On Conjugate Space of 2-Fuzzy Generalized 2-Normed Space حول الفضاء المرافق للفضاء 2-المعيارى المعمم 2-الضبابى

Faria Ali C. and Alaa Malek Soady Department of Mathematics, College of Science, Al-Mustansiriyah University,Baghdad, Iraq.

Abstract:

The main goal of this paper is to prove the extension theorem for 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional in 2-fuzzy generalized 2-normed space. Also, the definition of the 2-fuzzy adjoint operator of 2-fuzzy generalized 2-fuzzy bounded 2-fuzzy 2-linear operator defined on 2-fuzzy generalized 2-normed space is introduced.

الخلاصة

ان الهدف الرئيسي من هذا البحث هو برهان مبرهنة التوسع للدالي 2-الخطي 2-الضبابي 2- المقيد 2-الضبابي المعمم 2-الضبابي في الفضاء 2- المعياري المعمم 2-الضبابي. ايضا قدم تعريف المؤثر المجاور2- الضبابي للمؤثر2-الخطي 2-الضبابي 2-المقيد 2-الضبابي المعمم 2-الضبابي المعرف على الفضاء 2-المعياري المعمم 2-الضبابي.

1. Introduction:

The theory of 2-norm on a linear space has introduced and developed by Gahler in [1]. In 2006 Lewandowska and et.al. [2] introduced the notation of Hahn-Banach extension theorem in generalized 2-normed space. Somasundaram and Beaula [3] defined the notion of 2-fuzzy 2-normed linear space. Later, Thangaraj and Angeline [4] introduced Hahn-Banach theorem in the realm of 2-fuzzy 2-normed linear spaces. Faria and Rasha [5], introduced and proved the form of Hahn-Banach theorem in generalized 2-normed spaces and gave the definition of adjoint operator for generalized 2-bounded 2-linear operator. In this paper we redefined in a general setting the idea of generalized 2-normed space, that appeared in ([2],[5]) and give 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator and studies extension theorem for 2-fuzzy adjoint operator of 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator. Moreover, we prove that the 2-fuzzy adjoint operator has the same norm as the 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator itself.

2. 2-Fuzzy Adjoint Operator of 2-Fuzzy Generalized 2-Fuzzy 2-Bounded 2-Fuzzy 2-Linear Operator:

In this section, we give a definition of 2-fuzzy generalized 2-normed space which based the idea that appeared in [2]. Also, some facts that appeared in [2] are generalized to 2-fuzzy setting. **Definition (2.1), [2]:**

Let X be a real linear space of dimension greater than one. A function $\|\cdot, \cdot\|: X \times X \to [0, \infty)$ is said to be a generalized 2-norm on X in case for each x, y and $z \in X$ and for each $\alpha \in R$, $(N_1) \|x, \alpha y\| = |\alpha| \cdot \|x, y\| = \|\alpha x, y\|$ $(N_2) \|x, y + z\| \le \|x, y\| + \|x, z\|$ $(N_3) \|x + y, z\| \le \|x, z\| + \|y, z\|$

The pair $(X \times X, \|., \|)$ will be referred to as a generalized 2-normed space on $X \times X$.

Definition (2.2), [4]:

Let X be real linear space and F(X) be the set of all fuzzy sets on X. For $U, V \in F(X)$ and $k \in \mathbb{R}$, define

 $U + V = \left\{ (x + y, \lambda \land \mu) \middle| (x, \lambda) \in U, (y, \mu) \in V \right\} \text{ and }$

 $kU = \left\{ (kx, \lambda) \middle| (x, \lambda) \in U \right\}$

Definition (2.3), [4]:

A fuzzy linear space $\tilde{X} = X \times (0,1]$ over the real field R where the addition and scalar multiplication operation on \tilde{X} are defined by

 $(x,\lambda)+(y,\mu)=(x+y,\lambda\wedge\mu)$

 $k(x,\lambda) = (kx,\lambda)$

Is a fuzzy normed space in case for each $(x, \lambda) \in \widetilde{X}$

(1) $||(x,\lambda)|| = 0$ if and only if $x = 0, \lambda \in (0,1]$

(2) $||k(x,\lambda)|| = |k|| |(x,\lambda)||$ for each $(x,\lambda) \in \widetilde{X}$ and for each $k \in \mathbb{R}$

- $(3) \|(x,\lambda) + (y,\mu)\| \le \|(x,\lambda \wedge \mu)\| + \|(y,\lambda \wedge \mu)\| \text{ for each } (x,\lambda), (y,\mu) \in \widetilde{X}$
- (4) $\|(x, \lor \lambda_t)\| = \bigwedge_t \|(x, \lambda_t)\|$ for each $\lambda_t \in (0, 1]$.

