  B(a)=0.5         B(b)=0.9         B(c)=0.6 

                                  C(a)=0.5         C(b)=0.1          C(c)=0.7 

We put  τ ={0X, 1X, A, C }. Then A and B is a fuzzy i-open set, but AᴧB is not fuzzy i-open set. 

Because;   

if take C  τ  then, A ≤ Cl(AᴧC), B ≤ Cl(BᴧC), but AᴧB  Cl((AᴧB)ᴧC).  

Remark.3.3. The union of a fuzzy i-open set is not necessary to be a fuzzy i-open set. 

Example.3.5. Let X={a, b, c} and A, B, C  be a fuzzy sets of X defined as follows: 

                                      A(a)=0.6          A(b)=0.3         A(c)=0.7    

                                      B(a)=0.5         B(b)=0.9         B(c)=0.6 

                                     C(a)=0.5         C(b)=0.9          C(c)=0.7 

We put  τ ={0X, 1X, A, C, AᴧC, A∨  C }. Then A and B is a fuzzy i-open set, but A∨  B is not fuzzy 

i-open set. Because; if take C  τ then,  A ≤ Cl(AᴧC), B ≤ Cl(BᴧC), but A∨  B  Cl((A∨  B)ᴧC).  

Definition.3.2. A fuzzy subset A of a fuzzy topological space (X, τ) is said to be fuzzy iα-open set 

if there exists a non-empty subset U of X, U is a fuzzy α-open set, such that A ≤ Cl(AᴧU). The 

complement of the fuzzy iα-open set is called fuzzy iα-closed. We denote the family of all fuzzy iα-

open sets of a fuzzy topological space (X, τ) by FiαO(X). 
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Example.3.6. in the Example.3.2. B is fuzzy iα-open set. 

Theorem.3.2. Every fuzzy i-open set in any fuzzy topological space (X, τ) is a fuzzy iα-open set. 

Proof. Let (X, τ) be any fuzzy topological space and A ≤ X be any fuzzy i-open set. Therefore,         

A ≤ Cl(AᴧU), where   U  τ . Since, every fuzzy open is a fuzzy α-open, then   U, fuzzy α-open 

set. We obtain A ≤ Cl(AᴧU), where    U, fuzzy α-open set. Thus, A is a fuzzy iα-open set.  

Remark.3.4. The following example shows that fuzzy iα-open set need not be fuzzy i-open set. 

Example.3.7. Let X={a, b} and A, B, C  be a fuzzy sets of X defined as follows: 

                                    A(a)=0.2         A(b)=0.8          

                                    B(a)=0.5        B(b)=0.6          

We put  τ ={0X, 1X }. Then A is a fuzzy iα-open set, but not fuzzy i-open set. 

Remark.3.5. The inter section of fuzzy iα-open set is not necessary to be a fuzzy iα-open set as 

shown in the example.3.4. 

Remark.3.6. The union of fuzzy iα-open set is not necessary to be a fuzzy iα-open set as shown in 

the example.3.5. 

 

4. On decomposition of fuzzy i-continuity and fuzzy iα-continuity 

 

Definition.4.1. Let X and Y be fuzzy topological spaces, a function f: X Y is said to be fuzzy i-

continuous (resp. fuzzy iα-continuous) if the inverse image of every fuzzy open subset of Y is a 

fuzzy i-open (resp. fuzzy iα-open) subset in X. 

Theorem.4.1. Let X and Y be fuzzy topological spaces and function f: X Y the following 

statement hold: 

i) Every fuzzy -continuous is a fuzzy i-continuous, 

ii) Every fuzzy semi-continuous is a fuzzy i-continuous, 

iii) Every fuzzy α-continuous is a fuzzy i-continuous. 

Proof. This follows from Theorem.3.1. and Definition.4.1. 

Theorem.4.2. Every fuzzy i-continuous is a fuzzy iα-continuous. 

Proof. The proof is obvious from Theorem.3.2. and Definition.4.1. 

Remark.4.1. The converses of Theorem.4.1. and Theorem.4.1. need not true as shown in the follow 

in examples. 

Example.4.1. Let  X={a, b, c}, Y={0.1, 0.3, 0.7} and A, B be fuzzy subset defined as follows: 

                                     A(a)=0.2           A(b)=0.7          A(c)=0.4   

                                  B(0.1)=0.6        B(0.3)=0.3       B(0.7)=0.8 

Let  τ ={0X, 1X , A}, ϕ ={0Y,1Y, B}. Then the function f: X Y defined by 

                                    f(a) = 0.1,  f(b) = 0.7,  f(c) = 0.3  

is a fuzzy i-continuous but not fuzzy -continuous, fuzzy semi-continuous and fuzzy α-continuous. 

Example.4.2. Let  X={a, b, c}, Y={0.3, 0.1, 0.9} and A, B be fuzzy subset defined as follows: 

                                     A(a)=0.3           A(b)=0.1         A(c)=0.9   

                                  B(0.3)=0.7        B(0.1)=0.3      B(0.9)=0.5 

Let  τ ={0X, 1X }, ϕ ={0Y,1Y, B}. Then the function  f: X Y defined by  

                                     f(a) = 0.7,  f(b) = 0.5,  f(c) = 0.3 

is a fuzzy iα-continuous but not fuzzy i-continuous.  

