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ABSTRACT

In this research a predator—prey model involving disease in a prey and prey refuge
has been proposed and analyzed. It is assumed that only the prey species is divided in
to two classes infected and susceptible and disease transmitted by contact between a
prey species. The existence, boundedness , permanence of the model has been
investigated. The local and global stability conditions of all possible equilibrium
points are established. Finally, numerical simulation is curried out to study the global
dynamics of the model.
Keyword: Predator—prey model; prey refuge; local stability; global stability;
Permanence.
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INTRODUCTION

Ithough, the dynamical behavior of the prey_predator model is well known
A,and has taken a lot of interest since the pioneer work of classical Lotka-

Volttera model [1,2], there are various ecological factors affect the existence
and stability of this system such as prey refuge,disease, delay. harvesting and many
other factors. Theoretical research and field Observations on population dynamics of
prey refuges lead to the conclusion that the existence of prey refuges have stabilizing
influences on prey-predator rnodels and prevent prey extinction due to predation
[3,4,5]. Ruxton [6] proposed a continuous-time prey-predator model under the
assumption that the rate prey moving to refuges is proportional to predator density
and the results showed that the hiding behavior of prey has a stabilizing effect. The
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stabilizing effect also observed in a simple prey-predator system by Gonzalez-
Olivares and Ramos-Jiliberto [7]. Ma et al. [8] formulated a prey-predator model with
a class of functional response incorporating the effect of prey refuges and observed
the stabilizing and destabilizing effect due to the increases in the prey refuges.

In this research however, prey-predator model with lotka-volttera functional
response involving prey refuge has been proposed and analyzed. It is assumed that
only the prey species is divided into two classes infected and susceptible. The
dynamical behavior of the proposed system is investigated analytically as well as
numerically The effect of prey refuge on the dynamical behavior of the system is
discussed.

Mathematical Model:

In this section, an eco-epidemiological model is proposed for study. The model
consists of a prey-predator model involving prey refuge, in which X (T) represents
the prey population density at time T and Y (T) that represents the density of the
predator population at time T . It is assumed that the prey population is infected by
SIS-type infectious disease. Further, the following assumptions are made in
formulating the basic eco-epidemiological model:

In the absence of disease, the prey population grows logistically with carrying

capacity K >0 and intrinsic birth rate I} > 0. In the presence of disease, the prey
population is divided into two groups, namely susceptible prey denoted by S(T) and
infected prey denoted by I(T). Therefore at time T, the total population is
X(T)=S(T)+ I(T) .lt is assumed that the disease is not genetically inherited and the

disease transmitted between the prey's individuals according the simple law of mass
action with the transmission (infected) rate g >0. In addition the infected prey don't
has the capability of reproducing, however it still contribute with susceptible prey
towards the carrying capacity of the system. Further the infected prey may recover
and becomes susceptible again with the recover rate ¢ >0, while it faces death due to
existence of disease with the disease death rate dq >0.

The predator species consumes the susceptible and infected prey species according
to the Lotka-Volttera functional response with the predation rates by >0 and by >0
respectively. However it gains food from them with the conversion rates 0 <e <1
and 0<ep <1 respectively. Finally in the absence of the prey species the predator
decay exponentially with the death rate dp >0. The prey species have a refuge
protecting zone against the predation in the environment with refuge protection rates
0<n<1l and 0<m<1 of susceptible prey and infected prey respectively.
Consequently this leave (1-n)S of susceptible prey and (1-m)l of infected prey
are available to the predator.

According to the above hypotheses, the dynamics of a refuge prey-predator model

with the disease in prey can be represented by the following set of differential
equations.

ds S+l
9 _psa-
gt -~

)— /Sl +cl —bp(L—n)SY
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g—_:_:ﬂSI —cl —dql —by(1—m)IY (1.1)

3—_'Y_ =—doY +e1b (1—n)SY +epbp (1-m)lY

here
S(TM)=0, I(T)=0 and Y(T)=0. Clearly, system (1.1) has (12) parameters, which
make the analysis difficult; to reduce the number of parameters and to determine
which combination of parameters control the behavior of the system, the following
non dimensional variables are used in system (1.1)
S | Y
X1 K,X2 K,Xg K,t nT