Definition (2.4), [4]:

Let X be a real linear space and F(X) be the set of all fuzzy sets in X the addition and scalar multiplication are defined by

 $f + g = \{ (x + y, \lambda \land \mu) | (x, \lambda) \in f, (y, \mu) \in g \} \text{ and } kf = \{ (kx, \lambda) | (x, \lambda) \in f, k \in R \}$

Definition (2.5),[4]:

Let X be a real linear space. A function $\|\cdot\|$: $F(X) \to [0,\infty)$ is said to be norm on a F(X) in case for each $f, f_1, f_2 \in F(X)$ and $k \in \mathbb{R}$, the following conditions hold

(1) $\|\mathbf{f}\| = 0$ if and only if $\mathbf{f} = 0$

(2) ||kf|| = |k|||f||

 $(3) \| \mathbf{f}_1 + \mathbf{f}_2 \| \le \| \mathbf{f}_1 \| + \| \mathbf{f}_2 \|$

The pair $(F(X), \|.\|)$ will be referred to as a fuzzy normed space.

Definition (2.6):

A 2-fuzzy generalized 2-normed space is a generalized 2-normed space on $F(X) \times F(X)$. In order to make definition (2.6) as clear as possible we will consider the following example. **Example (2.7):**

Let $(F(X), \|.\|)$ be a fuzzy normed space. For each $f_1, f_2 \in F(X)$ and $k \in \mathbb{R}$ define

$$\|\mathbf{f}_1, \mathbf{f}_2\| = \|\mathbf{f}_1\|\|\mathbf{f}_2\|$$

It is easy to check that $(F(X) \times F(X), \|., \|)$ is a 2-fuzzy generalized 2-normed space.

Definition (2.8), [4]:

Let X and Y be real linear spaces. A function T from $F(X) \times F(X)$ into F(Y) is said to be 2-fuzzy 2-linear operator in case satisfies the following conditions: for all $f_1, f_2, f_3, f_4 \in F(X)$.

(1)
$$T(f_1 + f_2, f_3 + f_4) = T(f_1, f_3) + T(f_1, f_4) + T(f_2, f_3) + T(f_2, f_4).$$

(2) $T(\alpha f_1, \beta f_2) = \alpha \beta T(f_1, f_2)$, for all scalars α, β .

Definition (2.9), [4]:

Let X be real linear space. A 2-fuzzy 2-linear functional is a real valued function on $F(X) \times F(X)$ satisfies the following conditions: for all $f_1, f_2, f_3, f_4 \in F(X)$.

$$(1)T(f_1+f_2,f_3+f_4)\!=\!T(f_1,f_3)\!+\!T(f_1,f_4)\!+\!T(f_2,f_3)\!+$$

$$\Gamma(f_2, f_4).$$

 $(2)T(\alpha f_1, \beta f_2) = \alpha.\beta T(f_1, f_2)$, for all scalars α, β .

Definition (2.10):

Let $(F(X) \times F(X), \|\cdot, \|)$ be a 2-fuzzy generalized 2-normed space and $(F(Y), \|\cdot\|)$ be a fuzzy normed space a 2-fuzzy 2-linear operator $T: (F(X) \times F(X), \|\cdot, \|) \to (F(Y), \|\cdot\|)$ is said to be 2-fuzzy generalized 2-fuzzy 2-bounded in case there is a constant k > 0 such that $\|T(f_1, f_2)\| \le k \|f_1, f_2\|$, for each $f_1, f_2 \in F(X)$.

Remark (2.11)

Let $(F(X) \times F(X), \|.,\|)$ be 2-fuzzy generalized 2-normed space and $(F(Y), \|.\|)$ be fuzzy normed space. We denote the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator from $(F(X) \times F(X), \|.,\|)$ by $B(F(X) \times F(X), F(Y))$.

