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ABSTRACT

In this paper, we first construct third kind Chebyshev wavelets on the interval [0,1).
Then, a 2¥M x 2¥M matrix P, named as almost third kind Chebyshev wavelets operational
matrix of integration is constracted and used to reduce the optimal control problem to a
system of algebric equation with the aid of spectral method, which can be solved easily. The
uniform convergence of third kind Chebyshev wavelets is also discussed in this paper. The
method is then tested on numerical example.

Keywords: Third Kind Chebyshev Polynomials, Wavelets, Optimal Control Problems,
Spectral Methed.
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INTRODUCTION
avelets are localized function which are a useful tool in many different
applications: signal analysis, data compression, operator analysis, PDE
solving, Vibration analysis and solid mechanics [1-4].
One of the popular families of wavelets is Haar wavelets [5], harmonic
wavelets [6], Shnnon wavelets [7], Legendre wavelets [8], and Chebyshev wavelets
of the first and second kinds [9,10].

The aim of the present paper is to constract new wavelets named third kind
Chebyshev wavelets on the interval [0,1]. The related operational matrix of

145
https://doi.org/10.30684/etj.32.1B.17
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0



https://doi.org/10.30684/etj.32.1B.17
http://creativecommons.org/licenses/by/4.0

. & Tech. Journal .Vol.32,Part (B), No.1, 2014 Numerical Solution of Optimal Control Problems
Using New Third Kind Chebyshev Wavelets
Operational Matrix of Integration

integration is derived which is suitable for approximate solution of optimal control
problems.

THIRD KIND CHEBYSHEV POLYNOMIALS

Third kind Chebyshev polynomials are encountered in several areas of
numerical analysis, and they hold particular impotance in varions subjects [11,12].
Defenetion(1) [13]: The third kind Chebyshev polynomial in [-1,1] of degree n is
denoted by V}, and is defined by

+1)e
V,(x) M wherex = cos 6, §¢§+nn .. (1)

COS(E)
This class of Chebyshev polynomials is satisfied in the following relations:
Vh(x)=1, Vix)=2x—-1, V,(x)=2xV_1(x)—V,_,(x) n=2,3...

Defenetion (2) [13]: The third kind of Chebyshev polynomial in [a, b] of degree n is
denoted by V" and is defined by

1
cos(n+=)60 2x—(a+b
(—12), 6 # nmt where cosf = Zx—(a+h)
cos(E)B b—a

For x € [a, b] if we put = %‘jb) , then s€[-1,1] and 1}, (x) = V,,(s).

Vy(x) = 0 €[0,7],b #a

Third kind Chebyshev polynomials of degree n are orthogonal with respect to
weight function
(1+x2)

o X# +1

w(x) =

THIRD KIND CHEBYSHEV WAVELETS

Wavelets constitut a family of functions constructed from dilation and
translation of a single function called the mother wavelts. When the dilation
parameter b vary continuously, we have the following family of continuous
wavelets as

1/t —
Vop(®) =1alZ (=) abeRa#0
Now Third kind Chebyshev wavelets
B = P(k,m,n,t)
have four arguments; k=1,2.3.....,n=1,2,...,2% 'm is the order for third kind
Chebyshev polynomials and t is the normalized time.
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They are defined on the interval [0,1) by:

k
i ~ k+1 n—-1 n
yﬁ'm(t):{ZZ Vm(z + t—2n+1)2—kSt<§ (3)
0 otherwise
Where ¥, = Jiﬁvm, m=0, 1, 2,..., M-1 n=1.2,...,2%

THIRD KIND CHEBYSHEV WAVELETS
Operational Matrix of Integration.

A function f(t) defined over [0,1) may be expanded as:

f(®) = X1 Xm0 fam Fam(t) . (4)

where

fn,m = (f(t)r ?ﬁ,m(t))

If the infinite series in equation(6) is trancated , then equation(6) can be written as:

FOO) = forpyoy = Y20, TMLf o m(D)

= FT¥(t) ... (5)
where Fand ¥2(t) are 2M x 1 matrices given by:

F =[fu0 fits s frm=1s f2,00 oo fobtmts woes F gk go voes f ok yya | ... (6)

(1) =

[ 0(0) B a(O), ., Brga (O, Foo(0), ooy Poages (6, ey Pt (), e, Py, (O] (7)

For third kind Chebyshev wavelets the integration of the vector ¥?(t) definds in
equation (7) can be obtained as:

Jtyﬁ(s)ds =PY(t)
0

Now, we will derive the operational matrix P of integration which plays a great role
in dealing with the problem of optimal control . First we constract the 8 x 8 matrix P for
k=1,M=3.