Now straightforward computation on system (1.1) gives the following

dimensionless system

X
X1 Xy Xg - X2) - a1 X1 X g +apX g - azl-m)X1X3

dt
d;(_tzzalxlxz—a4X2—a2X2—a5(1—m)X2X3 (1.2)
X
d_t3=_a6x3 +ejag(l-n)X X3 +ega5(l-m)X2X3
where
061=M>0,012 =£>O,a3 =%>0,
n rn n
aq :d_1>0, as :bz_K>O, ag :d—2>0
n n n

represent the dimensionless parameters. It is observed that the dimensionless
system (1.2) has ten parameters. Moreover, due to the biological meaning of the
dependent variables X1(t), X2(t) and X3(t) given in system (1.2), system (1.2) has

the following domain Rf_ ={(X1,X2,X3),X1>0,X2 >0,X3 >0} . Moreover, the
interaction functions in the right hand side of system (1.2) are continuously

differentiable on Rf , and hence they are Lipschizian on Rf. Thus for each set of

initial conditions, say X1(0)>0,X2(0)>0,X3(0)>0, system (1.2) has a unique

solution. Therefore, the domain Rf is an invariant set for the system (1.2). Further in

the following theorem the uniform boundedness of the solution of system (1.2) is
presented.

Theorem (1.1): All the solutions of system (1.2), which initiate in Rf are uniformly
bounded.

Proof: Let (X1,X2,X3) be any solution of the system (1.2) with non negative
initial condition (X1(0), X2(0), X3(0)) . Assume that W (t) = X1+ X2 + X3 , then
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S = X1 X1 - X2) —a3-mX1X30-e1)
—as X2 —agX3—a5(1-m)X2X3(1-e2)

dd_VEIS X1—-a4X92 —agX3

dw

F£2X1—(SW, 5:min.{1,a4,a6}

Now since the prey species growth logistically, which is bounded by its carrying
capacity, then from the first equation on system (1.2) its easy to show that

dX4
— < —

from which we get that Sup.Xy<K, Vt>0 where K =max.{X,(0)]1}.
substituting this in the above equation we obtain

dﬂsZK—é\N
dt

~

from which its obtained that 0<W 327K , as t —> oo . Hence all the solutions of

system (1.2) that initiate in Ri are confined in the region

A~

B={(X1,X2,X3):0<W SZ?K-FE forany ¢ >0}

Existence of Equilibrium Points:
System (1.2) has at five biologically feasible equilibrium points. The
existence conditions for each of these equilibrium points are discussed in the

following:

1. Trivial equilibrium point Eg =(0,0,0) always exists.
Axial equilibrium point Ep = (1,0,0) always exists.
3. Predator free equilibrium point Ep = ()21, )22,0) , Where
X =2Are2 g, a4t {1_“4“"2} (2.1)
al axal+al +ay (o4}

exists uniquely in Int.RE of X1X2 —plane under the following necessary and

sufficient conditions:

a1 > (ag +a2) (2.2)
4, disease free equilibrium point E3 = (X1,0, X3),
where
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Yl _ a6 ,Ys _ €1a3 (1_ n) — a6 (23)
elas(l—n) 91053% (1_ n)2

exists uniquely Int.R42_ of X1X3 —plane under the following necessary and sufficient
conditions:

ag <era3z(l-n) (2.4)
5. The positive equilibrium point E™ = (X1*, X2*, X3%), where
Xo* = ag —eja3(1-n) X1
epas(1-m)
(2.5a)
*
XS* _ a1 X1 —aq4 —a
a5(1—m)
(2.5h)
While Xl* represents a positive root to the following second order equation.

2
B1X; +B2X1+B3=0

Where

By =[e2(a5(1—-m)+aga3(1-n))-e1a3(1-n)(1+aq)]

B2 =-e2(a5(1-m)—az(a2 +a4)(1-n))+(1+a1)ap +e1apaz(l-—n)

B3 =aoag

Clearly the last equation has a positive root, namely Xf , provided that
e2[as(1-m)+aja3(l-n)]<eraz(l-n)1+eaq) (2.5¢)

Therefore E~ exists uniquely in Int.RJ?;, if in addition to condition (2.5c) the

following condition holds

G470 xy < %6 (2.5d)
] eja3(l-n)

The local Stability Analysis:
In this section, the local stability analysis of system (1.2) around each of
the above equilibrium points are discussed using the linearization technique. Note

that from now onward the symbols A'l /liz and }Li?, for i=01...,4 are used to
represent the eigenvalues of the Jacobian matrix J(Ej) that describe the dynamics in
X1, X2, X3 —direction respectively.