Proposition (2.12):

Let $T: (F(X) \times F(X), \|.,\|) \to (F(Y), \|.\|)$ be a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator. Then

 $\|\mathbf{T}\| = \inf \left\{ \mathbf{k} : \|\mathbf{T}(\mathbf{f}_1, \mathbf{f}_2)\| \le \mathbf{k} \|\mathbf{f}_1, \mathbf{f}_2\| ; (\mathbf{f}_1, \mathbf{f}_2) \in \mathbf{F}(\mathbf{X}) \times \mathbf{F}(\mathbf{X}) \right\}$ is the norm on the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator T.

Theorem (2.13):

Let $(F(X) \times F(X), \|.,\|)$ be 2-fuzzy generalized 2-normed space and M be a linear subspace of $F(X) \times F(X)$. If T is a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on M then T can be extended to a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional T₀ defined on the whole space $F(X) \times F(X)$ such that $\|T\| = \|T_0\|$.

Proof

If $M = F(X) \times F(X)$ or ||T|| = 0 then take $T = T_0$. Otherwise without lose the generality assume that ||T|| = 1 consider the family Å of all possible extentions of T of norm one. Partially order Å with \leq as follows given (G_1, L_1) , $(G_2, L_2) \in Å$, put $(G_1, L_1) \leq (G_2, L_2)$ if and only if G_2 is an extension of G_1 that is $L_1 \subseteq L_2$, $G_2(f_1, f_2) = G_1(f_1, f_2)$ for each $(f_1, f_2) \in L_1$ and $||G_2|| = ||G_1||$.

The family \check{A} is non-empty, because $(T,M) \in \check{A}$. Let \Im be chain of \check{A} . Define $\tilde{L} = \bigcup L$. Clearly \tilde{L} is a real linear subspace of $F(X) \times F(X)$ and contains M. Define $(G,L) \in \Im$

 $\widetilde{G}: \widetilde{L} \to R$ by $\widetilde{G}(f_1, f_2) = G(f_1, f_2)$ where G is associated with some L, $(G, L) \in \mathfrak{T}$, which contains (f_1, f_2) . Then \widetilde{G} is a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional on \widetilde{L} that is an extinction of every G and $\|\widetilde{G}\| = 1$. So the constructed pair $(\widetilde{G}, \widetilde{L})$ is hence an upper bound for the chain \mathfrak{T} . By using Zorn's lemma there exists a maximal element $(T_0, L_m) \in \check{A}$. To complete the proof it is enough to show that $L_m = F(X) \times F(X)$. Suppose by contrary that there exists (f_0, g_0) in $F(X) \times F(X) \setminus L_m$. Then consider the linear space

 $L' = L_m + R(f_0, g_0) = \{(f + \alpha f_0, g + \mu g_0); (f, g) \in L_m\}.$ Define

 $T':L'\to R$

 $T'(f + \alpha f_0, g + \mu g_0) = T_0(f, g) + \alpha \mu \gamma$ where $(f, g) \in L_m$ and $\gamma \in R$ will be chosen in such away that ||T'|| = 1. But ||T'|| = 1 provided that

 $\left|T_{0}(f,g) + \alpha\mu\gamma\right| \leq \left\|f + \alpha f_{0}, g + \mu g_{0}\right\|$(1)

For each $(f,g) \in M$ and $\gamma \in R$. Replace (f,g) by $(-\alpha f, -\mu g)$, and divide both sides of (1) by $|\alpha \mu|$. Then the requirement is that

 $|T_0(f,g) - \gamma| \le ||f - f_0, g - g_0||$(2)

For each $(f,g) \in M$ and $\gamma \in R$. Since T_0 is 2-fuzzy 2-linear by choosing γ in such a way that $T_0(f,g) - \|f - f_0, g - g_0\| \le \gamma \le T_0(f,g) - \|f - f_0, g - g_0\|$. Then (2) and therefore (1) holds. So we have proved that $(T',L') \in \check{A}$, $(T_0,L_m) \ne (T',L')$ and $(T_0,L) \le (T',L')$

which is a contradiction.