Definition.4.2. Let X and Y be fuzzy topological spaces, a function f: X Y is said to be fuzzy i- 

irresolute (resp. fuzzy iα- irresolute) if the inverse image of every fuzzy i-open(resp. fuzzy iα-open) 

subset of Y is a fuzzy i-open (resp. fuzzy iα-open) subset in X. 

Theorem.4.3. Let X and Y be fuzzy topological spaces and function f: X Y the following 

statement hold: 

i) Every fuzzy -irresolute is a fuzzy i-irresolute, 

ii) Every fuzzy α-irresolute is a fuzzy i-irresolute. 

Proof. The proof is obvious from, Theorem.3.1. and Definition.4.2. 

Theorem.4.4. Every fuzzy i-irresolute is a fuzzy iα-irresolute. 
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Proof. The following from Theorem.3.2. and Definition.4.2. 

Remark.4.2. The converses of Theorem.4.3. and Theorem.4.4. need not true as shown in the 

following in examples. 

Example.4.3. In Example.4.1. f is a fuzzy i-irresolute but not fuzzy-irresolute. 

Example.4.4. In Example.4.2. f is a fuzzy i-irresolute  but not fuzzy α-irresolute. 

Theorem.4.5. Every fuzzy i-irresolute is a fuzzy i-continuous. 

Proof. The following from Theorem.3.1., Definition.4.1. and Definition.4.2. 

Theorem.4.6. Every fuzzy iα-irresolute is a fuzzy iα-continuous. 

Proof. The following from Theorem.3.2., Definition.4.1. and Definition.4.2. 

Remark.4.3. The converses of Theorem.4.5. and Theorem.4.6. need not true as shown in the 

following in examples. 

Example.4.5. Let  X={a, b, c}, Y={0.1, 0.5, 0.7} and A, B be fuzzy subset defined as follows: 

                                  A(a)=0.8         A(b)=0.2       A(c)=0.4   

                               B(0.1)=0.9      B(0.5)=0.4     B(0.7)=0.7 

Let  τ ={0X, 1X , A}, ϕ={0Y,1Y}. Then the function f: X Y defined by  

                                 f(a) = 0.1,  f(b) = 0.5,  f(c) = 0.7 

is a fuzzy i-continuous and fuzzy iα-continuous but not fuzzy i- irresolute and fuzzy iα- irresolute.  

Definition.4.3. Let X and Y be fuzzy topological spaces, a function f: X Y is said to be fuzzy i- 

contra-continuous (resp. fuzzy iα-contra-continuous) if the inverse image of every fuzzy open 

subset of Y is a fuzzy i-closed (resp. fuzzy iα-closed) in X. 

Theorem.4.7. Let X and Y be fuzzy topological spaces and function f: X Y the following 

statement hold: 

i) Every fuzzy -contra-continuous is a fuzzy i-contra-continuous, 

ii) Every fuzzy semi-contra-continuous is a fuzzy i-contra-continuous, 

iii) Every fuzzy α-contra-continuous is a fuzzy i-contra-continuous. 

proof. i) Let f: X Y be a fuzzy-contra-continuous and V any fuzzy open set in Y. Since f is fuzzy-

contra-continuous, then f
-1

(V) is fuzzy closed sets in X. Since, every fuzzy closed set is a fuzzy i-

closed set, then f
-1

(V) is a fuzzy i-closed set in X. Therefore, f is a fuzzy i-contra-continuous. 

ii) Since every fuzzy semi-open set is a fuzzy i-open set. 

iii) Since every fuzzy α-open set is a fuzzy i-open set. 

Theorem.4.8. Every fuzzy i-contra-continuous is a fuzzy iα-contra-continuous. 

proof. Let f: X Y be a fuzzy i-contra-continuous and V and set in Y. Since, f is a fuzzy i-contra-

continuous, then f
-1

(V) is a fuzzy i-closed set in X. Since, every fuzzy i-closed set is a fuzzy iα-

closed, then f
-1

(V)  is a fuzzy iα-closed set in X. Therefore, f is a fuzzy iα-contra-continuous. 

 Remark.4.4. The converses of Theorem.4.7. and Theorem.4.8. need not true as shown in the 

following in examples. 

Example.4.6. Let  X={a, b, c}, Y={0.1, 0.5, 0.7} and A, B be fuzzy subset defined as follows: 

                                 A(a)=0.4          A(b)=0.6        A(c)=0.4   

                              B(0.1)=0.6       B(0.5)=0.4     B(0.7)=0.6 

Let  τ ={0X, 1X , A}, ϕ={0Y,1Y, B}. Then the function f: X Y defined by 

                                 f(a) = 0.1,  f(b) = 0.5,  f(c) = 0.7 

is a fuzzy i-contra-continuous, but not fuzzy contra-continuous, fuzzy semi-contra-continuous and 

fuzzy α-contra-continuous.  

Example.4.7. Let  X={a, b}, Y={0.3,  0.7} and A, B be fuzzy subset defined as follows: 

                                          A(a)=0.2               A(b)=0.1                

                                       B(0.3)=0.7            B(0.7)=0.7              

Let  τ ={0X, 1X , A}, ϕ={0Y,1Y, B}. Then the function f: X Y defined by 

                                            f(a) = 0.7,  f(b) = 0.3 

is a fuzzy iα-contra-continuous, but not fuzzy i-contra-continuous.  
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