The Jacobian matrix of system (1.2) at Eg can be written as:

1 o 0
Jo=J(EQ)=|0 —(a2+a4) O (3.1)
0 0 -ag
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Then the eigenvalues of Jg can be written as

A =1>0,19 =~(ap +a4)<0 and 23 =-ap <0
Therefore Eq is a saddle point.
The Jacobian matrix of system (1.2) at E; can be written as:

-1 -l+ap-o —a3(l-n)
J1=J(E)=|0 -a1-ag—-ap 0 (3.2a)
0 0 —ag+e1a3(d-n)

Thus its eigenvalues can be written as
Z% =-1<0, A= —(a1+a2 +a4)<0 and A= —ag +e1a3(1—n)
Hence Ej is locally asymptotically stable if the following condition holds.
ag >e€1a3(l-n) (3.2b)
Otherwise its a saddle point.
The Jacobian matrix of system (1.2) at Eo can be written as:

J2 =J(E2) = (fij)3x3 3.3)
where
P11 =1-2X1 - Xp(A+a1): f12 =—X1A+a1) +a2; A3 =-a3-n)Xy;
Bo1=01X2; 22 =0; faz =-a5d-m)Xy;
B31=0;832 =0; f33 =g +e1a3(L-N)X1 +epa5(1-m)X2
Then the characteristic equation of J, can be written as

(2% - 112~ Pr2B21)(B33 — 2) =0

(3.4)
So, the eigenvalues of Jo can be written as

2 L 2 5 3
&l z%ﬁ\/ﬂnz%ﬂuﬂzl A :%_E\/ﬂllz vah2k21 A3 =F3s

Straightforward computation shows that these eigenvalues have negative real parts
provided that the following conditions hold.

2X1-Xo(l+aq)>1 (3.5a)
)21(1+ a1) > ar (3.5b)

e1a3(1- n))21+e2a5(1—m))22 <ag (3.5¢)
The Jacobian matrix of system (1.2) at E3 can be written as:

J3 =J(E3) =(Bij)3x3 (3.6)

Where

P11 =1-2X1-a3(-n)X3; f12 =-X1(l+ 1) +a2; f13=-a3(1-n)X1
p21=0; P2 =a1X1-a4 —ap —as(l-m)X3; 23 =0

p31 =e1a3(1-n)X3; A3 =epas(1-m)X3; 33 =0
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Then the characteristic equation of J3 can be written as

(22~ A4 - 112~ P13fan) =0 3.7)
So, the eigenvalues of J3 can be written as

A .
%f :%+E‘/ﬁ112 + 413031 /13 = 22 z% =%—E\/ﬂ112 +4/13P31

Again straightforward computation shows that these eigenvalues have negative
real parts provided that the following conditions hold.

1<2X1+a3(l-n)X3 (3.88)
a1 X1 < a4 +ap +agl-m)X3 (3.8b)

The Jacobian matrix of system (1.2) at E™ can be written as:

37 =3(E) = (Bij)33 3.9)
where

fi1=1-2X{ - X2 - a1X3 -a3(@-N)X3
P12 =-X1 @+a1) +a2; A3 = -e3@-M)X]
P21 =a1X2; fa2 =0: f3 =—a5(L-m)X2
P31 =e103(1-n)X3: 32 = epa5(1-m)X3; f33 =0
Therefore, the locally stability conditions are established in the following theorem.

Theorem (1.2): The positive equilibrium point E* of the system (1.2) is locally
3

asymptotically stable in Int.RY, if and only if the following conditions are satisfied:
[2X] + X2 (L+a1)+a3l-n)X3]>1 (3.10a)
[X] (L+a)] > an (3.10b)

o e1o3-MI-2X1 ~a3(-n)X3
e2a1a5(l-m)+era3(1-n)1+aq)

(3.10c)

Proof: []

Persistence of system (1.2)

In this section, the persistence of system (1.2) is studied. It is well known that the
system is said to be persistence if and only if each species persists. Mathematically
this is meaning that the solution of system (1.2) do not have omega limit set in the

boundaries of Rf. Therefore, in the following theorem, the necessary and sufficient

conditions for the uniform persistence of the system (1.2) are derived.
Theorem (4.1): Assume that there are no periodic dynamics in the boundary planes

X1X2,X1X3 and X2Xg3 respectively. Further, if the following conditions are hold.

r2(a1—ag —ap) > y3(ap —€1a3(l-n)) (4.13)
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(Xq+ )22(1+a1))<{1+ “%2} (4.1b)

1> (X1 +a3(l-n)X3) (4.1c)
Then, system (1.2) is uniformly persistence.

