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ABSTRACT  
   In this research a predator–prey model  involving disease in a prey and prey refuge 
has been proposed and analyzed. It is assumed that only the prey species is divided in 
to two classes infected and susceptible and disease transmitted by contact between a 
prey species. The existence, boundedness , permanence  of the model has been 
investigated. The local and global stability conditions of all possible equilibrium 
points are established. Finally, numerical simulation is curried out to study the global 
dynamics of the model. 
Keyword: Predator–prey model; prey refuge; local stability; global stability; 
Permanence.  
  

 وبائي والمتضمن ملجأ للفریسة -تحلیل الاستقراریة لنظام بیئي
 

الفریسة وملجأ  مرض في التي تتظمن على والفریسة المفترس نموذج وتحلیل تم اقتراح في ھذا البحث     
عن طریق  الأمراض تنتقلو المصابة والسلیمة فئتین إلى تنقسم الفریسة انواع أن فقط فمن المفترض .للفریسة

 الاستقرار شروط وضعت .النموذج دیمومة و المحدودیة الوجود، وقد تم التحقیق في .الفریسة انواع بین الاتصال
 شاملةال الدینامیكیة لدراسة العددیة المحاكاة ، یتم استخدامأخیرا .الممكنة التوازن جمیع نقاط من شاملالمحلي وال

   .لنموذجل
 

INTRODUCTION 
lthough, the dynamical behavior of the prey_predator model is well known 
,and has taken a lot of interest since the pioneer work of classical Lotka-
Volttera model [1,2], there are various ecological factors affect the existence 

and stability of this system such as prey refuge,disease, delay. harvesting and many 
other factors. Theoretical research and field Observations on population dynamics of 
prey refuges lead to the conclusion that the existence of prey refuges have stabilizing 
influences on prey-predator rnodels and prevent prey extinction due to predation 
[3,4,5]. Ruxton [6] proposed a continuous-time prey-predator model under the 
assumption that the rate prey moving to refuges is proportional to predator density 
and the results showed that the hiding behavior of prey has a stabilizing effect. The 
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stabilizing effect also observed in a simple prey-predator system by Gonzalez-
Olivares and Ramos-Jiliberto [7]. Ma et al. [8] formulated a prey-predator model with 
a class of functional response incorporating the effect of prey refuges and observed 
the stabilizing and destabilizing effect due to the increases in the prey refuges. 
   In this research  however,  prey-predator model with lotka-volttera  functional 
response involving prey refuge has been proposed and analyzed. It is assumed that 
only the prey species is divided into two classes infected and susceptible. The 
dynamical behavior  of the proposed system is investigated analytically as well as 
numerically The effect of prey refuge on the dynamical behavior of the system is 
discussed. 
 
Mathematical Model:  
    In this section, an eco-epidemiological model is proposed for study. The model 
consists of a prey-predator model involving prey refuge, in which )(TX  represents 
the prey population density at time T  and )(TY  that represents the density of the 
predator population at time T . It is assumed that the prey population is infected by 
SIS-type infectious disease. Further, the following assumptions are made in 
formulating the basic eco-epidemiological model: 
    In the absence of disease, the prey population grows logistically with carrying 
capacity 0>K  and intrinsic birth rate 01 >r . In the presence of disease, the prey 
population is divided into two groups, namely susceptible prey denoted by )(TS  and 
infected prey denoted by )(TI . Therefore at time T , the total population is 

)()()( TITSTX += .It is assumed that the disease is not genetically inherited and the 
disease transmitted between the prey's individuals according the simple law of mass 
action with the transmission (infected) rate 0>β . In addition the infected prey don't 
has the capability of reproducing, however it  still contribute with susceptible prey 
towards the carrying capacity of the system. Further the infected prey may recover 
and becomes susceptible again with the recover rate 0>c , while it faces death due to 
existence of disease with the disease death rate 01 >d .  
    The predator species consumes the susceptible and infected prey species according 
to the Lotka-Volttera functional response with the predation rates 01 >b  and 02 >b  
respectively. However it gains food from them with the conversion rates 110 << e  
and 120 << e  respectively. Finally in the absence of the prey species the predator 
decay exponentially with the death rate 02 >d . The prey species have a refuge 
protecting zone against the predation in the environment with refuge protection rates 

10 <≤ n  and 10 <≤ m  of susceptible prey and infected prey respectively. 
Consequently this leave Sn)1( −  of susceptible prey and Im)1( −  of infected prey 
are available to the predator. 
      According to the above hypotheses, the dynamics of a refuge prey-predator model 
with the disease in prey can be represented by the following set of differential 
equations.  
 