Theorem (2.14):

Let (f_0, g_0) be a vector in the 2-fuzzy generalized 2-normed space $(F(X) \times F(X), \|\cdot, \|)$ such that $\|f_0, g_0\| \neq 0$. Then there exists a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional T_0 , defined on the whole space, such that $T_0(f_0, g_0) = \|f_0, g_0\|$ and $\|T_0\| = 1$. **Proof:**

Consider the linear space

 $M = \{(\alpha f_0, \mu g_0)\}$ and consider the functional T, defined on M as follows $T(\alpha f_0, \mu g_0) = \alpha \mu \|f_0, g_0\|$

Clearly, T is a 2-fuzzy 2-linear functional with the property that $T(f_0, g_0) = ||f_0, g_0||$.

Further, since for any $(f,g) \in M$

$$|T(f,g)| = |\alpha\mu| ||f_0,g_0|| = ||\alpha f_0,\mu g_0|| = ||f,g||$$

We see that T is a 2-fuzzy 2-bounded 2-fuzzy 2-functional. Moreover ||T|| = 1. It now remains only to apply theorem to assert the existence of a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on the whole space, extending T and having the same norm as T, that $||T_0|| = 1$.

Notation (2.15):

Let us denote the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on 2-fuzzy generalized 2-normed space $(F(X) \times F(X), \|.,\|)$ by $(F(X) \times F(X))^*$ and we call conjugate space of 2-fuzzy generalized 2-normed space, and the set of all bounded linear functional defined on F(Y) by $F(Y)^*$.

Proposition (2.16):-

Let $(F(X) \times F(X), \|.,\|)$ be 2-fuzzy generalized 2-normed space. Then $((F(X) \times F(X))^*, \|.\|)$ is a complete normed linear space with norm defined by

 $\|\mathbf{T}\| = \inf \{ \mathbf{k} : |\mathbf{T}(\mathbf{f}_1, \mathbf{f}_2)| \le \mathbf{k} \|\mathbf{f}_1, \mathbf{f}_2\| : (\mathbf{f}_1, \mathbf{f}_2) \in \mathbf{F}(\mathbf{X}) \times \mathbf{F}(\mathbf{X}) \}.$

Proof:-

It is easy to see $((F(X) \times F(X))^*, \|\|)$ is a normed linear space. In order to prove $(F(X) \times F(X))^*$ complete let $\{T_k\}_{k \in \mathbb{N}}$ be a Cauchy sequence in $(F(X) \times F(X))^*$ thus $\lim_{k \to \infty} \|T_k - T_{k+p}\| = 0, \forall p = 1, 2, ...$ Also, $|(T_k - T_{k+p})(f_1, f_2)| \leq \|T_k - T_{k+p}\| \|f_1, f_2\|$. Then $|(T_k - T_{k+p})(f_1, f_2)| \longrightarrow 0$ as $k \longrightarrow \infty, \forall f_1, f_2 \in F(X)$. Thus $\{T_k(f_1, f_2)\}$ is a Cauchy sequence in R. Since $(R, \|.\|)$ is complete then $\lim_{k \to \infty} T_k(f_1, f_2) = y$ exists in $(R, \|\|)$. Define $T : F(X) \times F(X) \to R$ by $T(f_1, f_2) = y$ then it can be easily verified that T is 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2- linear functional. Hence $|T_k(f_1, f_2) - T_{k+p}(f_1, f_2)| \leq \|T_k - T_{k+p}\| \|f_1, f_2\| \leq \varepsilon \|f_1, f_2\| \forall k \geq N(\varepsilon), f_1, f_2 \in F(X), p = 1, 2, ..., L$ etting $p \longrightarrow \infty$ we get $|T_k(f_1, f_2) - T(f_1, f_2)| \leq \varepsilon \|f_1, f_2\|, \forall k \geq N(\varepsilon) \text{ and } \forall f_1, f_2 \in F(X).$ Thus $\|T_k - T\| \leq \varepsilon, \forall k \geq N(\varepsilon)$. Then $\|T_k - T\| \longrightarrow 0$ as $k \longrightarrow \infty$.

Hence $(F(X) \times F(X))^*$ is complete.

Definition (2.17):

Let $T: (F(X) \times F(X), \|.,\|) \to (F(Y), \|.\|)$ be a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2linear operator from a 2-fuzzy generalized 2-normed space $F(X) \times F(X)$ to a normed space F(Y). The operator $T^X: F(Y)^* \to (F(X) \times F(X))^*$ is defined by

 $(T^{X}g)(f_{1},f_{2}) = g(T(f_{1},f_{2})) = h(f_{1},f_{2}), g \in F(Y), f_{1},f_{2} \in F(X), \text{ is called the 2-fuzzy adjoint operator of T.}$

Next, we give the following theorem which is based on the idea that appeared in [5].