Proof. You can see [10]
Globally analysis
In the following the global dynamics of system (1.2) is carried out as shown in the
following theorems.
Theorem (5.1): Assume that the axial equilibrium point E1 = (1,0,0) of system (1.2)

is locally asymptotically stable in RE and let that

X1 < min| %4 %6 (5.1)
1+o1 a3(l-n)

Then Ej is globally asymptotically stable in Rg’:.

Proof: you can see [10]
Theorem (5.2): Assume that Eo is locally asymptotically stable point in R?r’ then

Eo is globally asymptotically stable on the sub region of RE that satisfies the

following conditions:

[elag(l—n))zl+eza5(1—m))22]<a6 (5.2a)
2 x4 (5.2b)
1+
e2aq < e1(1+ o1 —ﬂj (5.2¢)
X1
M3 <M1+M2 (5.2d)
Where

M1,M2 and M3 are given in the proof.

Proof: you can see [10]
Theorem (5.3): Assume that the equilibrium point E3 of system (1.2) is locally

asymptotically stable in Rf with the following conditions:

o
1+il < X1 (5.3a)
e—z(a5(1—m))73 +ay +a4)>e—2a1X1+ 1+a1—a—2 X1 (5.3b)
e el X1

Then E3 is globally asymptotically stable in the sub region of RE that satisfy the
above conditions.
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Proof: you can see [10]

Theorem (5.4): Assume that E" is a locally asymptotically stable point in Int. Rf

then E ™ is globally asymptotically stable in the sub region of Int.R?’L that satisfies the

following conditions:

e1(1+ ) >e%(ﬂ

-e2x] (5.4a)
N1 > N» (5.4b)

where

N1 and N2 are given in the proof.

Proof: you can see [10]
Numerical analysis:

In this section the global dynamics of system (1.2) is studied numerically.
The objectives of this study are confirming our analytical results and understand the
effects of the parameters including the refuge rate on the dynamics of SIS epidemic
system. Consequently, system (1.2) is solved numerically, for different sets of
parameters and for different sets of initial conditions. It is observed that, for the
following set of parameters, system (1.2) is solved numerically at different sets of
initial values and then the trajectories of system (1.2) are drawn in Fig. (6.1).
a1 =0.5,a2 =0.05,3 =0.3,a4 =0.05,a5 = 0.4,

(6.1)
ag =016 =0.8,e9 =0.9,m=0.5n=0.75

initial point
(0.9,0.8,0.9)

initial point
(0.75,0.75,0.75)

predator

initial point
(0.75,0.8,0.6)

stable point

(0.38,0.42,0.45) ~—_y

0.6

0.4 0.2

infected prey susceptible prey

Figure (6.1): Phase plot of system (1.2) for the data given by Eq. (6.1) starting
from different initial points..

In the above figure, system (1.2) approaches asymptotically to the stable

coexistence equilibrium point E" =(0.38,0.42,0.45) , starting from different initial

points. Clearly, Fig. (6.1) shows the existence of a unique endemic equilibrium point
of system (1.2) which is globally asymptotically stable.

Note that for the time series figures we will use throughout this section that the solid
line for describing the trajectory of X1 ; dotted line for describing the trajectory of

X9 ; dashed line for describing the trajectory of X3.
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Now, in order to discuss the effect of infection rate o1 on the dynamical behavior of
system (1.2). The system is solved numerically for different values of o keeping

other parameters fixed as given in Eq. (6.1), and then the solution of system (1.2) as
a function of time is drawn in Fig. (6.2a)-(6.2c) for the typical values
a1 =0.05,0.15,0.9.