 SYnbcISI
K

ISSr
dT
dS )1(1)1(1 −−+−

+
−= β  
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 IYmbIdcISI
dT
dI )1(21 −−−−= β                                           (1.1) 

 IYmbeSYnbeYd
dT
dY )1(22)1(112 −+−+−=  

 
here  

0)( ≥TS , 0)( ≥TI   and 0)( ≥TY . Clearly, system (1.1) has (12) parameters, which 
make the analysis  difficult; to reduce the number of parameters and to determine 
which combination of parameters control the behavior of the system, the following 
non dimensional variables are used in system (1.1) 

 Trt
K
YX

K
IX

K
SX 1,3,2,1 ====  

     Now straightforward computation on system (1.1) gives the following 
dimensionless system 
 

 31)1(322211)211(11 XXnXXXXXX
dt

dX
−−+−−−= ααα  

 32)1(522242112 XXmXXXX
dt

dX
−−−−= αααα                       (1.2) 

 32)1(5231)1(31363 XXmeXXneX
dt

dX
−+−+−= ααα  

where  

 
0

1
26,0

1
25,0

1
14

,0
1

13,0
1

2,0
1

1

>=>=>=

>=>=>=

r
d

r
Kb

r
d

r
Kb

r
c

r
K

ααα

ααβα
 

 
     represent the dimensionless parameters. It is observed that the dimensionless 
system (1.2) has ten parameters. Moreover, due to the biological meaning of the 
dependent variables )(2),(1 tXtX  and )(3 tX  given in system (1.2), system (1.2) has 

the following domain }03,02,01),3,2,1{(3 >>>=+ XXXXXXR  . Moreover, the 
interaction functions in the right hand side of system (1.2) are continuously 

differentiable on 3
+R  , and hence they are Lipschizian on 3

+R . Thus for each set of 
initial conditions, say 0)0(3,0)0(2,0)0(1 >>> XXX , system (1.2) has a unique 

solution. Therefore, the domain 3
+R  is an invariant set for the system (1.2). Further in 

the following theorem the uniform boundedness of the solution of system (1.2) is 
presented. 
 

Theorem (1.1): All the solutions of system (1.2), which initiate in 3
+R  are uniformly 

bounded. 
Proof: Let ( 3,2,1 XXX ) be any solution of the system (1.2) with non negative 
initial condition ))0(3),0(2),0(1( XXX . Assume that 321)( XXXtW ++=  , then  
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)21(32)1(53624

)11(31)1(3)211(1

eXXmXX

eXXnXXX
dt

dW

−−−−−

−−−−−=

ααα

α  

 36241 XXX
dt

dW αα −−≤  

 WX
dt

dW δ−≤ 12 ,   { }64 ,,1.min ααδ =          

                                                                        
    Now since the prey species growth logistically, which is bounded by its carrying 
capacity, then from the first equation on system (1.2) its easy to show that 

 )11(11 XXdt
dX

−≤   

 
    from which we get that KXSup


≤1. , 0>∀ t  where { }1),0(.max 1XK =


. 

substituting this in the above equation we obtain 
 

 WK
dt

dW δ−≤


2   

     from which its obtained that 0≤ W 
δ
K̂2

≤  , as ∞→t  . Hence all the solutions of 

system (1.2) that initiate in 3
+R   are confined in the region 

ε
δ

+≤≤=
KWXXXB
ˆ20:)3,2,1{(                  for any }0>ε     

 
Existence of Equilibrium Points:  
 System (1.2) has at five biologically feasible equilibrium points. The 
existence conditions for each of these equilibrium points are discussed in the 
following:  
 
1. Trivial equilibrium  point )0,0,0(0 =E  always exists. 
2. Axial equilibrium point )0,0,1(1 =E always exists. 
3. Predator free equilibrium point )0,2ˆ,1ˆ(2 XXE =  , where 

 






 +
−

++
+

=
+

=
1

241
4242

242,
1

241 α
αα

αααα
αα

α
αα XX


                    (2.1) 