Theorem (2.18):

Let $(F(X) \times F(X), \|\cdot, \|)$ be a 2-fuzzy generalized 2-normed space and $(F(Y), \|\cdot\|)$ be a normed space. If $T: (F(X) \times F(X), \|\cdot, \|) \to (F(Y), \|\cdot\|)$ is a 2-fuzzy generalized 2-fuzzy 2-bound 2-fuzzy 2-linear operator. Then $T^X: F(Y)^* \to (F(X) \times F(X))^*$ is a bounded linear operator and $\|T^X\| = \|T\|$. **Proof:**-

Since the operator T^x with its domain $F(Y)^*$ is a linear space then $T^x (\alpha_1 g_1 + \alpha_2 g_2)(f_1, f_2) = (\alpha_1 g_1 + \alpha_2 g_2)T(f_1, f_2)$ $= \alpha_1 g_1 T(f_1, f_2) + \alpha_2 g_2 T(f_1, f_2)$ $= \alpha_1 (T^x g_1)(f_1, f_2) + \alpha_2 (T^x g_2)(f_1, f_2)$

Also, $\|\mathbf{T}^{\mathbf{X}}\mathbf{g}\| = \|\mathbf{h}\| \le \|\mathbf{g}\|\|\mathbf{T}\|$ Moreover, $\|\mathbf{T}^{\mathbf{X}}\| = \inf\{\mathbf{K} : \|\mathbf{T}^{\mathbf{X}}\mathbf{g}\| \le \mathbf{K}\|\mathbf{g}\|$

Then, $\left\| \mathbf{T}^{\mathbf{X}} \right\| \leq \left\| \mathbf{T} \right\|$

For every vector (f_1, f_2) in $F(X) \times F(X)$ such that $||f_1, f_2|| \neq 0$, then there is $g_0 \in F(Y)^*$ such that $||g_0|| = 1$ and $g_0(T(f_1, f_2)) = ||T(f_1, f_2)||$.

Writing
$$h_0 = T^x g_0$$
, we obtain
 $||T(f_1, f_2)|| = g_0(T(f_1, f_2)) = h_0(f_1, f_2) \le ||h_0||||f_1, f_2|| = ||T^x g_0||||f_1, f_2|| \le ||T^x||||g_0|||||f_1, f_2|| \le ||T^x||||g_0|||||f_1, f_2||$

since, $\|g_0\| = 1$, we have

 $\|T(f_1, f_2)\| \le \|T^X\| \|f_1, f_2\|$

But, $||T(f_1, f_2)|| \le ||T||| ||f_1, f_2||$

where, $\mathbf{k} = \|\mathbf{T}\|$ is the smallest constant k such that $\|\mathbf{T}(f_1, f_2)\| \le \mathbf{k} \|f_1, f_2\|$

Hence, $\|T^{x}\| \ge \|T\|$. Therefore $\|T^{x}\| = \|T\|$.

References:

[1] Gahler S., "Lineare 2-normierte Raume", Math. Nachr., Vol. 28, PP. 1-43, (1964).

- [2] Lewandowska Z., Moslehian M. and Moghaddam A., "Hahn-Banach Theorem in Generalized 2-Normed Spaces", Communications in Mathematical Analysis, Vol. 1, PP. 109-113, (2006).
- [3] Somasundaram R. and Beaula T., "Some Aspects of 2-fuzzy 2-Normed Linear Spaces ", Bull Malyasian Mathemetical sciences society, Vol. 32, PP.211-222, (2009).
- [4] Thangaraj B. Angeline G., "Hahn Banach Theorem on 2-Fuzzy 2-Normed Linear Spaces", International journal of advanced scientific and technical research, Vol.5, PP.2249-9954, (2012).
- [5] Faria A. and Rasha A., "Modification of Extention Theorem and Adjoint Operator in Fuzzy Generalized 2-Normed Spaces", Furth International scientific conference, Al-Qadisiya University, college of computer Sceince and Mathmetics, 21-23-October, (2012).