By itegrating (3) from O to t and representing it to the matrix from, we obtain
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t 3 1 1
fy Blo@dt == ¥lo+2 Fi1+5 P

=2 200300 0%
1 1 1 1
fy Yladdt = - ?Dio e M1 +— ¥, —5 %o
:5_5 _¥ = 1 e (1) ; 0]5”3
t
fy #2(t)dt = 20 110 736 Y117 g 112 += %o
=z i "% 000 oK
t 657 1 33 9
[y Pls@dt =" - Vi +3 Pla+5 s —2 P
Z657 1 33 9 1
=5 T s s 00 04
3 1
fy Broddt == P +2 ¥,
=fo 00020 0%
1 1 1
fy Badt = -3 B0 —— B+,
111
=5[o 000 -3 -1 2 o]
t 1 1
fy Bra@®ydt == o —— ¥o1 — 1= a2
5 1 1
=l 0005 o5 -5 0¥
t 657 1 33 9
[, Braydt = - Wo—= o1 ++ Pro+ 2 Hos
—-657 1 33 9
=00 00 5= -5 T Fu
Thus [y #5(t)dt’ = Pexg H(0)
Where
(1) =

[Fo(®) Hi() B Ha®) HBo( () () @]

For general case, we have
t
f P (thdt' = P (¢)
0

where P is a 2¥M x 2¥M matrix for integration and given by

L F F .. F F
[0 L F .. F F]
p=|: oot
|lo 0 0 .. L FJ|
0 0 L

0
Where Fand L are M x M and given by
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1 0 0 0
1 0 0 0
1
3 0 0 0
1
1l — 00 0
F=oxl 3
—1 M+1
% 0 0 0
—1 M+1
S 00
M=1
3 1
3 3 0 0 0
8 11 . .
4 4 4
5 2 2 . .
G 8 24
Luxw = | =678 2 66 18 .
8 16 8 16
1 11 1 1
2M 2M T 2M T M(2M) oM
1 1 1 1 1
2M oM oM oM oM

CONVERGENCE OF THE THIRD KIND CHEBYSHEVE WAVELETS BASES

We shall prove that the third kind Chebyshev wavelets expansion of a function
f(x), with bounded second derivative, converge uniformly to f(x).
Theorem(1): Afunction f(x) defined on [0,1), with bounded second derivative, say
|f"(x)| < B, can be expanded as an infinite sum of third kind Chebyshev wavelets,

and the series f(X) =X, Y% _, Com Fom (x) cONVerges ... (8)
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where  Cpm = [, f(O) Bam (DWi (D) dt .. (9)
Proof:

Using eq.(9), yields
Com = f(:‘l/zl)/zk 22 f(t)Vm(2k+1t —2n+ w1t —2n+ 1dt ... (10)

Substitute  cos @ = 2%*1t — 2n + 1 when m>1in eq.(10) to get

1 ™ /cos0+2n—1\ 1 1 1
Cnm:g i f( kT >ﬁcos<m+§9>cos<§8)

By using the integration by part,wehave,

_ 1 Trf, (cos 9+2n—1) ind [sin(m@) . sin(m+1)9]

2§2k+1\/5 ° 2 (m+1)
1 6+2n-1\ . .
=— O”f’(cos :Hn )sm@smdeG
2522k+2m\/ﬁ 2
1 0+2n-1\ . .
-— 0” ,(c052k—+1n) sin 8 sin(m + 1)6 do
2222k+2(m+1)Vw
1 T . (CcOSO+2n—1Y) sin(m—1) sin(m+1)6
ok 0 f ( 2k+1 ) 9[ (m-1)  (m+1) do
2724—k+4m\/ﬁ

1 T (c050+2n 1) no [smme sin(m+2)6
2k+1 (m+2)

| a6

k 0
2224kt4(m+1)Vm

= " (5 [ + D Ln(6) — mHyn (6)] 6

272 24m(m+1)Vr
where L,,(6) = sin

sin(m-1)0 . sin(m+1)9]

. m-—1 . m+1
o Hy,(6) = sin 2202 _ s 36
thus we get
1 T o, (cosf+2n—1
Coml = |2 | (e 1+ O,