 

    exists uniquely in 2. +RInt  of −21XX plane under the following necessary and 
sufficient conditions:  
    )24(1 ααα +>                                                                          (2.2) 
4. disease free equilibrium point )3,0,1(3 XXE = ,  
where 
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2)1(2

31

6)1(313,
)1(31

61
ne

neX
ne

X
−

−−
=

−
=

α

αα
α
α                                       (2.3) 

exists uniquely 2. +RInt  of −31XX plane under the following necessary and sufficient 
conditions: 
 )1(316 ne −< αα                                                                         (2.4)  

5. The positive equilibrium point )3,2,1(* ∗∗∗= XXXE , where 

 
)1(52

1)1(3162 me
XneX

−

∗−−
=∗

α
αα                               

                (2.5a) 

 
)1(5

24113 m
XX

−
−−∗

=∗
α

ααα                               

                (2.5b) 
While ∗

1X  represents a positive root to the following second order equation. 

 0312
2
11 =++ BXBXB  

Where  

623

)1(3216)11())1)(42(3)1(5(22

)]11)(1(31))1(31)1(5(2[1

αα
αααααααα

ααααα

=
−+++−+−−−=

+−−−+−=

B
nenmeB

nenmeB
 

Clearly the last equation has a positive root, namely *
1X , provided that 

 )11)(1(31)]1(31)1(5[2 ααααα +−<−+− nenme                             (2.5c) 

      Therefore *E  exists uniquely in 3. +RInt , if in addition to condition (2.5c) the 
following condition holds 

 
)1(31

6*
1

1
24

ne
X

−
<<

+
α
α

α
αα                                                         (2.5d) 

     
The local Stability Analysis:  
 In this section, the local stability analysis of system (1.2) around each of 
the above equilibrium points are discussed using the linearization technique. Note 

that from now onward the symbols ii
2,1 λλ   and  i

3λ  for 4,...,1,0=i  are used to 

represent the eigenvalues of the Jacobian matrix )( iEJ  that describe the dynamics in 
−3,2,1 XXX direction respectively.  

The Jacobian matrix of system (1.2) at 0E   can be written as:  
 

















−
+−==

600
0)42(0
021

)0(0
α

αα
α

EJJ                                                         (3.1) 
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Then the eigenvalues of 0J  can be written as 

 0)42(0
2,010

1 <+−=>= ααλλ   and 06
0
3 <−= αλ  

Therefore 0E  is a saddle point. 
The Jacobian matrix of system (1.2) at 1E  can be written as: 
 

















−+−
−−−

−−−+−−
==

)1(31600
02410

)1(31211
)1(1

ne

n
EJJ

αα
ααα

ααα
                                (3.2a) 

 
Thus its eigenvalues can be written as 

 0)421(1
2,011

1 <++−=<−= αααλλ   and )1(316
1
3 ne −+−= ααλ  

Hence 1E   is locally asymptotically stable if the following condition holds. 
 )1(316 ne −> αα                                                                    (3.2b) 
Otherwise its a saddle point. 
The Jacobian matrix of system (1.2) at 2E  can be written as: 
 33)()2(2 ×== ijEJJ β                                                                (3.3)   
where 

2)11(1ˆ12);11(2ˆ1ˆ2111 ααβαβ ++−=+−−= XXX ; ;1ˆ)1(313 Xn−−= αβ  
022;2ˆ121 == βαβ X ; ;2ˆ)1(523 Xm−−= αβ  

032;031 == ββ ; 2ˆ)1(521ˆ)1(31633 XmeXne −+−+−= αααβ  
Then the characteristic equation of 2J  can be written as 

 )33)(211211
2( λβββλβλ −−− =0      

 (3.4)  
So, the eigenvalues of 2J  can be written as  

211242
112

1
2
112

1 βββ
β

λ ++= , 211242
112

1
2
112

2 βββ
β

λ +−= , 33
2
3 βλ =  

    Straightforward computation shows that these eigenvalues have negative real parts 
provided that the following conditions hold. 