Population

15000

Time

Population

Time 4

©)

09t

0.8

0.7

0.6

Population

05

0.4

0.3

0.2

(0] 0.5 1 1.5 2 25
Time x 104

Figure. (6.2): Time series of system (1.2) for the data given by Eq. (6.1) with: (a)
for a1 =0.05. (b) for a1 =0.15. (c) for a1 =0.9.

According to the above figure, it is clear that, Fig.(6.2a) shows the approaching of
system (1.2) to Eq =(1,0,0), and Fig.(6.2b) shows the approaching of system (1.2) to

free predator equilibrium point E» =(0.66,0.30,0). However, Fig.(6.2c) shows the

approaching of system (1.2) to the positive equilibrium point E" = (0.17,0.49,0.29).
Moreover, its observed that for a1 <0.1 the solution approaches asymptotically to
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E1=(0,0), however increasing the value of infection rate in the range

0.1< 1 <0.16 the solution approaches asymptotically to Eo = ()Zl, )22,0). Finally,

for @1 >0.17, E» becomes unstable and the solution approaches asymptotically to
* * * *

E =(X1,X2,X3).

The effect of the recover rate «p on the dynamical behavior of system (1.2) is

studied through solving the system numerically for different values of a9 keeping

other parameters fixed as given in Eq. (6.1), and then the solution of system (1.2) as
a function of time is drawn in Fig. (6.3a)-(6.3c) for the typical values
a2 =0.01,0.35,05.

0.9 1

08

o

=
o
©

Population
O
» 0 o
Population
o o
S o

o
w

0.2

o
N

o

s
o

o

05 1 15 2 25 3
Time %10 Time x10°

©
1

08

0.6

Population

0.4

0.2

0O 5000 10000 15000

Time

Figure.(6.3): Time series of solution of system (1.2). (a) for e =0.01, (b) for
ap =0.35, (c) for ap =0.5.

According to the above figure, it is clear that, Fig.(6.3a) shows the approaching of

system (1.2) to the positive equilibrium point E" =(0.29,0.45,0.44) , and Fig.(6.3b)
shows the approaching of system (1.2) to free predator equilibrium point
E» =(0.8,0.188,0) . However, Fig.(6.3c) shows the approaching of system (1.2) to

E1 =(1,0,0). Moreover, its observed that for a9 <0.19 the solution approaches

asymptotically to E* = (Xic , X;, X ;), however increasing the value of recover rate
in the range 0.19<ap <0.44 the solution approaches asymptotically to
=) :()21,)22,0). Finally, for a9 >0.45, Eo becomes unstable and the solution
approaches asymptotically to E1 =(1,0,0).
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The effect of predation rate «3 on the dynamical behavior of system (1.2) is
discussed by solving system (1.2) numerically for different values of a3 keeping

other parameters fixed as given in Eq. (6.1), and then the solution of system (1.2) as
a function of time is drawn in Fig. (6.4a)-(6.4b) for the typical values @3 =0.1,0.8.

()

1 2

15

Population
Population
=

0.5

0.2 1 1 1 1 1
0 05 1 15 2 25 3 0O 5000 10000 15000

Time 4
i % 10 Time

Figure.(6.4): Time series of the solution of the system (1.2). (a) for a3 =0.1,(b)
for a3 =0.8.

From Fig.(6.4a) it is observed that system (1.2) approaches to the positive
equilibrium point E = (0.29,0.52,0.24) , while Fig.(6.4b) shows the approaching of
system to the disease free equilibrium point E3=(0.62,0,1.87). Moreover, its
observed that for «3<0.64 the solution approaches asymptotically to

* * * * * )
E =(X1,X2,X3), and, for a3>0.65, E becomes unstable and the solution

approaches asymptotically to E3 = (X1,0, X3).

The effect of the disease death rate a4 on the dynamical behavior of system (1.2)
is also studied through solving the system (1.2) numerically for different values of
a4 keeping other parameters fixed as given in Eq. (6.1), and then the solution of
system (1.2) as a function of time is drawn in Fig. (6.5a)-(6.5c) for the typical values
aq =0.02,0.3,0.45.

Population

Population




The stability analysis of eco-epidemiological
system involving a prey refuge

Population
o o
o o =

o
~

o
N

0O 2000 4000 6000 8000 10000 12000

Time

Figure.(6.5): Time series of solution of system (1.2). (a) for a4 =0.02, (b) for
a4 =0.3,(c) for ¢4 =0.45.