2°224m(m + DV 0

—mH,,] do| <

, (€0sB +2n—1
< 2k+1

29E2 (1 +1)\/_f0n )[(m+1)Lm—mHm]|d9§
224m(m T
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N

T
- f [[(m + 1)L,, — mH,,]| d6
2°224m(m + DV 0
However
JoN(m + D)Ly, — mH,y, ]| d6

i sin(m—-1)6  sin(m+1)8
< (m+ 1” | me[ (m-1)  (m+1)
sm(m+2)9]| do

(m+1) [ |Ln(®)]d6 = (m+1) [ sing

7 |sin @ sin(m—1)60
s (m + 1) fO m—1 | - m+1 - (m?2-1)
m [ H(8)] d6 = m [ sin g [ _ D0 g

m

sin051n(m+2)9| 21
< < —
- (m) fO | + m+2 — (m+2)

Then since n< 2"‘ 1 we obtained
|G| < —522T .. (11)
(2n)z(m2-1)(m+2)

Now, if m=1, by using (11), we have
Vem
|C1nl < ——7 max |f'(x)|

(Zn) 2 0sx=1

sinmé@

”d@ mf |sn9[

sin(m—-1)6 sm(m+1)0

m-—1
sin @ sin(m+1)9| < Zmn

|d9

sin @ sin(m)0

Yme1 2m=0Cnm Absolutly convergent for m=0
{ ¥0)}m=1 Orthogonal system

|Z$10=1 Z%:O Cnm ??Lm(x)l < |Z?10=1 CnO ??lO(x)l + Z:f:l Z?L:Olcnmll ??Lm(x)l
< |Z$1o=1 CnO 5D?lo(x)l + Z;.lo=1 Z?L:Olcnml <
Then Y2, 3% _o Com Pom () converges to f(x) uniformly.
APPLICATION OF THE THIRD CHEBYSHEV WAVELETS OPERATIONAL
MATRIX OF INTEGRATION.
In this section, we demonstrate the application of the operational matrix of which

derived in this work to solve optimal Control problem.
The optimal Cntrol problem

J = [, (<" Qx + uTRu)dt .. (12)

Subject to
x = Ax + Bu .. (13)

X(0)=x,
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We must solve this problem by find solution Hamiltonian Equation [].
The initial condition vector X, can be expressed via third Chebyshev
wavelets as

xo = - (159 ¥im)Go

Go=[cd cZ....c§] Iisidentity matrix sxs ¥2(t)issx1
¢ = [x;(0) (1 0.... 0 x;(0)0 0...... 0] From Equation (3) we can obtained
2 /2
Spslo = N3

then xO = 2k£7/7:2 ??l()(t) .
First we assume:

x"(t) = CT ¥3,,,(t) ris higher derivitiv in Hameltonian equation. ... (14)

_ (r-1) (r-2) t? .t n-1 n
x(t)—CTPrSDflm+x0 t+x, ?+---+x07+x02—kSt<2—k...(15)
Example 1

Cosider the Optemal Control problem

minj = fol(x2 +u?)dt ... (16)
subjectto  x=wu,x(0) =1 using Hamiltonian method

H=f, + Af fo=x%+u? f=u

—0H _ - oH

o v~V

The Hamiltonian is
H=x*>+u?+u

By solving this equation we obtain

o .. (17)
exact solution  x(t) = %(;t) u(t) = — Sz:;(lll_t)
Let =CT oo - (18)
x(t) = CTP ¥, () + %(0)
x(t) = CTP2 ¥, + %(0)¢t + x(0) .- (19)

152



. & Tech. Journal .Vol.32,Part (B), No.1, 2014

Numerical Solution of Optimal Control Problems
Using New Third Kind Chebyshev Wavelets
Operational Matrix of Integration

x(0) =

N

=220,

7

Substitute (20),(21) in (19) vyeilds
x(t) =CTP2¥, +d" ¥,

3
anm

GO, GO=[100100]Yﬁmthenx(O)—\/_[ 2000 ¥5,00] ..

.. (21)

- (20)

d™y:, =[0.895370 —0.11931459 0 0.41811204 —0.11931459 0]T

From abov we obtaned
cTP2yR  +d™W3, —CT¥, =0
By solving (33) by spectral method we obtaied the following egs.