 1)11(2ˆ1ˆ2 >+− αXX                                                                   (3.5a) 

2)11(1ˆ αα >+X                                                                               (3.5b) 
 62ˆ)1(521ˆ)1(31 ααα <−+− XmeXne                                            (3.5c) 
The Jacobian matrix of system (1.2) at 3E  can be written as: 
 33)()3(3 ×== ijEJJ β                                                                  (3.6) 
Where 

2)11(112;3)1(312111 ααβαβ ++−=−−−= XXnX ; 1)1(313 Xn−−= αβ  
021 =β  ; 023;3)1(5241122 =−−−−= βααααβ XmX  

033;3)1(5232;3)1(3131 =−=−= βαβαβ XmeXne  
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Then the characteristic equation of  3J  can be written as 

 0)311311
2)(22( =−−− ββλβλλβ                                                (3.7) 

So, the eigenvalues of 3J  can be written as  

311342
112

1
2
113

1 βββ
β

λ ++= , 22
3
2 βλ = , 311342

112
1

2
113

3 βββ
β

λ +−=  
     Again straightforward computation shows that these eigenvalues have negative 
real parts provided that the following conditions hold.  

3)1(3121 XnX −+< α                                                                                  (3.8a) 

3)1(52411 XmX −++< αααα                                                                      (3.8b)      

The Jacobian matrix of system (1.2) at *E  can be written as: 

 33)()*(*
×== ijEJJ β                                                                    (3.9) 

where 

 *
3)1(3

*
21

*
2

*
12111 XnXXX −−−−−= ααβ  

 *
1)1(313;2)11(*

112 XnX −−=++−= αβααβ  

 *
2)1(523;022;*

2121 XmX −−=== αββαβ  

 033;*
3)1(5232;*

3)1(3131 =−=−= βαβαβ XmeXne  
 
     Therefore, the locally stability conditions are established in the following theorem.  

Theorem (1.2): The positive equilibrium point *E  of the system (1.2) is locally 

asymptotically stable in 3. +RInt , if and only if the following conditions are satisfied: 

1]*
3)1(3)11(*

2
*
12[ >−+++ XnXX αα                                                         (3.10a) 

2)]11(*
1[ αα >+X                                                           (3.10b) 

)11)(1(31)1(512

*
3)1(3

*
121)[1(31*

2 αααα
αα

+−+−
−−−−

<
neme

XnXneX                                                    (3.10c) 

 
Proof: [ ] 
 
Persistence of system (1.2) 
 In this section, the persistence of system (1.2) is studied. It is well known that the 
system is said to be persistence if and only if each species persists. Mathematically 
this is meaning that the solution of system (1.2) do not have omega limit set in the 

boundaries of 3
+R . Therefore, in the following theorem, the necessary and sufficient 

conditions for the uniform persistence of the system (1.2) are derived. 
Theorem (4.1): Assume that there are no periodic dynamics in the boundary planes 

3231,21 XXandXXXX  respectively. Further, if the following conditions are hold. 
 

))1(316(3)241(2 ne −−>−− ααγαααγ                                                      (4.1a) 
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










+<++

1ˆ
2ˆ21))11(2ˆ1ˆ(

X
XXX αα                                                                     (4.1b) 

)3)1(31(1 XnX −+> α                                                                                  (4.1c)    
Then, system (1.2) is uniformly persistence. 
 
Proof. You can see [10] 
Globally analysis  
      In the following the global dynamics of system (1.2) is carried out as shown in the 
following theorems. 
Theorem (5.1): Assume that the axial equilibrium point )0,0,1(1 =E  of system (1.2) 

is locally asymptotically stable in 3
+R   and let that 

 

 







−+

<
)1(3

6,
11

4min1
~

n
X

α
α

α
α                                                       (5.1) 

Then 1E  is globally asymptotically stable in 3
+R . 

 
Proof: you can see  [10] 
 

Theorem (5.2): Assume that 2E  is locally asymptotically stable point in 3
+R  then 

2E  is globally asymptotically stable on the sub region of  3
+R  that satisfies the 

following conditions: 

6]2ˆ)1(521ˆ)1(31[ ααα <−+− XmeXne                                                      (5.2a) 

 1
11

2 X<
+α
α                                                                     (5.2b) 

 







−+<

1
211112 X

ee ααα                                                                 (5.2c) 

 213 MMM +<                                                                         (5.2d) 
Where 
 2,1 MM  and 3M  are given in the proof. 
 