According to the above figure, it is clear that, Fig.(6.5a) shows the approaching of

system (1.2) to the positive equilibrium point E" =(0.36,0.43,0.56) , while
Fig.(6.5b) shows the approaching of system (1.2) to the predator free equilibrium
point Eo =(0.7,0.21, 0) . However, Fig.(6.5c) shows the approaching of system (1.2)

to E1 =(1,0,0). Moreover, its observed that for o4 <0.16 the solution approaches

asymptotically to E' = (Xf, Xz, x§) , however increasing the value of disease death
rate in the range 0.17<a4 <0.44 causes extinction in predator species and the
solution approaches asymptotically to predator free equilibrium point
Ep =(X1,X2,0). Finally, for a4 >0.45, Eo becomes unstable and the solution
approaches asymptotically to Eq(1,0,0) .

Now the effect of the predation rate a5 on the dynamical behavior of system (1.2) is
investigated numerically by solving the system (1.2) for different values of ag

keeping other parameters fixed as given in Eg. (6.1), and then the solution of system
(1.2) as a function of time is drawn in Fig. (6.6a)-(6.6b) for the typical values ag=

(0.1,0.9).
@ i i i ()

0.9 T T T T 1.4

0.8

I
= )

o
o
=)

Population

e o
~

Population

o o
S o

o
[

0 2000 4000 6000 8000 10000 0O 2000 4000 6000 8000 10000 12000 14000

Figure.(6.6): Time series of the solution of system (1.2). (a) for a5 =0.1 (b) for
a5 =09.
Clearly Fig.(6.6a) shows the approaching of system (1.2) to the predator
free equilibrium point Eo = (0.2, 0.64, 0) however Fig.(6.6b) shows the approaching
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of system (1.2) to the positive equilibrium point E = (0.76, 0.13, 0.62) . Moreover,
its observed that for a5 <0.27 the solution approaches asymptotically to predator

free equilibrium point Ep = ()21, )22,0), and, for a5 >0.28, E» becomes unstable

and the solution approaches asymptotically to E = (Xf, XE, x§) .
The effect of the predator death rate ag on the dynamical behavior of system (1.2) is
discussed by solving system (1.2) numerically for different values of ag keeping

other parameters fixed as given in Eq. (6.1), and then the solution of system (1.2) as a
function of time is drawn in Fig. (6.7a)-(6.7c) for the typical values
ag =0.05, 0.07,0.9.
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Figure.(6.7): Time series of the solution of system (1.2). (a) for ag =0.05 (b) for
ag =0.07 (c) for ag =0.9

According to the above figure, it is clear that, Fig.(6.7a) shows the approaching of
system (1.2) to the disease free equilibrium point E3=(0.83,0,2.21), and

Fig.(6.7b) shows the approaching of system (1.2) to the positive equilibrium point
E" =(0.67, 0.16, 1.19) , while Fig.(6.7c) shows the approaching of system (1.2) to
the predator free equilibrium point Eo = (0.2, 0.64, 0) . Moreover, its observed that
for ag <0.05 the solution approaches asymptotically to the disease free equilibrium
point E3 =(X1,0,X3), however increasing the value of predation death rate in the
range 0.05<ag <0.12 causes destabilization in Eg =(X1,0,X3) and the solution
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approaches asymptotically to positive equilibrium point E' = (Xf, X;, x§) . Finally,
for ag>0.13, E™ becomes unstable and the solution approaches asymptotically to

the predator free equilibrium point Eo = ()21, )22,0) .
Further, it is observed that varying the conversion rate e; keeping other

parameters as given in Eq. (6.1) does not has any effect on the dynamical behavior of
system (1.2) and the system (1.2) still approaches asymptotically to the positive

equilibrium point E" = (Xf, XE, x§) .

Now the effect of the conversion rate eoon the dynamical behavior of system
(1.2) is discussed through solving the system (1.2) numerically for different values of
eo keeping other parameters fixed as given in Eq. (6.1), and then the solution of
system (1.2) as a function of time is drawn in Fig. (6.8a)-(6.8b) for the typical
valuesep =0.5,1.
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Figure.(6.8): Time series of the solution of system (1.2). (a) for ep =0.5. (b) for
eo =1.