121

+_
384- 21 11152
1c e —
el 35022

121
CZZ

%61 304, Cll 152 — (5 — C19p = —0.89537037
128 C10 Ecll + §C12 — Cy; = 0.11931452
128 “10 T 7o 11—$C —612=0

Te 10_— 11+288612+ > (o —

1_16C1 1C11 +— C;12 128 Cyo —

128020 T 155021 T 5 Cez = (22 = 0

Solving the above system to get CT
[0.98395684 — 0.07588431 0.00805443 0.82510875

—0.01926789 0.00652386 |7
Following table shows numerical reselts of example above

CT

(33)

— Cy = —0.41811204
C,1 = 0.11931452

Table (1) shows reselts of third Chebyshev wavelets.

t ex X(t) Rd Ch.w x(] error 2ed Ch.w x(t] ex u(t) Rd Ch.w u(t) error
0 1 0.99885723] 0.00114277 ] 0.99930248 | -0.76159416 | -0.75971976 | 0.00187440
0.1 J 0.92871776] 0.92882665] 0.00000889 J 0.92886474 | -0.66523855 ] -0.66534063 | 0.00000208
0.2 ] 0.86673043] 0.86702199] 0.00002916 ] 0.86686167 | -0.57554088 ] -0.57597663 | 0.00004357
0.3 ] 0.81341764] 0.81344326] 0.00000256 ] 0.81329249 | -0.49160341 ] -0.49162776 | 0.00000244
0.4 ] 0.76824580] 0.76809044] 0.00001554 ]} 0.76815747 | -0.41258607 ] -0.41229402 ] 0.00002921
0.5 ] 0.73076282] 0.73096356] 0.00002007 J 0.73145661 | -0.33769804 ] -0.33779754 | 0.00002774
0.6 ] 0.70059357] 0.70069986] 0.00001063 J 0.70125513 | -0.26618980 ] -0.26625406 | 0.00000643
0.7 | 0.67743604 0.677574080.00001380 | 0.67794531}0.19734568 }-0.19768738 J.00003417
0.8 ] 0.66105864 0.6611110¢0.00000524 | 0.66139415}-0.13047666 }-0.13048939 J.00000127
0.9 ] 0.65129729 0.651310840.00000136 | 0.65160163 }-0.06491340 }-0.06466008 J.00002533
0.6480542] 0.64817334 0.00001191) 0.64856776 0 0 0

Max Error=0.00114277

Max Error=0.00187440
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Figure (1) shows third Chebyshev wavelets x(t) with exact x(t).

exact u(t)
b third chebyshev wawelets u(t)

-0.8 I I I I
(0] 0.1 0.2 0.3 0.4

0.5 0.6

0.7

0.8

0.9

Figure (2) shows third Chebyshev wavelets u(t) with exact u(t).
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Example 2
Consider the finite time quadratic problem

Min [J] = [, u?dt
The exact solution to this problem is given by
x, () =t3-3t>+t+1 and u=6t—=6.

In order to apply the proposed method , one first finds
The Hamiltonian equation
H=u? + A;x, + Au
and the adjoint equations
OH _ - OH _ . OH

L L - Z-o

axl - !

From the above equations , we obtain the following
X+%=3t>-5
Similerly example(1)
d = [-6.9324564 0.29374550 0.058749100 — 4.5824298 0.76373830 0.058749100 ]”
and
CT =[0.98395684 — 0.07588431 0.00805443 0.82510875 — 0.01926789 0.00652386 ]”
Therefore the following approximate solution with be achieved
x1(t) = CTP2 ¥, + %,(0)t + x,(0)
which is the exact solution

CONCLUSIONS

In this paper a general formulation for the third kind Chebyshev wavelets ¥ was
presented then the convergence theorem of ¥2. Its operational matrix of itegration has
been derived. Then an approximated method based on third kind Chebyshev wavelets
expansions together with the operational matrix of integrationare proposed to obtaind
an approximate solution of optimal control problems using spectral method.

The numerical reselt show the method is very efficient for the numerical solution of
optemal control problems and only few number of ¥ expansion terms are needed to
obtain a good approximate solution for these problems.we can modify this method for
the numerical solution of other problems such as nonlinear optimal control problems
and integral equations.

Using third Chebyshev wavelets give high accuracy approximation of solution
Optimal problems in Example (1) show accuracy of this method compared with second
Chebyshev wavelets.
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