Proof: you can see  [10] 
Theorem (5.3): Assume that the equilibrium point 3E  of system (1.2) is locally 

asymptotically stable in 3
+R  with the following conditions: 

 1
11

2 X<
+α
α                                                              (5.3a)

 ( ) 1
1
21111

1
2423)1(5

1
2 X

X
X

e
eXm

e
e









−++>++−
αααααα              (5.3b) 

     Then 3E  is globally asymptotically stable in the sub region of  3
+R  that satisfy the 

above conditions. 
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Proof: you can see [10] 

Theorem (5.4): Assume that *E  is a locally asymptotically stable point in Int. 3
+R  

then *E  is globally asymptotically stable in the sub region of 3. +RInt  that satisfies the 
following conditions: 

 12
1
21)11(1 ααα e

X
ee −>+                                                     (5.4a) 

 21 NN >                                                                     (5.4b) 
where  

1N  and 2N   are given in the proof. 
 
Proof: you can see [10] 
Numerical analysis: 
 In this section the global dynamics of system (1.2) is studied numerically. 
The objectives of this study are confirming our analytical results and understand the 
effects of the parameters including the refuge rate on the dynamics of SIS epidemic 
system. Consequently, system (1.2) is solved numerically, for different sets of 
parameters and for different sets of initial conditions. It is observed that, for the 
following set of parameters, system (1.2) is solved numerically at different sets of 
initial values and then the trajectories of system (1.2) are drawn in Fig. (6.1). 

75.0,5.0,9.02,8.01,1.06

,4.05,05.04,3.03,05.02,5.01
=====

=====
nmeeα
ααααα

                                              (6.1) 
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    initial point
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 initial point
(0.9,0.8,0.9)

   stable point
(0.38,0.42,0.45)

 
Figure (6.1): Phase plot of system (1.2) for the data given by Eq. (6.1) starting 

from different initial points.. 
 

    In the above figure, system (1.2) approaches asymptotically to the stable 

coexistence equilibrium point )45.0,42.0,38.0(* =E , starting from different initial 
points. Clearly, Fig. (6.1) shows the existence of a unique endemic equilibrium point 
of system (1.2) which is globally asymptotically stable.   
Note that for the time series figures we will use throughout this section that the solid 
line for describing the trajectory of 1X  ; dotted line for describing the trajectory of 

2X  ; dashed line for describing the trajectory of  3X . 
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Now, in order to discuss the effect of infection rate 1α  on the dynamical behavior of 
system (1.2). The system is solved numerically for different values of  1α  keeping 
other parameters  fixed as given in Eq. (6.1), and then the solution of system (1.2) as 
a function of time is drawn in Fig. (6.2a)-(6.2c) for the typical values 

9.0,15.0,05.01 =α . 
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Figure. (6.2): Time series of system (1.2) for the data given by Eq. (6.1) with: (a) 

for 05.01 =α . (b) for 15.01 =α . (c) for 9.01 =α . 
 

     According to the above figure, it is clear that, Fig.(6.2a) shows the approaching of 
system (1.2) to )0,0,1(1 =E , and Fig.(6.2b) shows the approaching of system (1.2) to 
free predator equilibrium point )0,30.0,66.0(2 =E . However, Fig.(6.2c) shows the 

approaching of system (1.2) to the positive equilibrium point )29.0,49.0,17.0(* =E . 
Moreover, its observed that for 1.01 ≤α  the solution approaches asymptotically to 
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)0,0,1(1=E , however increasing the value of infection rate in the range 

16.011.0 ≤<α  the solution approaches asymptotically to )0,2ˆ,1ˆ(2 XXE = . Finally, 
for 17.01 ≥α , 2E  becomes unstable and the solution approaches asymptotically to  

)*
3,*

2,*
1(* XXXE = . 

The effect of the recover rate 2α  on the dynamical behavior of system (1.2) is 
studied through solving the system numerically for different values of  2α  keeping 
other parameters  fixed as given in Eq. (6.1), and then the solution of system (1.2) as 
a function of time is drawn in Fig. (6.3a)-(6.3c) for the typical values 

5.0,35.0,01.02 =α . 
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Figure.(6.3): Time series of solution of system (1.2). (a) for 01.02 =α , (b) for 

35.02 =α , (c) for 5.02 =α . 
 