From Fig.(6.8a) we see that the system approaching to predator free equilibrium
point E» =(0.2, 0.64, 0), while Fig.(6.8b) shows the approaching of system (1.2) to

the positive equilibrium point E" =(0.44, 0.36, 0.61) . Moreover, its observed that
for eo <0.66 the solution of system (1.2) approaches asymptotically to predator free

equilibrium point Eo :()21,22,0), however for e» >0.67, E2 becomes unstable

and the solution of system (1.2) approaches asymptotically to E" = (Xf, Xz, x§) .

The effect of the susceptible refuge protection rate n on the dynamical
behavior of system (1.2) is studied by solving system (1.2) numerically for different
values of n keeping other parameters fixed as given in Eq. (6.1), and then the solution
of system (1.2) as a function of time is drawn in Fig. (6.9a)-(6.9b) for the typical
values n=0.1, 0.9.
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Figure.(6.9): Time series of the solution of system (1.2). (a) for n=0.1 (b) for
n=0.9.

According to the Fig.(6.9a) the system (1.2) approaches asymptotically to the
disease free equilibrium point E3=(0.46,0,1.98), while Fig.(6.9b) shows the

approaching of system (1.2) to the positive equilibrium point E = (0.3,0.51, 0.26) .
Moreover, its observed that for n<0.46 the solution of system (1.2) approaches
asymptotically to the disease free equilibrium point E3 =(X1,0,X3), however for
n>0.47, E3 becomes unstable and the solution approaches asymptotically to

* * * *
E =(X1,X2,X3).

The effect of the infected refuge protection rate m on the dynamical behavior of
system (1.2) is also studied by solving the system (1.2) numerically for different
values of m keeping other parameters fixed as given in Eq. (6.1), and then the
solution of system (1.2) as a function of time is drawn in Fig. (6.10a)-(6.10b) for the
typical values m=0.1, 0.7.
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Figure.(6.10): Time series of the solution of system (1.2). (a) for m=0.1 (b) for
m=0.7.

From the Fig.(6.10a) it is clear that system (1.2) approaching asymptotically to

the positive equilibrium point = =(0.69, 0.18, 0.68), while Fig.(6.10b) shows the
approaching of system to the predator free equilibrium point Ep =(0.2,0.64,0).
Moreover, its observed that for m <0.63 the solution of system (1.2) approaches
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asymptotically to E' = (Xf, x§,x§), however for m>0.64, E™ becomes unstable
and the solution approaches asymptotically to Ep = ()21, )22 ,0).

Discussion and conclusion:

In this chapter, a prey-predator model involving prey refuge with Lotka-
Volttera functional response is proposed and analyzed. The stability analysis (local
and global) of the equilibrium pointes of the proposed system is carried out. The
boundedness and permanence of the system have been proved. In order to study the
effect of system parameters involving the refuge on the dynamical behavior of the
system, a numerical work has been done taking into account the set values of the
parameters in (6.1) and the results can be summarized as follow:
1. Decreasing the infection rate 1, in the range 0.1< aq <0.16, causes extinction in
predator species first and then decreasing the infection rate further, in the range
a1 £0.1, leads to extinction in an infected prey species.

2. Increasing the recover rate a2, in the range 0.19 < ap <0.44, causes extinction in
predator species first and then increasing the recover rate further a9 >0.45 leads to
extinction in an infected prey species.

3. Increasing the predation rate «3, in the range a3 >0.65, causes extinction in an
infected prey species.

4. The disease death rate has the same effects as that of the recover rate o on the
dynamical behavior of system (1.2).

5. Decreasing the infection rate ag, in the range ag <0.27, causes extinction in
predator species

6. Decreasing the predation death rate ag, in the range ag <0.05, causes extinction

in an infected prey species. However, increasing the predation death rate «g, in the
range ag > 0.13, causes extinction in predator species.

7. The conversion rate e has the same effects as that of the infection rate a5 on the
dynamical behavior of system (1.2). On the other hand the conversion rate e dose

not has any effect on the dynamics of sysytem (1.2).

8. Decreasing the susceptible refuge rate n, in the range n <0.46, causes extinction in
an infected prey species.

9. Increasing the infected refuge rate m, in the range m>0.64, causes extinction in
an predator species.
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