 According to the above figure, it is clear that, Fig.(6.3a) shows the approaching of 

system (1.2) to the positive equilibrium point )44.0,45.0,29.0(* =E , and Fig.(6.3b) 
shows the approaching of system (1.2) to free predator equilibrium point 

)0,188.0,8.0(2 =E . However, Fig.(6.3c) shows the approaching of system (1.2) to 
)0,0,1(1 =E . Moreover, its observed that for 19.02 ≤α  the solution approaches 

asymptotically to )*
3,*

2,*
1( XXXE =∗ , however increasing the value of recover rate 

in the range 44.0219.0 ≤<α  the solution approaches asymptotically to 
)0,2ˆ,1ˆ(2 XXE = . Finally, for 45.02 ≥α , 2E  becomes unstable and the solution 

approaches asymptotically to )0,0,1(1 =E . 
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The effect of predation rate 3α  on the dynamical behavior of system (1.2) is 
discussed by solving system (1.2) numerically for different values of 3α  keeping 
other parameters  fixed as given in Eq. (6.1), and then the solution of system (1.2) as 
a function of time is drawn in Fig. (6.4a)-(6.4b) for the typical values 8.0,1.03 =α . 
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Figure.(6.4): Time series of the solution of the system (1.2). (a) for 1.03 =α ,(b) 

for 8.03 =α . 
 From Fig.(6.4a) it is observed that system (1.2) approaches to the positive 

equilibrium point )24.0,52.0,29.0(* =E , while Fig.(6.4b) shows the approaching of 
system to the disease free equilibrium point )87.1,0,62.0(3 =E . Moreover, its 
observed that for 64.03 ≤α  the solution approaches asymptotically to 

)*
3,*

2,*
1(* XXXE = , and, for 65.03 ≥α , *E  becomes unstable and the solution 

approaches asymptotically to )3,0,1(3 XXE = . 
     The effect of the disease death rate 4α  on the dynamical behavior of system (1.2) 
is also studied through solving the system (1.2) numerically for different values of 

4α   keeping other parameters  fixed as given in Eq. (6.1), and then the solution of 
system (1.2) as a function of time is drawn in Fig. (6.5a)-(6.5c) for the typical values 

45.0,3.0,02.04 =α . 
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Figure.(6.5): Time series of solution of system (1.2). (a) for 02.04 =α , (b) for 

3.04 =α , (c) for 45.04 =α . 
 

    According to the above figure, it is clear that, Fig.(6.5a) shows the approaching of 

system (1.2) to the positive equilibrium point  )56.0,43.0,36.0(* =E , while 
Fig.(6.5b) shows the approaching of system (1.2) to the predator free equilibrium 
point )0,21.0,7.0(2 =E . However, Fig.(6.5c) shows the approaching of system (1.2) 
to )0,0,1(1 =E . Moreover, its observed that for 16.04 ≤α  the solution approaches 

asymptotically to )*
3,*

2,*
1(* XXXE = , however increasing the value of disease death 

rate in the range 44.0417.0 ≤≤α   causes extinction in predator species and the 
solution approaches asymptotically to predator free equilibrium point 

)0,2ˆ,1ˆ(2 XXE = . Finally, for 45.04 ≥α , 2E  becomes unstable and the solution 
approaches asymptotically to )0,0,1(1E  . 
Now the effect of the predation rate 5α  on the dynamical behavior of system (1.2) is 
investigated numerically by solving the system (1.2) for different values of 5α    
keeping other parameters fixed as given in Eq. (6.1), and then the solution of system 
(1.2) as a function of time is drawn in Fig. (6.6a)-(6.6b) for the typical values 5α = 
(0.1,0.9). 
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Figure.(6.6): Time series of the solution of system (1.2). (a) for 1.05 =α  (b) for 

9.05 =α . 
 Clearly Fig.(6.6a) shows the approaching of system (1.2) to the predator 
free equilibrium point )0,64.0,2.0(2 =E  however Fig.(6.6b) shows the approaching 
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of system (1.2) to the positive equilibrium point )62.0,13.0,76.0(* =E . Moreover, 
its observed that for 27.05 ≤α  the solution approaches asymptotically to predator 
free equilibrium point )0,2ˆ,1ˆ(2 XXE = , and, for 28.05 ≥α , 2E  becomes unstable 

and the solution approaches asymptotically to )*
3,*

2,*
1(* XXXE = . 

The effect of the predator death rate 6α  on the dynamical behavior of system (1.2) is 
discussed by solving system (1.2) numerically for different values of 6α  keeping 
other parameters fixed as given in Eq. (6.1), and then the solution of system (1.2) as a 
function of time is drawn in Fig. (6.7a)-(6.7c) for the typical values 

9.0,07.0,05.06 =α . 
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Figure.(6.7): Time series of the solution of system (1.2). (a) for 05.06 =α  (b) for 

07.06 =α (c) for 9.06 =α  
 

   According to the above figure, it is clear that, Fig.(6.7a) shows the approaching of 
system (1.2) to the disease free equilibrium point  )21.2,0,83.0(3 =E , and 
Fig.(6.7b) shows the approaching of system (1.2) to the positive equilibrium point 

)19.1,16.0,67.0(* =E , while Fig.(6.7c) shows the approaching of system (1.2) to 
the predator free equilibrium point )0,64.0,2.0(2 =E . Moreover, its observed that 
for 05.06 <α  the solution approaches asymptotically to the disease free equilibrium 
point )3,0,1(3 XXE = , however increasing the value of predation death rate in the 
range 12.0605.0 ≤≤α  causes destabilization in )3,0,1(3 XXE =  and the solution 
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approaches asymptotically to positive equilibrium point )*
3,*

2,*
1(* XXXE = . Finally, 

for 13.06 ≥α , *E  becomes unstable and the solution approaches asymptotically to 
the predator free equilibrium point )0,2ˆ,1ˆ(2 XXE = . 
     Further, it is observed that varying the conversion rate 1e  keeping other 
parameters as given in Eq. (6.1) does not has any effect on the dynamical behavior of 
system (1.2) and the system (1.2) still approaches asymptotically to the positive 

equilibrium point )*
3,*

2,*
1(* XXXE = . 

     Now the effect of the conversion rate 2e on the dynamical behavior of system 
(1.2) is discussed through solving the system (1.2) numerically for different values of 

2e  keeping other parameters fixed as given in Eq. (6.1), and then the solution of 
system (1.2) as a function of time is drawn in Fig. (6.8a)-(6.8b) for the typical 
values 1,5.02 =e . 
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Figure.(6.8): Time series of the solution of system (1.2). (a) for 5.02 =e . (b) for 

12 =e . 
  
     From Fig.(6.8a) we see that the system approaching to predator free equilibrium 
point )0,64.0,2.0(2 =E , while Fig.(6.8b) shows the approaching of system (1.2) to 

the positive equilibrium point )61.0,36.0,44.0(* =E . Moreover, its observed that 
for 66.02 ≤e  the solution of system (1.2) approaches asymptotically to predator free 
equilibrium point )0,2ˆ,1ˆ(2 XXE = , however for 67.02 ≥e , 2E  becomes unstable 

and the solution of system (1.2) approaches asymptotically to )*
3,*

2,*
1(* XXXE = . 

 The effect of the susceptible refuge protection rate n on the dynamical 
behavior of system (1.2) is studied by solving system (1.2) numerically for different 
values of n keeping other parameters fixed as given in Eq. (6.1), and then the solution 
of system (1.2) as a function of time is drawn in Fig. (6.9a)-(6.9b) for the typical 
values 9.0,1.0=n . 
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Figure.(6.9): Time series of the solution of system (1.2). (a) for 1.0=n  (b) for 

9.0=n . 
  
      According to the Fig.(6.9a) the system (1.2) approaches asymptotically to the 
disease free equilibrium point )98.1,0,46.0(3 =E , while Fig.(6.9b) shows the 

approaching of system (1.2) to the positive equilibrium point )26.0,51.0,3.0(* =E . 
Moreover, its observed that for 46.0≤n  the solution of system (1.2) approaches 
asymptotically to the disease free equilibrium point )3,0,1(3 XXE = , however for 

47.0≥n , 3E  becomes unstable and the solution approaches asymptotically to 

)*
3,*

2,*
1(* XXXE = . 

  
    The effect of the infected refuge protection rate m on the dynamical behavior of 
system (1.2) is also studied by solving the system (1.2) numerically for different 
values of m keeping other parameters fixed as given in Eq. (6.1), and then the 
solution of system (1.2) as a function of time is drawn in Fig. (6.10a)-(6.10b) for the 
typical values 7.0,1.0=m . 
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Figure.(6.10): Time series of the solution of system (1.2). (a) for 1.0=m  (b) for 

7.0=m . 
  
      From the Fig.(6.10a) it is clear that system (1.2) approaching asymptotically to 

the positive equilibrium point )68.0,18.0,69.0(* =E , while Fig.(6.10b) shows the 
approaching of system to the predator free equilibrium point )0,64.0,2.0(2 =E . 
Moreover, its observed that for 63.0≤m  the solution of system (1.2) approaches 
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asymptotically to )*
3,*

2,*
1(* XXXE = , however for 64.0≥m , *E  becomes unstable 

and the solution approaches asymptotically to )0,2ˆ,1ˆ(2 XXE = . 
 
Discussion and conclusion: 
 In this chapter, a prey-predator model involving prey refuge with Lotka-
Volttera functional response is proposed and analyzed. The stability analysis (local 
and global) of the equilibrium pointes of the  proposed system is carried out. The 
boundedness and permanence of the system have been proved. In order to study the 
effect of system parameters involving the refuge on the dynamical behavior of the 
system, a numerical work  has been done taking into account the set values of the 
parameters in (6.1) and the results can be summarized as follow: 
1. Decreasing the infection rate 1α , in the range 16.011.0 ≤<α , causes extinction in 
predator species first and then decreasing the infection rate further, in the range 

1.01 ≤α , leads to extinction in an infected prey species.  
2. Increasing the recover rate 2α , in the range 44.0219.0 ≤<α , causes extinction in 
predator species first and then increasing the recover rate further  45.02 ≥α  leads to 
extinction in an infected prey species. 
3. Increasing the predation rate 3α , in the range 65.03 ≥α , causes extinction in an 
infected prey species. 
4. The disease death rate has the same effects as that of  the recover rate 2α  on the 
dynamical behavior of system (1.2). 
5. Decreasing the infection rate 5α , in the range 27.05 ≤α , causes extinction in 
predator species  
6. Decreasing the predation death rate 6α , in the range 05.06 <α , causes extinction 
in an infected prey species. However, increasing the predation death rate 6α , in the 
range  13.06 ≥α , causes extinction in predator species. 
7. The conversion rate 2e  has the same effects as that of  the infection rate 5α  on the 
dynamical behavior of system (1.2). On the other hand the conversion rate 1e  dose 
not has any effect on the dynamics of sysytem (1.2). 
8. Decreasing the susceptible refuge rate n, in the range 46.0≤n , causes extinction in 
an infected prey species. 
9. Increasing the infected refuge rate m, in the range 64.0≥m , causes extinction in 
an predator species. 
 
References 
[1].Y. Kuang, Delay Differential Equations with Applications in Population 
Dynamics, Academic Press, New York, 1993. 
[2]. N. Macdonald, Time Delays in Biological Models, Springer, Heidelberg, 1978. 
[3]. T.K. Kar, Stability Analysis of a Prey-Predator Model Incorporating A Prey 
Refuge, Commun. Nonlinear Sci. Numer. Simul., 10, pp. 681–691, 2005. 
[4]. R.M. Anderson, R.M. May, Infectious Disease of Human Dynamics And C2. 2. 
N.J.T. Bailey, The Mathematical Theory of Infectious Disease And its Application, 
Griffin, London, 1975.control, Oxford Univ. Press, Oxford, 1991. 



Eng. &Tech.Journal, Vol. 33,Part (B), No.2, 2015   The stability analysis of eco-epidemiological                 
                                                                                               system involving a prey refuge 
 

 
[5]. N.J.T. Bailey, The Mathematical Theory of Infectious Disease and It's 
Applications, Griffin London, 1975. 
[6]. G.D.Ruxton, Short Term Refuge Use And Stability of Predator-Prey Models, 
Theor. Popul. Biol. 47 (1995) 1-17. 
[7].  E.Gonzalez-Olivars, R.Ramos-Jiliberto, Dynamics Consequences of Prey 
Refuges in A Simple Model System: More Prey, Few Predators And Enhanced 
Stability, Ecol.Model. 166 (2003) 135-146. 
[8]. Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of Prey Refuges on A 
Predator-Prey Model with A Class of Functional Responses: The Role of Refuges, 
Math.Biosci. 218 (2009) 73-79. 
[9]. A.K. Pal, G.P. Samanta, Stability Analysis of An Eco-Epidemiological Model 
Incorporating A Prey Refuge, Nonlinear Analysis: Modelling and Control, 2010, Vol. 
15, No. 4, 473–491. 
[10]. R. Haneen, Modelling And Stability Analysis of Eco-Epidemiological Systems 
Involving A Prey Refuge, Msc. Thesis , Applied Science Department, University of 
Technology, 2014 
 


